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On Phase Pattern Transition in Star-Coupled Wien-Bridge
Oscillators with Parameter Deviations

Seiichiro Moro ∗ Tadashi Matsumoro †

Abstract — In this study, we investigate the basins of attraction of
the phase patterns and clarify the effect of parameter deviations
in pulse-driven star-coupled Wien-bridge oscillators with param-
eter deviations. From the simulation results, it is shown that some
phase pattern can be seen easily and the others can be hardly seen
because of the deviations. Moreover, the reachability problems of
the phase patterns suggests that these systems can treat not only
the spatial phase patterns but the spatio-temporal patterns.

1 INTRODUCTION

There have been many investigations of mutual syn-
chronization and multimode oscillation in coupled os-
cillators [1]–[3]. In particular, we have reported syn-
chronization phenomena observed from N oscillators
with the same natural frequency mutually coupled by
one resistor [2, 3]. In LC oscillators systems, we have
confirmed that N-phase oscillation can be stably excited
when each oscillator has strong nonlinearity [2]. In this
case, there exist (N − 1)! stable phase states according
to the initial states. Moreover, we have investigated the
coupled system with RC Wien-bridge oscillators. This
system is suitable for VLSI implementation because the
system does not include any inductors. They also ex-
hibit the “phase-shift synchronization” and we can get
3N−1 different stable phase patterns [3]. Because these
“star-coupled” oscillators exhibit a large number of dif-
ferent steady states, they would be used as a structural
element of large scale memories and neural networks.

When we use the coupled oscillators systems as neu-
ral networks and large scale memories, it should be an
important problem how to control the systems to get the
appropriate phase patterns. To achieve the phase pat-
tern control, we have proposed the star-coupled system
of Wien-bridge oscillators driven by the periodic pulse
train and confirmed that the stimulation of the pulse
train can cause the phase pattern switching [4]. In this
system, however, only the phase of the oscillator where
the pulse train is directly added switches. Moreover, we
have proposed two types of star-coupled Wien-bridge
oscillators whose driving methods with pulse train are
different [5]. In these systems, though multiple oscilla-
tors’ phases can be switched by pulse train, there are
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some disadvantages in each system. To avoid these
problems, we have proposed the star-coupled systems
with some parameter deviations [6]. In these systems,
the phase pattern switching of the successive multiple
oscillators can be achieved due to the deviations. In
such systems, it is considered that the symmetry of the
system is collapsed by the parameter deviation. In this
study, we calculate the basins of attraction of the phase
patterns in the star-coupled Wien-bridge oscillators sys-
tem stimulated by pulse using SPICE from some ini-
tial patterns. From the results, we show that not every
pattern can derive from a certain initial pattern. How-
ever, the reachability problems of the phase patterns
from one to another suggest that these systems can treat
the spatio-temporal patterns. From these features, these
will be convenient for the use as some kinds of neural
networks and associative memories.

2 CIRCUIT MODELS

The circuit models are shown in Fig. 1. In this study,
we propose the following two models.

Model 1 The switch unit is connected to Osc 4.

Model 2 The switch unit is connected to the coupling
resistor r.

In each model, the switch unit stimulates the star-
coupled Wien-bridge oscillators. In this case, the switch
closes ∆t seconds in every T seconds, and the periodic
pulse stimulation with period T is added to the system.
T should be sufficiently large to achieve the synchro-
nization within the period. The construction of the sub-
circuits is shown in Fig. 1 (c).

In both systems, the parameter deviations are pro-
vided by the different capacitance in each C1 ∼ C4. The
capacitance Ck is described as follows,

Ck = C + (k − 1)∆C (1)

where C is the capacitance of the capacitor in subcir-
cuit and ∆C is the deviation parameter. If ∆C is larger,
the difference of the natural frequency of each oscillator
becomes larger.

3 SIMULATION RESULTS

In this section, we show the simulation results in pro-
posed models by standard circuit simulator package
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Figure 1: Circuit models. (a) Switch unit is connected
to an oscillator (Model 1). (b) Switch unit is connected
to the coupling resistor (Model 2). (c) Construction of
subcircuit. (d) Schematic of the system.
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Figure 2: Lissajours’ figures for ∆C = 10−3µF for
Model 1.
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Figure 3: An example of the phase pattern transition
when ∆C = 10−3µF for Model 1.

