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Abstract—This paper proposes a scheme for calculating 
aggregate values of data owned by anonymous entities. Linear 
mix-nets, an unknown unique number generator, and 
anonymous tag based credentials efficiently conceal not only 
identities of data owners but also linkages between data owned 
by same entities. Then, the scheme enables quick introduction of 
advancing information technologies to industrial applications 
while ensuring confidentiality of sensitive data, e.g. a machine 
maintenance company can monitor states of machines remotely 
without knowing secrets of machine owners, companies can 
outsource even their sensitive tasks without worrying about leaks 
of their secrets. The scheme is also applicable to tasks in e-
governance systems such as tax-collections where privacies of 
individuals must be preserved. 

Index Terms— remote maintenance, e-governance, cloud 
computing, linear mix-net, anonymous tag, anonymous credential. 

I. INTRODUCTION 

Let us assume a situation where a remote maintenance 
company calculates the sum of data about machines at factories 
of a manufacturing company. Where, the sum is calculated for 
some reasons, but confidentiality of the manufacturing 
company must be ensured. Therefore, the remote maintenance 
company must calculate the sum without knowing owners of 
individual data. Because a set of data owned by a same 
company include many clues to identify the company, it must 
calculate the sum without knowing linkages between data 
owned by same companies either. Same situations exist also in 
cloud computing and e-governance systems, e.g. a company 
that carries out its tasks by using cloud computing resources 
may want to conceal its sensitive data even from mangers of 
the cloud computing system, and citizens in e-governance 
systems may not want governments to know their total 
properties or to link their individual properties.  

The anonymous data collection scheme proposed in this 
paper exploits linear mix-nets, an unknown unique number 
generator, and anonymous tag based credentials to cope with 
the above situations securely and efficiently. Namely, one of 
the linear mix-nets is used to encrypt individual data owned by 
anonymous entity P so that no one except P can know 
correspondences between individual data and P, nevertheless 
by using the unknown unique number generator an authority 
(e.g. a remote maintenance company) can collect encrypted 
data of P, and the other linear mix-net enables the authority to 
calculate the sum of data owned by P from the collected 

encrypted forms so that P can take required actions, e.g. 
replace old machines with new ones or pay fees for services 
provided by the maintenance company. Finally, anonymous tag 
based credentials enable the authority to identify entities that 
do not complete the required actions. 

Where, although various mechanisms for handling 
anonymous information have been developed already, they are 
not efficient enough for data collection systems. For example, 
it is possible to calculate sums of data without knowing their 
individual values or their owners when widely used mix-nets 
[2][3] and encryption schemes such as RSA or ElGamal are 
combined. Namely, mix-nets conceal linkages between 
encrypted and decrypted forms of data (this means the owner 
of data can conceal the correspondence between itself and its 
data), also RSA and ElGamal enable the authority to calculate 
the sum of data from their encrypted forms (this means the 
authority can calculate the sum without knowing individual 
values). However, mix-nets, RSA and ElGamal are designed 
to handle data represented as integers, and they are too 
inefficient to process real numbers that appear in many 
important applications. Different from usual mix-nets, linear 
mix-nets in the proposed scheme handle real numbers totally 
in the same way as integers.  

About identifications of entities that do not complete 
required actions (in the remainder, these entities are called 
dishonest entities), zero knowledge proof (ZKP) based 
anonymous credentials are widely used and they satisfactory 
identify dishonest entities while preserving privacies of honest 
entities. However, ZKPs are not practical, i.e. they require 
numbers of challenges and responses [4][5]. Credentials based 
on anonymous tags require only limited number of challenges 
and responses and reduce computation volumes drastically. 

 Then, the proposed scheme enables highly efficient 
calculation of aggregate values while maintaining 
confidentialities of individual data and linkages between the 
data and their owners. In the remainder, it is assumed that the 
authority calculates sums of data. But slight modifications 
enable also calculation of polynomial functions of data. 

