
A Scheme for Collecting Anonymous Data

言語: English

出版者:

公開日: 2013-02-20

キーワード (Ja):

キーワード (En):

作成者: TAMURA, Shinsuke, TAMIGUCHI, Shuji

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/7280URL

A Scheme for Collecting Anonymous Data

Shinsuke Tamura, Shuji Taniguchi
Graduate School of Engineering

University of Fukui
Fukui, Japan

tamura@u-fukui.ac.jp

Abstract—This paper proposes a scheme for calculating
aggregate values of data owned by anonymous entities. Linear
mix-nets, an unknown unique number generator, and
anonymous tag based credentials efficiently conceal not only
identities of data owners but also linkages between data owned
by same entities. Then, the scheme enables quick introduction of
advancing information technologies to industrial applications
while ensuring confidentiality of sensitive data, e.g. a machine
maintenance company can monitor states of machines remotely
without knowing secrets of machine owners, companies can
outsource even their sensitive tasks without worrying about leaks
of their secrets. The scheme is also applicable to tasks in e-
governance systems such as tax-collections where privacies of
individuals must be preserved.

Index Terms— remote maintenance, e-governance, cloud
computing, linear mix-net, anonymous tag, anonymous credential.

I. INTRODUCTION

Let us assume a situation where a remote maintenance
company calculates the sum of data about machines at factories
of a manufacturing company. Where, the sum is calculated for
some reasons, but confidentiality of the manufacturing
company must be ensured. Therefore, the remote maintenance
company must calculate the sum without knowing owners of
individual data. Because a set of data owned by a same
company include many clues to identify the company, it must
calculate the sum without knowing linkages between data
owned by same companies either. Same situations exist also in
cloud computing and e-governance systems, e.g. a company
that carries out its tasks by using cloud computing resources
may want to conceal its sensitive data even from mangers of
the cloud computing system, and citizens in e-governance
systems may not want governments to know their total
properties or to link their individual properties.

The anonymous data collection scheme proposed in this
paper exploits linear mix-nets, an unknown unique number
generator, and anonymous tag based credentials to cope with
the above situations securely and efficiently. Namely, one of
the linear mix-nets is used to encrypt individual data owned by
anonymous entity P so that no one except P can know
correspondences between individual data and P, nevertheless
by using the unknown unique number generator an authority
(e.g. a remote maintenance company) can collect encrypted
data of P, and the other linear mix-net enables the authority to
calculate the sum of data owned by P from the collected

encrypted forms so that P can take required actions, e.g.
replace old machines with new ones or pay fees for services
provided by the maintenance company. Finally, anonymous tag
based credentials enable the authority to identify entities that
do not complete the required actions.

Where, although various mechanisms for handling
anonymous information have been developed already, they are
not efficient enough for data collection systems. For example,
it is possible to calculate sums of data without knowing their
individual values or their owners when widely used mix-nets
[2][3] and encryption schemes such as RSA or ElGamal are
combined. Namely, mix-nets conceal linkages between
encrypted and decrypted forms of data (this means the owner
of data can conceal the correspondence between itself and its
data), also RSA and ElGamal enable the authority to calculate
the sum of data from their encrypted forms (this means the
authority can calculate the sum without knowing individual
values). However, mix-nets, RSA and ElGamal are designed
to handle data represented as integers, and they are too
inefficient to process real numbers that appear in many
important applications. Different from usual mix-nets, linear
mix-nets in the proposed scheme handle real numbers totally
in the same way as integers.

About identifications of entities that do not complete
required actions (in the remainder, these entities are called
dishonest entities), zero knowledge proof (ZKP) based
anonymous credentials are widely used and they satisfactory
identify dishonest entities while preserving privacies of honest
entities. However, ZKPs are not practical, i.e. they require
numbers of challenges and responses [4][5]. Credentials based
on anonymous tags require only limited number of challenges
and responses and reduce computation volumes drastically.

 Then, the proposed scheme enables highly efficient
calculation of aggregate values while maintaining
confidentialities of individual data and linkages between the
data and their owners. In the remainder, it is assumed that the
authority calculates sums of data. But slight modifications
enable also calculation of polynomial functions of data.

II. SYSTEM CONFIGURATION

Fig. 1 shows 6 parts of the proposed system, i.e. they are
member registration, distributed data storage, the 1st and the
2nd linear mix-nets, bulletin board (BB), and dishonest entity
identification parts. First of all, the member registration part
registers entity P as a member of the system, i.e. authority S

gives anonymous credential TP(0) to P if it is eligible. At the
same time S defines a unique random number NP to give it to P,
where, NP is encrypted by multiple independent sub-authorities
so that no one except P can know its value. Then, P stores its
individual data DP(1), DP(2), ---, DP(Q) in the distributed data
storage together with the credential and the encrypted unique
random number without disclosing its identity. In detail, for
each data item DP(q), P transforms credential TP(0) to TP(q) to
disable others to link DP(q) to other data item DP(q*) (q ≠ q*),
proves its eligibility by showing TP(q), after that stores DP(q)
together with its encrypted form E*(k*, DP(q)), where k* and g*
below represent secret encryption keys of multiple independent
sub-authorities as shown later. Also, P attaches credential TP(q)
and unique random number NP in form E(g*, NP(q), rPq). Here
rPq is a random integer that makes the encryption result unique,
i.e. although both E(g*, NP, rPq) and E(g*, NP, rPj) are decrypted
to NP, entities other than P cannot know that E(g*, NP, rPq) and
E(g*, NP, rPj) are the encrypted forms of the same number.
Then, no one other than P can link DP(1), ---, DP(Q).