SPICE. In this study, we use the following circuit pa-
rameters: R = 10kΩ, C = 0.015µF, r = 200Ω,
Rf = 14.7kΩ, Ri = 4.7kΩ, ∆t = 50µsec, T = 100msec.
In the following results, A, B and C indicate in-phase,
+120◦ and −120◦ phase shift with respect to the phase
of Osc 1, respectively.

Figures 2 and 3 show the results for Model 1 and Fig-
ure 4 shows the results for Model 2 when ∆C = 10−3µF.
In these models, we can see successive phase pattern
switching of the multiple oscillators due to the param-
eter deviations. From the results, it is shown that the
in-phase synchronization of Osc 1 and Osc 4 is hardly
seen. It is considered that this is because the natural fre-
quencies of these oscillators are more different than the
other combinations of the oscillators. Such parameter
deviations make the system asymmetric and they affect
the system dynamics and the derived phase patterns.

Next, we show the precise results of phase pattern
switching. In the following results, the possible 27 =
34−1 phase patterns are indicated as the notation from
a to z and IP as shown in Fig. 5. In this case, ∆C =
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Figure 5: The notation of the phase patterns.
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Figure 4: An example of the phase pattern transition
when ∆C = 10−3µF for Model 2.

10−3µF and the single pulse (i.e., not periodic) is added
to the system. Tables 1–6 show the phase patterns when
the timing of the pulse, pulse voltage and the initial pat-
terns are changed. In these cases, the phase patterns be-
fore adding the pulse are h, v, w and y. In each model,
not so many patterns appear after the pulses are added.
In particular, in Table 3, only q and y are seen, therefore,
some patterns cannot be derived directly from y. In such
cases, the desired pattern has to be derived through the
other patterns. For example, assume that we want the
pattern q from the initial pattern v. However, from Ta-
ble 2, there is no direct way to pattern q from v. There-
fore, we have to derive it by twice pulse stimulation,
such that v → y → q, according to the tables. From
this fact, the reachability problems from a pattern to an-
other pattern should be important to use these systems
as neural networks. From the tables show above, we
can derive the directed graphs as shown in Fig. 6 which
denote the transitions of the phase patterns. We can dis-
cuss the reachability problem using the incidence ma-
trices of these graphs. On the other hand, the pattern se-
quences such as v→ y→ q can be also patterns derived
from the systems. In this case, phase patterns a–z and
IP can be said as spatial pattens and sequence from pat-
ten to pattern can be said as temporal patterns. From this
point of view, we can treat the spatio-temporal patterns
in these systems and the possibility of these systems as

Table 1: 2 Parameter Phase Pattern Diagram for Model
1 (Initial Pattern h).

Phase
Vc 0 1

5π
2
5π

3
5π

4
5π π

6
5π

7
5π

8
5π

9
5π

15 y h h q h h h y y y
14 y w h w h h h y y y
13 y y h w h h h y y y
12 y y h h h h h w y y
11 y y h h h h h w w y
10 y y h h h h h h w y

w y

h q

v
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Figure 6: Directed graphs for the phase pattern transi-
tions. (a) Model 1. (b) Model 2.

neural networks and memories will be expanded.

4 CONCLUSIONS

In this paper, we show the frequency of appearance of
the phase patterns in pulse-driven star-coupled Wien-
bridge oscillators with the parameter deviations. The
symmetry of the system is collapsed by such parame-
ter deviations, and they affect the system dynamics and
the phase patterns. From the results, it is shown that
some phase pattern can be seen easily and that some
phase patterns can be hardly seen because of the devia-



Table 2: 2 Parameter Phase Pattern Diagram for Model
1 (Initial Pattern v).

Phase
Vc 0 1

5π
2
5π

3
5π

4
5π π

6
5π

7
5π

8
5π

9
5π

15 v v v w w w w w y y
14 v v v w w w w w y y
13 v v v w w w w w y y
12 y v v w w w w w w y
11 y v v w w w w w w y
10 y v v v w w w w w y

Table 3: 2 Parameter Phase Pattern Diagram for Model
1 (Initial Pattern y).

Phase
Vc 0 1

5π
2
5π

3
5π

4
5π π

6
5π

7
5π

8
5π

9
5π

15 y y y q q q q q y y
14 y y y q q q q q y y
13 y y y q q q q q y y
12 y y y q q q q q q y
11 y y y q q q q q q y
10 y y y q q q q q q y

tions. Such phenomena can separate the preferred pat-
terns from undesirable patterns. Moreover, the reacha-
bility problems of the phase patterns suggest that these
systems can treat the spatio-temporal patterns. From
these features, these will be convenient for the use as
some kinds of neural networks and associative memo-
ries.
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