II. SYSTEM CONFIGURATION 

Fig. 1 shows 6 parts of the proposed system, i.e. they are 
member registration, distributed data storage, the 1st and the 
2nd linear mix-nets, bulletin board (BB), and dishonest entity 
identification parts. First of all, the member registration part 
registers entity P as a member of the system, i.e. authority S 



gives anonymous credential TP(0) to P if it is eligible. At the 
same time S defines a unique random number NP to give it to P, 
where, NP is encrypted by multiple independent sub-authorities 
so that no one except P can know its value. Then, P stores its 
individual data DP(1), DP(2), ---, DP(Q) in the distributed data 
storage together with the credential and the encrypted unique 
random number without disclosing its identity. In detail, for 
each data item DP(q), P transforms credential TP(0) to TP(q) to 
disable others to link DP(q) to other data item DP(q*) (q ≠ q*), 
proves its eligibility by showing TP(q), after that stores DP(q) 
together with its encrypted form E*(k*, DP(q)), where k* and g* 
below represent secret encryption keys of multiple independent 
sub-authorities as shown later. Also, P attaches credential TP(q) 
and unique random number NP in form E(g*, NP(q), rPq). Here 
rPq is a random integer that makes the encryption result unique, 
i.e. although both E(g*, NP, rPq) and E(g*, NP, rPj) are decrypted 
to NP, entities other than P cannot know that E(g*, NP, rPq) and 
E(g*, NP, rPj) are the encrypted forms of the same number. 
Then, no one other than P can link DP(1), ---, DP(Q). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Configuration of the anonymous data collection system 

After that, each triple {E*(k*, DP(q)), TP(q), E(g*, NP, rPq)} 
in the distributed data storage is decrypted (actually TP(q) is 
encrypted) by the 1st linear mix-net to be put in the BB while 
being shuffled with other triples. Here, although E(g*, NP, rPq) 
is decrypted to NP and TP(q) is encrypted to TP

*(q), E*(k*, 
DP(q)) is decrypted only partially into E*(kZ*, DP(q)), therefore 
anyone cannot know the correspondence between E*(kZ*, 
DP(q)) and DP(q). But because all data owned by P are 
accompanied by NP, S can collect P’s data E*(kZ*, DP(1)), ---, 
E*(kZ*, DP(Q)) to calculate their sum and attach NP and TP

*(1) 
to the sum. In addition, E*(kZ*, x) is configured as an additive 
encryption function, therefore the 2nd linear mix-net can 
decrypt the sum to DP(1) + DP(2) + --- + DP(M) to be disclosed 
in the BB together with NP and TP

*(1).  
As a consequence, P can identify the sum of its data in the 

BB based on NP (P knows NP) and can begin the required 

actions about the sum, but entities other than P cannot know 
the correspondence between P and the sum, because NP is 
known only to P. Nevertheless, credential TP

*(1) attached to the 
sum enables the dishonest entity identification part to identify 
P when it does not complete the required actions without 
knowing any secret of honest members. Namely as discussed 
later, used seal of credential TP

*(1) forces P to disclose its 
identity. Then, if P is a manufacturing company and each DP(q) 
is the fee for maintaining machine Mq owned by P for example, 
remote maintenance company S can force P to honestly pay 
fees for services it provided for machines owned by P, on the 
other hand, P can conceal its individual machines and their 
hours of operations from S. 

III. UNKNOWN UNIQUE NUMBER GENERATOR 

To generate unique secret integer NP authority S is 
constituted by multiple mutually independent sub-authorities S1, 
---, SZ, SZ+1, ---, SJ, and member P and SZ+1, ---, SJ behave as 
follows [8]. Firstly, each authority Sh generates its secret 
integer p(h), and informs authority S (representative of S1, ---, 
SJ) of Cp(h)

mod B. Where B is a publicly known appropriate large 
integer, therefore, it is practically impossible for anyone other 
than Sh to know p(h) from Cp(h)

mod B, i.e. calculating  p(h) from 
Cp(h)

mod B is a discrete logarithm problem. After receiving 
Cp(h)

mod B from each Sh, S calculates CNP = Cp(Z+1)Cp(Z+2)---Cp(J) = 
Cp(Z+1)+p(Z+2)+ --- +p(J) (in the followings notation mod B is omitted 
when confusions can be avoided) and asks each Sh to disclose 
p(h) to P when CNP did not appear before. Then, P calculates 
NP = p(Z+1)+p(Z+2)+ --- +p(J) and finally encrypts it to E(g*, 
NP, rP1),  E(g*, NP, rP2), ---, E(g*, NP, rPQ) by using public 
encryption keys gZ+1, ---, gJ of SZ+1,  ---, SJ. Where, E(g*, NP, 
rPq) = E(gJ, E(gJ-1, --- E(gZ+1, NP, rPq) --- )), and rPq is P’s secret 
integer that makes encryption function E(g*, x) probabilistic as 
mentioned before.  

In the above, each Sh does not know p(j) generated by other 
authority Sj, therefore no single entity except P can know NP. 
Because P defines rP1, rP2, ---, rPQ independently, no one except 
P can know the linkage between E(g*, NP, rPh) and E(g*, NP, rPj) 
when h ≠ j either. Also, apparently uniqueness of NP is ensured, 
and at the same time confidentiality of NP is maintained even 
when same value CNP appears repeatedly, because each Sh 
knows only p(h).  