Fig. 1. Configuration of the anonymous data collection system

After that, each triple {E*(k*, DP(q)), TP(q), E(g*, NP, rPq)}
in the distributed data storage is decrypted (actually TP(q) is
encrypted) by the 1st linear mix-net to be put in the BB while
being shuffled with other triples. Here, although E(g*, NP, rPq)
is decrypted to NP and TP(q) is encrypted to TP

(q), E(k*,
DP(q)) is decrypted only partially into E*(kZ*, DP(q)), therefore
anyone cannot know the correspondence between E*(kZ*,
DP(q)) and DP(q). But because all data owned by P are
accompanied by NP, S can collect P’s data E*(kZ*, DP(1)), ---,
E*(kZ*, DP(Q)) to calculate their sum and attach NP and TP

*(1)
to the sum. In addition, E*(kZ*, x) is configured as an additive
encryption function, therefore the 2nd linear mix-net can
decrypt the sum to DP(1) + DP(2) + --- + DP(M) to be disclosed
in the BB together with NP and TP

*(1).
As a consequence, P can identify the sum of its data in the

BB based on NP (P knows NP) and can begin the required

actions about the sum, but entities other than P cannot know
the correspondence between P and the sum, because NP is
known only to P. Nevertheless, credential TP

*(1) attached to the
sum enables the dishonest entity identification part to identify
P when it does not complete the required actions without
knowing any secret of honest members. Namely as discussed
later, used seal of credential TP

*(1) forces P to disclose its
identity. Then, if P is a manufacturing company and each DP(q)
is the fee for maintaining machine Mq owned by P for example,
remote maintenance company S can force P to honestly pay
fees for services it provided for machines owned by P, on the
other hand, P can conceal its individual machines and their
hours of operations from S.

III. UNKNOWN UNIQUE NUMBER GENERATOR

To generate unique secret integer NP authority S is
constituted by multiple mutually independent sub-authorities S1,
---, SZ, SZ+1, ---, SJ, and member P and SZ+1, ---, SJ behave as
follows [8]. Firstly, each authority Sh generates its secret
integer p(h), and informs authority S (representative of S1, ---,
SJ) of Cp(h)

mod B. Where B is a publicly known appropriate large
integer, therefore, it is practically impossible for anyone other
than Sh to know p(h) from Cp(h)

mod B, i.e. calculating p(h) from
Cp(h)

mod B is a discrete logarithm problem. After receiving
Cp(h)

mod B from each Sh, S calculates CNP = Cp(Z+1)Cp(Z+2)---Cp(J) =
Cp(Z+1)+p(Z+2)+ --- +p(J) (in the followings notation mod B is omitted
when confusions can be avoided) and asks each Sh to disclose
p(h) to P when CNP did not appear before. Then, P calculates
NP = p(Z+1)+p(Z+2)+ --- +p(J) and finally encrypts it to E(g*,
NP, rP1), E(g*, NP, rP2), ---, E(g*, NP, rPQ) by using public
encryption keys gZ+1, ---, gJ of SZ+1, ---, SJ. Where, E(g*, NP,
rPq) = E(gJ, E(gJ-1, --- E(gZ+1, NP, rPq) ---)), and rPq is P’s secret
integer that makes encryption function E(g*, x) probabilistic as
mentioned before.

In the above, each Sh does not know p(j) generated by other
authority Sj, therefore no single entity except P can know NP.
Because P defines rP1, rP2, ---, rPQ independently, no one except
P can know the linkage between E(g*, NP, rPh) and E(g*, NP, rPj)
when h ≠ j either. Also, apparently uniqueness of NP is ensured,
and at the same time confidentiality of NP is maintained even
when same value CNP appears repeatedly, because each Sh
knows only p(h).

IV. LINEAR MIX-NET

A linear mix-net is a mix-net, in which linear equation
based encryption functions are exploited. Namely as shown in
Fig. 2, authorities SJ, ---, SZ+1, SZ, ---, S1 in the 1st and the 2nd
linear mix-nets decrypt E*(k*, DP(q)) = E*(kJ, E

*(kJ-1, --- E
*(k1,

DP(q)) ---)), member P’s data DP(q) repeatedly encrypted by
secret keys k1, k2, ---, kJ of S1, S2, ---, SJ, into DP(q) while
shuffling individual decryption results with those owned by
other members (actually SZ, ---, S1 in the 2nd linear mix-net do
not need to shuffle their decryption results), therefore no single
entity other than P can identify the correspondence between
E*(k*, DP(q)) and E*(kh*, DP(q)) = E*(kh, E*(kh-1, --- E*(k1,
DP(q)) ---)) for any h (i.e. DP(q) and E*(kh*, DP(q)).