IV. LINEAR MIX-NET 

A linear mix-net is a mix-net, in which linear equation 
based encryption functions are exploited. Namely as shown in 
Fig. 2, authorities SJ,  ---, SZ+1, SZ, ---, S1 in the 1st and the 2nd 
linear mix-nets decrypt E*(k*, DP(q)) = E*(kJ, E

*(kJ-1, --- E
*(k1, 

DP(q)) ---)), member P’s data DP(q) repeatedly encrypted by 
secret keys k1, k2, ---, kJ of S1, S2, ---, SJ, into DP(q) while 
shuffling individual decryption results with those owned by 
other members (actually SZ, ---, S1 in the 2nd linear mix-net do  
not need to shuffle their decryption results), therefore no single 
entity other than P can identify the correspondence between 
E*(k*, DP(q)) and E*(kh*, DP(q)) = E*(kh, E*(kh-1, --- E*(k1, 
DP(q)) ---)) for any h (i.e. DP(q) and E*(kh*, DP(q)).  
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Here, one of distinctive features of each encryption 
function E*(kh, x) is it can handle real numbers as same as 
integers, therefore, member P and authorities can encrypt and 
decrypt their relevant data efficiently even the data are real 
numbers. As another important feature, E*(kh, x) is additive, i.e. 
relation aE*(kh, x)+bE*(kh, y) = E*(kh, ax+by) holds for any real 
numbers a and b. Therefore, when the 1st linear mix-net SJ, ---, 
SZ+1 decrypts each E*(k*, DP(q)) to E*(kZ*, DP(q)) and calculates 
sum E*(kZ*, DP(1)) + --- + E*(kZ*, DP(Q)), the sum coincides 
with E*(kZ*, DP(1) + --- + DP(Q)) as shown at the bottom of Fig. 
2, and TotalP = DP(1) + --- + DP(Q) is revealed when E*(kZ*, 
DP(1) + --- + DP(Q)) is decrypted by the 2nd linear mix-net SZ, 
---, S1. Then, S can know that the sum of data owned by some 
entity is TotalP, but no one except P can know the linkage 
between DP(1), --- , DP(Q) or the correspondence between P 
and TotalP. 

About Fig. 2, it must be noted that P encrypts NP by public 
encryption keys of only authorities SZ+1, ---, SJ. This means all 
decryption results E*(kZ*, DP(1)), ---, E*(kZ*, DP(Q)) 
corresponding to P are accompanied by same integer NP, 
therefore, SZ+1 can collect E*(kZ*, DP(1)), --- , E*(kZ*, DP(Q)) to 
calculate their sum E*(kZ*, DP(1) + --- + DP(Q)). 

E*(kh, x) with the above features can be constructed as 
below. Namely, E*(kh, x) transforms x to vector {m1, m2, ---, 
mG} that is calculated as in Eq. 1, where coefficient matrix 
{k(h)st} constitutes secret key kh of Sh, and u1, u2, ---, uG are 
real numbers secrets of Sh [6][8]. Then, entities that do not 
know matrix {k(h)st} cannot calculate x from {m1, m2, ---, mG}, 
but Sh that knows {k(h)st} can solve Eq. 1 to know x. 

 
m1 = k(h)11x + k(h)12u1  + --- + k(h)1GuG-1 
m2 = k(h)21 x + k(h)22u1  + --- + k(h)2GuG-1 

 
 

mG = k(h)G1x + k(h)G2u1  + --- + k(h)GGuG-1 
 
As widely known, linear equation based encryption 

functions are weak against plaintext attacks, where an entity 
illegitimately knows secret keys based on known plain text 
and their encrypted form pairs (e.g. it is easy to calculate 
{k(h)st} in Eq. 1 when G-mutually independent vectors and 
their decrypted values are given). But in this scheme, Sh itself 
that encrypts x decrypts {m1, m2, ---, mG}, therefore plain text 
that includes secret numbers u1, u2, ---, uG-1 is never disclosed 
to others. Also, encrypted form of x can be constructed as {m1, 
m2, d1, m3, d2,---} while being merged with secret dummy 
elements {d1, ---, dG*}, and mj can be represented as the sum 
of multiple elements {mj1, mj2, ---, mjj*} if necessary, therefore 
plain text attacks become extremely difficult. 

However different from usual mix-nets, encryption key kh 

of E*(kh, x) is a secret of Sh, therefore P must ask S1, ---, SJ to 
encrypt each DP(q), and as a result, although P is anonymous 
Sh can know the linkage between DP(q) and partially decrypted 
form E*(kh*, DP(q)), because Sh itself calculates E*(kh*, DP(q)) 
from E*(k(h-1)*, DP(q)) at a time when P asks authorities to 
encrypt DP(q) to E*(k*, DP(q)). To disable Sh to know this 
linkage, P constructs E*(k*, DP(q)) as follows.  

As shown in the upper part of Fig.2, firstly P asks S1, ---, 
SJ to repeatedly encrypt DP(q) to E(k*, DP(q))  = E(kJ, E(kJ-1, --
- E(k1, DP(q)) ---)), where E(kh, DP(q)) is calculated as linear 
combinations of DP(q) and secret random numbers as same as  
E*(kh, DP(q)) shown in Eq. 1. After that P generates its secret 
numbers a1q(P), a2q(P),  --- , aLq(P) and calculates E*(k*, 
DP(q)) as E*(k*, DP(q)) = E(k*, DP(q)) + a1q(P)E(k*, 01) + --- + 
aLq(P)E(k*, 0L). Here, each E(k*, 0t) is an encrypted form of 0 
that is calculated by S1, ---, SJ in advance. Then, E*(k*, DP(q)) 
is still decrypted to DP(q), but Sh cannot know the 
correspondence between E(kh*, DP(q)) and E*(kh*, DP(q)), 
because a1q(P), --- , aLq(P) are secrets of P. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Linear min-net 

 
There are 2 problems in implementing the above scheme, 

the one is that Sh may calculate E(k*, DP(q)) dishonestly, and 
the other is that P may construct E*(k*, DP(q)) dishonestly, e.g. 
P must pay more than it is responsible as machine 
maintenance fees in the former case, and in the latter case S 
cannot collect exact fees from P. Fortunately E(k*, x) and 
E*(k*, x) can be made verifiable because they are additive.  

About the former threat conceptually, S prepares test bit 
strings test(1), test(2), ---, test(L*), and S1, ---, SJ encrypt them 
repeatedly to E(k*, test(1)), E(k*, test(2)), ---, E(k*, test(L*)) in 
advance. After that at a time when S1, ---, SJ calculate E(k*, 
DP(q)), P asks them to decrypt E(k*, test) = E(k*, DP(q)) + 
v1q(P)E(k*, test(1)) + --- + vL*q(P)E(k*, test(L*)) while 
generating its secret numbers v1q(P), v2q(P) ---, vL*q(P). Then, 
P can convince itself that S1, ---, SJ are honest if the decryption 
result coincides with test = DP(q) + v1q(P)test(1) + --- + 
vL*q(P)test(L*). Namely, if E(k*, DP(q)) is correct, S1, ---, SJ 
that know their secret keys can easily decrypt E(k*, test) to 
test, but if E(k*, DP(q)) is incorrect, they cannot calculate test 
because they do not know v1q(P), ---, vL*q(P). Actually, E(k*, 
DP(q)) is a G-dimensional vector, and each Sh can obtain G-
equations to calculate v1q(P), ---, vL*q(P). Therefore, L* must 
be greater than G, and this means P can obtain many plain 
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texts and their encrypted forms pairs if L* is large. Although 
the scheme is still strong enough, to make the scheme more 
secure L* must remain as small as possible. A simple 
extension makes L* small enough [8]. 

The latter threat also can be removed, i.e. S can detect 
dishonest construction of E*(k*, DP(q)) and can identify the 
corresponding dishonest entity P in the following way. Firstly, 
S calculates Sum(q) = u1qD1(q) + u2qD2(q) + --- + uLqDL(q) (L 
is the number of members) and E*(k*, Sum(q)) = u1qE

*(k*, 
D1(q)) + --- + uLqE

*(k*, DL(q)) while generating secret 
numbers u1q, ---, uLq, and SJ, ---, S1 decrypt E*(k*, Sum(q)). 
Then, S convinces itself that each E*(k*, DP(q)) is correct when 
E*(k*, Sum(q)) is decrypted to Sum(q). Namely, if E*(k*, 
DP(q)) is an encrypted form of X, E*(k*, Sum(q)) is decrypted 
to Sum(q)+uP(X - DP(q)). On the other hand, each Sh can know 
only a partially decrypted form E*(kh*, Sum(q)), it cannot 
know E*(kh*, DP(q)), i.e. Sh cannot identify the correspondence 
between E*(k*, DP(q)) and E*(kh*, DP(q)). Because u1q, ---, uLq 
are secret of S, even conspiring entities P1 and P2 cannot 
encrypt their data dishonestly either, i.e. although P1 can 
consistently calculate E*(k*, X) instead of E*(k*, DP1(q)) as the 
encrypted form of DP(q) if P2 calculates E*(k*, DP2(q))-E*(k*, 
(uP1/uP2)(X - DP1(q))) instead of E*(k*, DP2(q)), either P1 or P2 
that does not know u(P1)q or u(P2)q cannot calculate 
(u(P1)q/u(P2)q)E