Member registration part

P

Distributed data storage part

1st linear mix-net part

Bulletin board (BB) part

2nd linear mix-net part

Dishonest entity
identification part

unique unknown random number NP
generate credential TP(0), and

DP(1), E*(k*, DP(1)),
TP(1), E(g*, NP, rP1)

DP(Q), E*(k*, DP(Q)),
TP(Q), E(g*, NP, rPQ),

decrypt individual data partially

decrypt sums of partially decrypted
data

disclose partially decrypted data,

calculate sums of partially decrypted
data

find dishonest TP
*(1)

and identify the owner
of TP

*(1)

P’s identity
NP, TP(0)

DP(q), E*(k*, DP(q))
TP(q), E(g*, NP, rPq)

TP
*(1)

find sum
DP(1)+ --- + DP(Q)

disclose the decrypted sums

verify P’s eligibility

Here, one of distinctive features of each encryption
function E*(kh, x) is it can handle real numbers as same as
integers, therefore, member P and authorities can encrypt and
decrypt their relevant data efficiently even the data are real
numbers. As another important feature, E*(kh, x) is additive, i.e.
relation aE*(kh, x)+bE*(kh, y) = E*(kh, ax+by) holds for any real
numbers a and b. Therefore, when the 1st linear mix-net SJ, ---,
SZ+1 decrypts each E*(k*, DP(q)) to E*(kZ*, DP(q)) and calculates
sum E*(kZ*, DP(1)) + --- + E*(kZ*, DP(Q)), the sum coincides
with E*(kZ*, DP(1) + --- + DP(Q)) as shown at the bottom of Fig.
2, and TotalP = DP(1) + --- + DP(Q) is revealed when E*(kZ*,
DP(1) + --- + DP(Q)) is decrypted by the 2nd linear mix-net SZ,
---, S1. Then, S can know that the sum of data owned by some
entity is TotalP, but no one except P can know the linkage
between DP(1), --- , DP(Q) or the correspondence between P
and TotalP.

About Fig. 2, it must be noted that P encrypts NP by public
encryption keys of only authorities SZ+1, ---, SJ. This means all
decryption results E*(kZ*, DP(1)), ---, E*(kZ*, DP(Q))
corresponding to P are accompanied by same integer NP,
therefore, SZ+1 can collect E*(kZ*, DP(1)), --- , E*(kZ*, DP(Q)) to
calculate their sum E*(kZ*, DP(1) + --- + DP(Q)).

E*(kh, x) with the above features can be constructed as
below. Namely, E*(kh, x) transforms x to vector {m1, m2, ---,
mG} that is calculated as in Eq. 1, where coefficient matrix
{k(h)st} constitutes secret key kh of Sh, and u1, u2, ---, uG are
real numbers secrets of Sh [6][8]. Then, entities that do not
know matrix {k(h)st} cannot calculate x from {m1, m2, ---, mG},
but Sh that knows {k(h)st} can solve Eq. 1 to know x.

m1 = k(h)11x + k(h)12u1 + --- + k(h)1GuG-1
m2 = k(h)21 x + k(h)22u1 + --- + k(h)2GuG-1

mG = k(h)G1x + k(h)G2u1 + --- + k(h)GGuG-1

As widely known, linear equation based encryption

functions are weak against plaintext attacks, where an entity
illegitimately knows secret keys based on known plain text
and their encrypted form pairs (e.g. it is easy to calculate
{k(h)st} in Eq. 1 when G-mutually independent vectors and
their decrypted values are given). But in this scheme, Sh itself
that encrypts x decrypts {m1, m2, ---, mG}, therefore plain text
that includes secret numbers u1, u2, ---, uG-1 is never disclosed
to others. Also, encrypted form of x can be constructed as {m1,
m2, d1, m3, d2,---} while being merged with secret dummy
elements {d1, ---, dG*}, and mj can be represented as the sum
of multiple elements {mj1, mj2, ---, mjj*} if necessary, therefore
plain text attacks become extremely difficult.

However different from usual mix-nets, encryption key kh

of E*(kh, x) is a secret of Sh, therefore P must ask S1, ---, SJ to
encrypt each DP(q), and as a result, although P is anonymous
Sh can know the linkage between DP(q) and partially decrypted
form E*(kh*, DP(q)), because Sh itself calculates E*(kh*, DP(q))
from E*(k(h-1)*, DP(q)) at a time when P asks authorities to
encrypt DP(q) to E*(k*, DP(q)). To disable Sh to know this
linkage, P constructs E*(k*, DP(q)) as follows.