*(k*, X-DP1(q))). 
Once dishonesties are detected, for each triple {DP(q), 

E(k*, DP(q)), TP(q)}, SJ, ---, S1 decrypt E(k*, DP(q)), and if 
E(k*, DP(q)) is not decrypted to DP(q), identify P as dishonest 
entity while exploiting anonymous credential TP(q) as will be 
discussed later. However after dishonest entities are identified, 
honest members must ask S1, ---, SJ to encrypt their data again 
to conceal linkages between their owning data. 

V. ANONYMOUS TAG BASED CREDENTIALS 

A. Anonymous Tags 

An anonymous tag is a tag and associate tag parts pair {T, 
TR}, i.e. tag owner P places T in the tag part and transforms it 
to TR

mod B by its secret integer R to put the result in the 
associate tag part [7], where as shown in Sec. III, B is an 
appropriate integer common to all entities and large enough. 
Also, P uses tag {T, TR} while transforming it to {TW

mod B, 
TRW

mod B} by its secret integer W, and entity Sh transforms tags 
it receives by its secret integer kh. Therefore, {T, TR} changes 
its form as {TW(k1), TRW(k1)}, {TW(k1)(k2), TRW(k1)(k2)} and 
{TW(k1)(k2)(k3), TRW(k1)(k2)(k3)} in this order when it is transformed 
by P and 3 entities S1, S2, S3. Then, anonymous tags satisfy the 
following requirements, i.e. 

 
1) anyone except P cannot identify P from its tag,  
2) anyone except P cannot know that different forms of tag 

{T, TR} are owned by a same entity, unless all relevant 
entities conspire with each other, and 

3) P can identify its tag without knowing secrets of others. 
 

About requirement 3), P can identify its tag by 
transforming the tag part by its secret R, e.g. P can identify 
{TW(k1)(k2), TRW(k1)(k2)} as its tag by calculating the associate tag 

part value from tag part value TW(k1)(k2) as (TW(k1)(k2))R. Here, it 
is apparent that P does not need to know secret integers k1, k2, -
-- to identify its tags. 

B. Anonymous Credentials Based on Anonymous Tags 

Let TP, k and c be integers defined by authority S, and R 
and w be secret integers defined by member P. Then, provided 
that d1 and d2 are 2 secret signing keys of S and S(d1║d2, x) is 
RSA signature pair {S(d1, x) = xd1

mod B, S(d2, x) = xd2
mod B}, 

signature pair S(d1║d2, TP
R+1KwCw

R
mod B) is an anonymous tag 

based anonymous credential generated by S and given to P (it 
must be noted that RSA signing function is multiplicative, i.e. 
relation S(d, x)S(d, y) = S(d, xy) holds). Here, TP, k and c are 
publicly known integers, and different from k and c that are 
common to all credentials TP and R are unique to credential 
S(d1║d2, TP

R+1KwCw
R). Regarding Kw and Cw, P calculates them 

as Kw = kw
mod B and Cw = cw

mod B, respectively based on k and c. 
Also uniqueness of P’s secret integer R can be maintained in 
the same way as in Sec. III. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Issuing anonymous credentials 

 
Fig. 3 shows the procedure in which S issues S(d1║d2, 

TP
R+1KwCw

R) to P. Firstly, after verifying authenticity of P 
based on P’s identity, S defines integer TP, and P calculates Kw 
= kw , Cw = cw and pair TP