As shown in the upper part of Fig.2, firstly P asks S1, ---,
SJ to repeatedly encrypt DP(q) to E(k*, DP(q)) = E(kJ, E(kJ-1, --
- E(k1, DP(q)) ---)), where E(kh, DP(q)) is calculated as linear
combinations of DP(q) and secret random numbers as same as
E*(kh, DP(q)) shown in Eq. 1. After that P generates its secret
numbers a1q(P), a2q(P), --- , aLq(P) and calculates E*(k*,
DP(q)) as E*(k*, DP(q)) = E(k*, DP(q)) + a1q(P)E(k*, 01) + --- +
aLq(P)E(k*, 0L). Here, each E(k*, 0t) is an encrypted form of 0
that is calculated by S1, ---, SJ in advance. Then, E*(k*, DP(q))
is still decrypted to DP(q), but Sh cannot know the
correspondence between E(kh*, DP(q)) and E*(kh*, DP(q)),
because a1q(P), --- , aLq(P) are secrets of P.

Fig. 2. Linear min-net

There are 2 problems in implementing the above scheme,

the one is that Sh may calculate E(k*, DP(q)) dishonestly, and
the other is that P may construct E*(k*, DP(q)) dishonestly, e.g.
P must pay more than it is responsible as machine
maintenance fees in the former case, and in the latter case S
cannot collect exact fees from P. Fortunately E(k*, x) and
E*(k*, x) can be made verifiable because they are additive.

About the former threat conceptually, S prepares test bit
strings test(1), test(2), ---, test(L*), and S1, ---, SJ encrypt them
repeatedly to E(k*, test(1)), E(k*, test(2)), ---, E(k*, test(L*)) in
advance. After that at a time when S1, ---, SJ calculate E(k*,
DP(q)), P asks them to decrypt E(k*, test) = E(k*, DP(q)) +
v1q(P)E(k*, test(1)) + --- + vL*q(P)E(k*, test(L*)) while
generating its secret numbers v1q(P), v2q(P) ---, vL*q(P). Then,
P can convince itself that S1, ---, SJ are honest if the decryption
result coincides with test = DP(q) + v1q(P)test(1) + --- +
vL*q(P)test(L*). Namely, if E(k*, DP(q)) is correct, S1, ---, SJ
that know their secret keys can easily decrypt E(k*, test) to
test, but if E(k*, DP(q)) is incorrect, they cannot calculate test
because they do not know v1q(P), ---, vL*q(P). Actually, E(k*,
DP(q)) is a G-dimensional vector, and each Sh can obtain G-
equations to calculate v1q(P), ---, vL*q(P). Therefore, L* must
be greater than G, and this means P can obtain many plain

----- (1)

S1

P
DP(q)

S2 SJ
E(k1,DP(q)) E(kJ-1,--E(k1,DP(q))--)

E(k*,DP(q))

SJ

E(g*, NP, rPq), TP(q)

E*(k(J-1)*,DP(q))
E(g(J-1)*, NP, rPq)
TP

(J-1)*(q)

NP, TP
*(q)

DP(1)+ --- +DP(Q) E*(k*,DP(q)) = E(k*,DP(q))+

NP, TP
*(q)

1st linear mix-net 2nd linear mix-net

E*(k(Z-1)*,DP(1)+ --- + DP(Q))

E*(kZ*,DP(1)+ --- + DP(Q))
NP, TP

*(q)

Encryption part

E(k*, a1q(P)01(q)+ --- + aLq(P)0L(q))

SJ-1

SZ+1

S1

SZ-1

SZ

texts and their encrypted forms pairs if L* is large. Although
the scheme is still strong enough, to make the scheme more
secure L* must remain as small as possible. A simple
extension makes L* small enough [8].

The latter threat also can be removed, i.e. S can detect
dishonest construction of E*(k*, DP(q)) and can identify the
corresponding dishonest entity P in the following way. Firstly,
S calculates Sum(q) = u1qD1(q) + u2qD2(q) + --- + uLqDL(q) (L
is the number of members) and E*(k*, Sum(q)) = u1qE

(k,
D1(q)) + --- + uLqE

(k, DL(q)) while generating secret
numbers u1q, ---, uLq, and SJ, ---, S1 decrypt E*(k*, Sum(q)).
Then, S convinces itself that each E*(k*, DP(q)) is correct when
E*(k*, Sum(q)) is decrypted to Sum(q). Namely, if E*(k*,
DP(q)) is an encrypted form of X, E*(k*, Sum(q)) is decrypted
to Sum(q)+uP(X - DP(q)). On the other hand, each Sh can know
only a partially decrypted form E*(kh*, Sum(q)), it cannot
know E*(kh*, DP(q)), i.e. Sh cannot identify the correspondence
between E*(k*, DP(q)) and E*(kh*, DP(q)). Because u1q, ---, uLq
are secret of S, even conspiring entities P1 and P2 cannot
encrypt their data dishonestly either, i.e. although P1 can
consistently calculate E*(k*, X) instead of E*(k*, DP1(q)) as the
encrypted form of DP(q) if P2 calculates E*(k*, DP2(q))-E*(k*,
(uP1/uP2)(X - DP1(q))) instead of E*(k*, DP2(q)), either P1 or P2
that does not know u(P1)q or u(P2)q cannot calculate
(u(P1)q/u(P2)q)E

(k, X-DP1(q))).
Once dishonesties are detected, for each triple {DP(q),

E(k*, DP(q)), TP(q)}, SJ, ---, S1 decrypt E(k*, DP(q)), and if
E(k*, DP(q)) is not decrypted to DP(q), identify P as dishonest
entity while exploiting anonymous credential TP(q) as will be
discussed later. However after dishonest entities are identified,
honest members must ask S1, ---, SJ to encrypt their data again
to conceal linkages between their owning data.

V. ANONYMOUS TAG BASED CREDENTIALS

A. Anonymous Tags

An anonymous tag is a tag and associate tag parts pair {T,
TR}, i.e. tag owner P places T in the tag part and transforms it
to TR

mod B by its secret integer R to put the result in the
associate tag part [7], where as shown in Sec. III, B is an
appropriate integer common to all entities and large enough.
Also, P uses tag {T, TR} while transforming it to {TW

mod B,
TRW

mod B} by its secret integer W, and entity Sh transforms tags
it receives by its secret integer kh. Therefore, {T, TR} changes
its form as {TW(k1), TRW(k1)}, {TW(k1)(k2), TRW(k1)(k2)} and
{TW(k1)(k2)(k3), TRW(k1)(k2)(k3)} in this order when it is transformed
by P and 3 entities S1, S2, S3. Then, anonymous tags satisfy the
following requirements, i.e.

1) anyone except P cannot identify P from its tag,
2) anyone except P cannot know that different forms of tag

{T, TR} are owned by a same entity, unless all relevant
entities conspire with each other, and

3) P can identify its tag without knowing secrets of others.

About requirement 3), P can identify its tag by
transforming the tag part by its secret R, e.g. P can identify
{TW(k1)(k2), TRW(k1)(k2)} as its tag by calculating the associate tag

part value from tag part value TW(k1)(k2) as (TW(k1)(k2))R. Here, it
is apparent that P does not need to know secret integers k1, k2, -
-- to identify its tags.

B. Anonymous Credentials Based on Anonymous Tags

Let TP, k and c be integers defined by authority S, and R
and w be secret integers defined by member P. Then, provided
that d1 and d2 are 2 secret signing keys of S and S(d1║d2, x) is
RSA signature pair {S(d1, x) = xd1

mod B, S(d2, x) = xd2
mod B},

signature pair S(d1║d2, TP
R+1KwCw

R
mod B) is an anonymous tag

based anonymous credential generated by S and given to P (it
must be noted that RSA signing function is multiplicative, i.e.
relation S(d, x)S(d, y) = S(d, xy) holds). Here, TP, k and c are
publicly known integers, and different from k and c that are
common to all credentials TP and R are unique to credential
S(d1║d2, TP

R+1KwCw
R). Regarding Kw and Cw, P calculates them

as Kw = kw
mod B and Cw = cw

mod B, respectively based on k and c.
Also uniqueness of P’s secret integer R can be maintained in
the same way as in Sec. III.

Fig. 3. Issuing anonymous credentials

Fig. 3 shows the procedure in which S issues S(d1║d2,

TP
R+1KwCw

R) to P. Firstly, after verifying authenticity of P
based on P’s identity, S defines integer TP, and P calculates Kw
= kw , Cw = cw and pair TP

R and Cw
R while using its secrets w

and R, where {TP, TP
R} constitutes an anonymous tag. Then S

generates credential S(d1║d2, TP
R+1KwCw

R) to give it to P. Here,
it must be noted that although TP

R, kw, cw and Cw
R are disclosed,

to know w and R is practically impossible for S as mentioned
before. Nevertheless, S can confirm that P had calculated Kw
and Cw as k and c to the power of same w through the scheme
of Diffie and Hellman [1], i.e. S generates secret integer X to
calculate (kc)X and (KwCw)X, and asks P to calculate (kc)Xw
while showing (kc)X. If P does not know w that satisfies
relation Kw = kw and Cw = cw, it cannot calculate (kc)Xw =
(KwCw)X from (kc)X without knowing S’s secret X (actually, it
is easy to find and that satisfy = (kc)w by defining
arbitrarily and calculating = (kc)w/, and P can report and
 to S instead of kw and cw while calculating ()X that is equal
to (kc)Xw. However in this case, P that does not know or
that satisfies = k or = c cannot calculate Y = kY or Y =
cY when S generates secret integer Y and asks P to calculate
them from kY or cY). In the same way, S can confirm that TP

R
and Cw

R are equal to TP and Cw to the power of same unknown
integer R.