R and Cw
R while using its secrets w 

and R, where {TP, TP
R} constitutes an anonymous tag. Then S 

generates credential S(d1║d2, TP
R+1KwCw

R) to give it to P. Here, 
it must be noted that although TP

R, kw, cw and Cw
R are disclosed, 

to know w and R is practically impossible for S as mentioned 
before. Nevertheless, S can confirm that P had calculated Kw 
and Cw as k and c to the power of same w through the scheme 
of Diffie and Hellman [1], i.e. S generates secret integer X to 
calculate (kc)X and (KwCw)X, and asks P to calculate (kc)Xw 
while showing (kc)X. If P does not know w that satisfies 
relation Kw = kw and Cw = cw, it cannot calculate (kc)Xw = 
(KwCw)X from (kc)X without knowing S’s secret X (actually, it 
is easy to find  and  that satisfy   =  (kc)w by defining  
arbitrarily and calculating  = (kc)w/, and P can report  and 
 to S instead of kw and cw while calculating ()X that is equal 
to (kc)Xw. However in this case, P that does not know  or  
that satisfies  = k or  = c cannot calculate Y = kY or Y = 
cY when S generates secret integer Y and asks P to calculate 
them from kY or cY). In the same way, S can confirm that TP

R 
and Cw

R are equal to TP and Cw to the power of same unknown 
integer R. 

generate secret integers

sign on TP
R+1KwCw

R 
verify 
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After having obtained S(d1║d2, TP
R+1KwCw

R), by generating 
secret integer W, calculating S(d1║d2, TP

R+1KwCw
R)W = S(d1║d2, 

(TP
R+1KwCw

R)W) and showing it together with TP
W, Kw

W, Cw
W 

and Cw
RW, P can convince any entity V that it is an eligible 

entity ensured by S without disclosing its identity as shown in 
Fig. 4. Namely, V verifies that S(d1║d2, TP

R+1KwCw
R)W is the 

legitimate signature pair on (TP
R+1KwCw

R)W by using public 
verification key pair d1* and d2* (pair S(d1║d2, x) is consistent 
when not only S(d1, x) and S(d2, x) are consistent signatures but 
also they are decrypted into same x), decomposes it into TP

W, 
TP

RW, Kw
W and Cw

RW based on the information given by P, and 
confirms that P had calculated Kw

W = kwW and Cw
W = cwW based 

on integers k, c and same unknown secret integer wW in the 
same way as S had verified pair {Kw, Cw} in Fig. 3.  

Then, because no one other than the legitimate holder of 
S(d1║d2, TP

R+1KwCw
R) knows R, V can determine P is eligible 

when P knows R. Where P can prove that it knows R without 
disclosing R itself also through the scheme of Diffie and 
Hellman [1], i.e. V calculates (TP

WCw
W)X and (TP

RWCw
RW)X 

while generating its secret integer X, and P that receives 
(TP

WCw
W)X calculates D = ((TP

WCw
W)X)R by using its secret R, 

then finally, V determines that P knows R when relation D = 
(TP

RWCw
RW)X holds. Namely, although it is easy to calculate 

(TP
RWCw

RW)X from (TP
WCw

W)X for an entity that knows R, for 
entities that do not know R calculating (TP

RWCw
RW)X is 

practically impossible. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Verifying anonymous credentials 

 
Now, the above procedures are characterized by the 

following 4 properties, i.e.  
1) P can obtain credential S(d1║d2, TP

R+1KwCw
R) from S only  

through legitimate ways and only when it is eligible,  
2) only P that knows integer R can prove the ownership of  

S(d1║d2, TP
R+1KwCw

R), 
3) no one except P can identify P from its credential S(d1║d2,    

TP
R+1KwCw

R)W. Provided that W1, ---, WN are different 
integers secrets of P, no one other than P can know that 
S(d1║d2, TP

R+1KwCw
R)W1, ---, S(d1║d2, TP

R+1KwCw
R)WN are 

different forms of same credential S(d1║d2, TP
R+1KwCw

R) 
either, and 

4) P that shows credential S(d1║d2, TP
R+1KwCw

R)W can prove  
its ownership only when it calculates D = (TP

WCw
W)XR as 

(TP
WCw

W)X to the power of exactly R.  

 
In addition, any entity can verify the validity of S(d1║d2, 

TP
R+1KwCw

R) because verification keys d1* and d2* are publicly 
known and (TP

R+1KwCw
R)W is decomposed into TP

RW, TP
W, Kw

W 
and Cw

RW by P itself. Here, property 4) in the above are 
ensured because V examines whether Kw

w and Cw
w are 

calculated as publicly known integers k and c to the power of 
same unknown integer wW, and TP

RW and Cw
RW are equal to 

TP
W and Cw

W to the power of same unknown integer R, in the 
same way as S in Fig. 3 examines relation Kw = kw and Cw = cw. 
Also a signature pair disables entities to forge a credential 
while generating α, β and δ arbitrarily and calculating αβkδcβδ to 
transform it by a publicly known verification key. 