generate secret integers

sign on TP
R+1KwCw

R
verify

Member P Authority S

S(d1║d2, TP
R+1KwCw

R)

generate integer TP

define integers k, c

authenticate P
k, c, TP

P’s identity

R, w and calculate

and save it
with TP, Kw, Cw

Kw= kw, Cw= cw Kw, Cw, TP
R, Cw

R generate X and calculate
(kc)X, (KwCw)X,

(kc)X, (TPCw)X
calculate

(kc)Xw, (TPCw)XR verify (kc)Xw = (KwCw)X,
(TPCw)XR = (TP

RCw
R)X

(kc)Xw, (TPCw)XR

show identity of itself

(TPCw)X, (TP
RCw

R)X
TP

R, Cw
R

S(d1║d2, TP
R+1KwCw

R)

After having obtained S(d1║d2, TP
R+1KwCw

R), by generating
secret integer W, calculating S(d1║d2, TP

R+1KwCw
R)W = S(d1║d2,

(TP
R+1KwCw

R)W) and showing it together with TP
W, Kw

W, Cw
W

and Cw
RW, P can convince any entity V that it is an eligible

entity ensured by S without disclosing its identity as shown in
Fig. 4. Namely, V verifies that S(d1║d2, TP

R+1KwCw
R)W is the

legitimate signature pair on (TP
R+1KwCw

R)W by using public
verification key pair d1* and d2* (pair S(d1║d2, x) is consistent
when not only S(d1, x) and S(d2, x) are consistent signatures but
also they are decrypted into same x), decomposes it into TP

W,
TP

RW, Kw
W and Cw

RW based on the information given by P, and
confirms that P had calculated Kw

W = kwW and Cw
W = cwW based

on integers k, c and same unknown secret integer wW in the
same way as S had verified pair {Kw, Cw} in Fig. 3.

Then, because no one other than the legitimate holder of
S(d1║d2, TP

R+1KwCw
R) knows R, V can determine P is eligible

when P knows R. Where P can prove that it knows R without
disclosing R itself also through the scheme of Diffie and
Hellman [1], i.e. V calculates (TP

WCw
W)X and (TP

RWCw
RW)X

while generating its secret integer X, and P that receives
(TP

WCw
W)X calculates D = ((TP

WCw
W)X)R by using its secret R,

then finally, V determines that P knows R when relation D =
(TP

RWCw
RW)X holds. Namely, although it is easy to calculate

(TP
RWCw

RW)X from (TP
WCw

W)X for an entity that knows R, for
entities that do not know R calculating (TP

RWCw
RW)X is

practically impossible.

Fig. 4. Verifying anonymous credentials

Now, the above procedures are characterized by the

following 4 properties, i.e.
1) P can obtain credential S(d1║d2, TP

R+1KwCw
R) from S only

through legitimate ways and only when it is eligible,
2) only P that knows integer R can prove the ownership of

S(d1║d2, TP
R+1KwCw

R),
3) no one except P can identify P from its credential S(d1║d2,

TP
R+1KwCw

R)W. Provided that W1, ---, WN are different
integers secrets of P, no one other than P can know that
S(d1║d2, TP

R+1KwCw
R)W1, ---, S(d1║d2, TP

R+1KwCw
R)WN are

different forms of same credential S(d1║d2, TP
R+1KwCw

R)
either, and

4) P that shows credential S(d1║d2, TP
R+1KwCw

R)W can prove
its ownership only when it calculates D = (TP

WCw
W)XR as

(TP
WCw

W)X to the power of exactly R.

In addition, any entity can verify the validity of S(d1║d2,

TP
R+1KwCw

R) because verification keys d1* and d2* are publicly
known and (TP

R+1KwCw
R)W is decomposed into TP

RW, TP
W, Kw

W
and Cw

RW by P itself. Here, property 4) in the above are
ensured because V examines whether Kw

w and Cw
w are

calculated as publicly known integers k and c to the power of
same unknown integer wW, and TP

RW and Cw
RW are equal to

TP
W and Cw

W to the power of same unknown integer R, in the
same way as S in Fig. 3 examines relation Kw = kw and Cw = cw.
Also a signature pair disables entities to forge a credential
while generating α, β and δ arbitrarily and calculating αβkδcβδ to
transform it by a publicly known verification key.

About anonymity of credentials, when 2 entities P and P*
use S(d1║d2, TP

R+1KwCw
R)W and S(d1║d2, TP*

R*+1Kw*Cw*
R*)W*

while defining integer pairs {w, W} and {w*, W*} in the way
relation wW = w*W* holds by chance, S (it is assumed that
authority S itself verifies credentials) can detect this fact by
duplicated appearances of Kw

W (= kwW) and if S is conspiring
with P*, it can know wW (= w*W*) by asking it to P*. But S
cannot identify P from wW, i.e. S that knows only wW cannot
extract W and calculate Tj

W for each Tj it had assigned to
member Pj to compare the result with TP

W that P shows
together with S(d1║d2, TP

R+1KwCw
R)W.