About anonymity of credentials, when 2 entities P and P* 
use S(d1║d2, TP

R+1KwCw
R)W and S(d1║d2, TP*

R*+1Kw*Cw*
R*)W* 

while defining integer pairs {w, W} and {w*, W*} in the way 
relation wW = w*W* holds by chance, S (it is assumed that 
authority S itself verifies credentials) can detect this fact by 
duplicated appearances of Kw

W (= kwW) and if S is conspiring 
with P*, it can know wW (= w*W*) by asking it to P*. But S 
cannot identify P from wW, i.e. S that knows only wW cannot 
extract W and calculate Tj

W for each Tj it had assigned to 
member Pj to compare the result with TP

W that P shows 
together with S(d1║d2, TP

R+1KwCw
R)W.  

C. Anonymous Tag Based Credentials in the Proposed Scheme 

One of advantages of anonymous tag based credentials is 
member P can show credential S(d1║d2, TP

R+1KwCw
R) 

repeatedly while changing its forms without being detected by 
others that its showing forms were generated from same 
S(d1║d2, TP

R+1KwCw
R). Namely, provided that P assigns 

different values to W1, ---, WN, no one except P can know that 
S(d1║d2, TP

R+1KwCw
R)W1, ---, S(d1║d2, TP

R+1KwCw
R)WN are 

shown by P. While exploiting this property, credentials TP(0), 
TP(1), ---, TP(Q) in Sec. II can be implemented as S(d1║d2, 
TP

R+1KwCw
R), S(d1║d2, TP

R+1KwCw
R)W1, ---, S(d1║d2, 

TP
R+1KwCw

R)WQ, respectively.  
As another feature relates to data collection systems, 

anonymous tag based credentials enable authority S to identify 
dishonest members of course without knowing privacy of 
honest entities. To identify dishonest members, when P puts 
data DP(q) in the distributed data storage while showing 
credential S(d1║d2, TP

R+1KwCw
R)Wq, S memorizes pair {UP(q), 

UP(q)R} as a data registration record. Here, S defines UP(q) as 
an integer unique to data DP(q). UP(q)R is the used seal of tag 
{TP, TP

R} and S asks P to calculate it based on credential 
S(d1║d2, TP

R+1KwCw
R)Wq. Under these settings, if S detects that 

no entity completes actions about the sum accompanied by 
{UP(1), UP(1)R}, each member P* is requested to calculate 
UP(1)R* from its credential S(d1║d2, TP*

R*+1Kw*Cw*
R*) and UP(1) 

in dishonest data registration record {UP(1), UP(1)R}. Then, S 
can identify P* as the entity responsible for the actions when 
UP(1)R* coincides with UP(1)R (i.e. when R = R*). On the other 
hand, P* can conceal the linkage between it and its data if it is 
honest, because it is practically impossible to know UP*(1)R* 
that P* had left in the data registration records from UP(1)R*. 

In the above, S can force P to honestly calculate UP(q)R at a 
time when P registers DP(q) as below. Namely, S asks P to 

Member P Entity V 

{TP
W, Kw

W, Cw
W, Cw

RW} 
S(d1║d2, TP

R+1KwCw
R)W S(d1║d2, TP

R+1KwCw
R)W S(d1║d2, TP

R+1KwCw
R)W 

calculate (TP
WCw

W)X

generate secret integer X  

the product of  
confirm (TP

R+1KwCw
R)W is 

{TP
W, TP

RW, Kw
W, Cw

RW} 

verify D = (TP
RWCw

RW)X 
D 

generate W 

calculate D =  

calculate (kc)X 
(kc)X  calculate (kc)XwW 

and (Kw
WCw

W)X 
verify (kc)XwW 

and (TP
RWCw

RW)X 

(TP
WCw

W)X
(kc)XwW = (Kw

WCw
W)X 

(TP
WCw

W)XR 

TP
W, Kw

W, Cw
W, Cw

RW 

and construct decrypt 



calculate D = {(TP
WCw

W)X}R, A = UP(q)R and B = 
{(UP(q)TP

WCw
W)XY}R while showing (TP

WCw
W)X, UP(q) and 

(UP(q)TP
WCw

W)XY, where X and Y are S’s secret integers. After 
that, S examines whether relations D = (TP

RWCw
RW)X and B = 

(AXY)DY hold or not. Then, if P calculates A dishonestly as 
UP(q)Q (Q ≠ R), because D must be equal to {(TP

WCw
W)X}R 

(according to property-4 in the previous subsection, if P 
calculates D differently it cannot show the ownership of {TP, 
TP

R}), P must calculate B so that it coincides with (AXY)DY = 
(UP(q)QXY)(TP

RWCw
RW)XY), but P that does not know X or Y 

cannot calculate UP(q)QXY. In the same way, S can force P* to 
honestly calculate UP(q)R*, when S detects existences of 
dishonest members.  