C. Anonymous Tag Based Credentials in the Proposed Scheme

One of advantages of anonymous tag based credentials is
member P can show credential S(d1║d2, TP

R+1KwCw
R)

repeatedly while changing its forms without being detected by
others that its showing forms were generated from same
S(d1║d2, TP

R+1KwCw
R). Namely, provided that P assigns

different values to W1, ---, WN, no one except P can know that
S(d1║d2, TP

R+1KwCw
R)W1, ---, S(d1║d2, TP

R+1KwCw
R)WN are

shown by P. While exploiting this property, credentials TP(0),
TP(1), ---, TP(Q) in Sec. II can be implemented as S(d1║d2,
TP

R+1KwCw
R), S(d1║d2, TP

R+1KwCw
R)W1, ---, S(d1║d2,

TP
R+1KwCw

R)WQ, respectively.
As another feature relates to data collection systems,

anonymous tag based credentials enable authority S to identify
dishonest members of course without knowing privacy of
honest entities. To identify dishonest members, when P puts
data DP(q) in the distributed data storage while showing
credential S(d1║d2, TP

R+1KwCw
R)Wq, S memorizes pair {UP(q),

UP(q)R} as a data registration record. Here, S defines UP(q) as
an integer unique to data DP(q). UP(q)R is the used seal of tag
{TP, TP

R} and S asks P to calculate it based on credential
S(d1║d2, TP

R+1KwCw
R)Wq. Under these settings, if S detects that

no entity completes actions about the sum accompanied by
{UP(1), UP(1)R}, each member P* is requested to calculate
UP(1)R* from its credential S(d1║d2, TP*

R*+1Kw*Cw*
R*) and UP(1)

in dishonest data registration record {UP(1), UP(1)R}. Then, S
can identify P* as the entity responsible for the actions when
UP(1)R* coincides with UP(1)R (i.e. when R = R*). On the other
hand, P* can conceal the linkage between it and its data if it is
honest, because it is practically impossible to know UP*(1)R*
that P* had left in the data registration records from UP(1)R*.

In the above, S can force P to honestly calculate UP(q)R at a
time when P registers DP(q) as below. Namely, S asks P to

Member P Entity V

{TP
W, Kw

W, Cw
W, Cw

RW}
S(d1║d2, TP

R+1KwCw
R)W S(d1║d2, TP

R+1KwCw
R)W S(d1║d2, TP

R+1KwCw
R)W

calculate (TP
WCw

W)X

generate secret integer X

the product of
confirm (TP

R+1KwCw
R)W is

{TP
W, TP

RW, Kw
W, Cw

RW}

verify D = (TP
RWCw

RW)X
D

generate W

calculate D =

calculate (kc)X
(kc)X calculate (kc)XwW

and (Kw
WCw

W)X
verify (kc)XwW

and (TP
RWCw

RW)X

(TP
WCw

W)X
(kc)XwW = (Kw

WCw
W)X

(TP
WCw

W)XR

TP
W, Kw

W, Cw
W, Cw

RW

and construct decrypt

calculate D = {(TP
WCw

W)X}R, A = UP(q)R and B =
{(UP(q)TP

WCw
W)XY}R while showing (TP

WCw
W)X, UP(q) and

(UP(q)TP
WCw

W)XY, where X and Y are S’s secret integers. After
that, S examines whether relations D = (TP

RWCw
RW)X and B =

(AXY)DY hold or not. Then, if P calculates A dishonestly as
UP(q)Q (Q ≠ R), because D must be equal to {(TP

WCw
W)X}R

(according to property-4 in the previous subsection, if P
calculates D differently it cannot show the ownership of {TP,
TP

R}), P must calculate B so that it coincides with (AXY)DY =
(UP(q)QXY)(TP

RWCw
RW)XY), but P that does not know X or Y

cannot calculate UP(q)QXY. In the same way, S can force P* to
honestly calculate UP(q)R*, when S detects existences of
dishonest members.

But actually data registration record {UP(1), UP(1)R} is
encrypted by SJ, ---, Sz+1 together with TP(1) = S(d1║d2,
TP

R+1KwCw
R)W1 as shown in Fig. 2. Namely, the 2nd linear

mix-net transforms {UP(1), UP(1)R} to {UP(1)(eJ)(ej-1)---(ez+1)
mod B,

UP(1)R(eJ)(ej-1)---(ez+1)
mod B} = {UP(1)e*

mod B, UP(1)Re*
mod B} by

secret keys eJ, ---, ez+1 of SJ, ---, Sz+1. Therefore, dishonest data
registration record {UP(1), UP(1)R} in the above must be
replaced by{UP(1)e*, UP(1)Re*}.