But actually data registration record {UP(1), UP(1)R} is 
encrypted by SJ, ---, Sz+1 together with TP(1) =  S(d1║d2, 
TP

R+1KwCw
R)W1 as shown in Fig. 2. Namely, the 2nd linear 

mix-net transforms {UP(1), UP(1)R} to {UP(1)(eJ)(ej-1)---(ez+1)
mod B, 

UP(1)R(eJ)(ej-1)---(ez+1)
mod B} = {UP(1)e*

mod B, UP(1)Re*
mod B} by 

secret keys eJ, ---, ez+1 of SJ, ---, Sz+1. Therefore, dishonest data 
registration record {UP(1), UP(1)R} in the above must be 
replaced by{UP(1)e*, UP(1)Re*}. 

Used seals solve also a problem, in which P* that conspires 
with S and obtained D = (TP

WCw
W)XR that was calculated by P 

impersonates P, the owner of credential S(d1║d2, TP
R+1KwCw

R). 
Namely, although P* can know S(d1║d2, TP

R+1KwCw
R)W and D 

= (TP
WCw

W)XR after P had used S(d1║d2, TP
R+1KwCw

R)W, and S 
and P* can jointly generate integers X* and W* so that P* can 
use S(d, TP

R+1K1K2
R)WW* while calculating DW*X* = 

(TP
WCw

W)XRW*X* that is consistent with R, either P* or S that 
does not know R cannot calculate UP*(m)R (m > n) consistently 
(here, it is assumed that P had left used seals UP(1)R, UP(2)R, ---, 
UP(n)R before). Although P* can leave UP(n)R that P had 
calculated before or inconsistent value U as its used seal, S 
must reject UP(n)R because it is shown repeatedly, also S 
cannot impute the liability of this dishonesty by using U 
because it cannot identify P from U.  

By exploiting used seals S can also limit the numbers of 
times that members can use same credentials. Namely, in the 
credential verification procedure shown in Fig. 4, P is 
requested also to declare n, the number of times that it had used 
S(d1║d2, TP

R+1KwCw
R) before, and S calculates used seal U(n)R, 

where U(n) is an integer defined by S and common to all 
members but unique to n. Then, because U(n)R is unique to pair 
{P, n}, S can reject excessively shown S(d1║d2, TP

R+1KwCw
R), 

i.e. S memorizes pair {n, U(n)R} and rejects P’s credential 
when P declares a value more than the limit as n or when pair 
{n, U(n)R} had appeared already.  

As the conclusion of this section, when compared with 
ZKP based anonymous credentials, which require numbers of 
interactive or non-interactive challenges and responses between 
P and S, procedures in this section require P to calculate only 
values D = (TP

WCw
W)XR, A = UP(q)R and B =  

{(UP(q)TP
WCw

W)XY}R. Therefore, anonymous tag based 
credentials enable developments of highly efficient data 
collection systems. Also, although all entities are required to 
carry out the dishonest entity identification procedure when 

dishonest events are detected, inconveniences caused by S’s 
inquiries are mitigated if the procedures are included in 
payment processes for services. 

VI. PROTECTING THE SCHEME FROM OTHER DISHONESTIES 

As other kind of dishonest behaviors, member P may put 
its data DP(q) with an encrypted number that cannot be 
decrypted to NP. For example, when P puts DP(q) with an 
encrypted number that is decrypted to NP* or to invalid value 
NX, member P* becomes the one that is responsible for actions 
corresponding to DP(q) or authority S cannot correctly collect 
data from P. But, S can easily detect this dishonesty as 
duplicated appearances of NP* for E*(kZ*, DP(q)) and E*(kZ*, 
DP*(q)) in the BB, or E*(kZ*, DP(q)) in the BB accompanied by 
invalid NX. Also P is identified as a liable member by using a 
credential attached to E*(kZ*, DP(q)).  

VII. CONCLUSION 

A scheme for collecting data owned by anonymous entities 
and calculating their aggregate values while preserving 
privacies of individual entities is proposed. Although only 
summations were considered as aggregation operations, slight 
modifications of the scheme enable authorities to calculate also 
general polynomials of anonymous data [8]. In addition, 
computation volumes can be maintained as low as that for 
summations when the polynomial functions are not so 
complicated. Then, it becomes possible to use the scheme in 
various applications such as medical records processing in 
addition to those in e-governance and cloud computing systems. 
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