Used seals solve also a problem, in which P* that conspires
with S and obtained D = (TP

WCw
W)XR that was calculated by P

impersonates P, the owner of credential S(d1║d2, TP
R+1KwCw

R).
Namely, although P* can know S(d1║d2, TP

R+1KwCw
R)W and D

= (TP
WCw

W)XR after P had used S(d1║d2, TP
R+1KwCw

R)W, and S
and P* can jointly generate integers X* and W* so that P* can
use S(d, TP

R+1K1K2
R)WW* while calculating DW*X* =

(TP
WCw

W)XRW*X* that is consistent with R, either P* or S that
does not know R cannot calculate UP*(m)R (m > n) consistently
(here, it is assumed that P had left used seals UP(1)R, UP(2)R, ---,
UP(n)R before). Although P* can leave UP(n)R that P had
calculated before or inconsistent value U as its used seal, S
must reject UP(n)R because it is shown repeatedly, also S
cannot impute the liability of this dishonesty by using U
because it cannot identify P from U.

By exploiting used seals S can also limit the numbers of
times that members can use same credentials. Namely, in the
credential verification procedure shown in Fig. 4, P is
requested also to declare n, the number of times that it had used
S(d1║d2, TP

R+1KwCw
R) before, and S calculates used seal U(n)R,

where U(n) is an integer defined by S and common to all
members but unique to n. Then, because U(n)R is unique to pair
{P, n}, S can reject excessively shown S(d1║d2, TP

R+1KwCw
R),

i.e. S memorizes pair {n, U(n)R} and rejects P’s credential
when P declares a value more than the limit as n or when pair
{n, U(n)R} had appeared already.

As the conclusion of this section, when compared with
ZKP based anonymous credentials, which require numbers of
interactive or non-interactive challenges and responses between
P and S, procedures in this section require P to calculate only
values D = (TP

WCw
W)XR, A = UP(q)R and B =

{(UP(q)TP
WCw

W)XY}R. Therefore, anonymous tag based
credentials enable developments of highly efficient data
collection systems. Also, although all entities are required to
carry out the dishonest entity identification procedure when

dishonest events are detected, inconveniences caused by S’s
inquiries are mitigated if the procedures are included in
payment processes for services.

VI. PROTECTING THE SCHEME FROM OTHER DISHONESTIES

As other kind of dishonest behaviors, member P may put
its data DP(q) with an encrypted number that cannot be
decrypted to NP. For example, when P puts DP(q) with an
encrypted number that is decrypted to NP* or to invalid value
NX, member P* becomes the one that is responsible for actions
corresponding to DP(q) or authority S cannot correctly collect
data from P. But, S can easily detect this dishonesty as
duplicated appearances of NP* for E*(kZ*, DP(q)) and E*(kZ*,
DP*(q)) in the BB, or E*(kZ*, DP(q)) in the BB accompanied by
invalid NX. Also P is identified as a liable member by using a
credential attached to E*(kZ*, DP(q)).

VII. CONCLUSION

A scheme for collecting data owned by anonymous entities
and calculating their aggregate values while preserving
privacies of individual entities is proposed. Although only
summations were considered as aggregation operations, slight
modifications of the scheme enable authorities to calculate also
general polynomials of anonymous data [8]. In addition,
computation volumes can be maintained as low as that for
summations when the polynomial functions are not so
complicated. Then, it becomes possible to use the scheme in
various applications such as medical records processing in
addition to those in e-governance and cloud computing systems.

REFERENCES
[1] W. Diffie and M. E. Hellman, “New Directions in

Cryptography,” IEEE Trans. On Information Theory, Vol. IT-22,
No. 6, pp.644-654, 1976.

[2] D. Chaum, “Untraceable Electronic Mail, Return Address and
Digital Pseudonyms,” Communications of the ACM, vol. 24, no.
2, pp. 84-88, 1981.

[3] P. Golle and M. Jakobsson, “Reusable Anonymous Return
Channels,” Proc. of the 2003 ACM Workshop on Privacy in the
Electronic Society, WPES '03, ACM, pp. 94-100, 2003.

[4] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A.
Lysyanskaya and H. Shacham, “Randomizable Proofs and
Delegatable Anonymous Credentials,” Proc. of the 29th Annual
International Cryptology Conference on Advances in
Cryptology, pp. 108-125, August 2009.

[5] S. F. Shahandashti and R. Safavi-Naini, “Threshold Attribute-
based Signatures and their Application to Anonymous
Credential Systems,” Proc. of the 2nd International Conference
on Cryptology in Africa: Progress in Cryptology, pp.198-216,
2009.

[6] S. Tamura and T. Yanase, “A Mechanism for Anonymous
Credit Card Systems,” IEEJ Trans. EIS, Vol. 127, No.1, pp.81-
87, 2007.

[7] S. Tamura, H. A. Haddad, K. Kouro, H. tsurugi, K. MD. R.
Alam, T. Yanase and S. Taniguchi, “An Information System
Platform for Anonymous Product Recycling,” Journal of
Software, Vol.3 No.3, pp.46-56, 2008.

[8] S. Tamura, “Anonymous Security Systems and Applications:
Requirements and Solutions,” Information Science Reference,
2012

