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Abstract—Omni-vision system using an omni-mirror is popular
to acquire environment information around an autonomous
mobile robot. In RoboCup soccer middle size robot league in par-
ticular, self-localization methods based on white line extraction
on the soccer field are popular. We have studied a self-localization
method based on image features, for example, SIFT and SURF,
so far. Comparative studies with a conventional self-localization
method based on white line extraction are conducted. Compared
to the self-localization method based on white line extraction,
the method based on image feature can be applied to a general
environment with a compact database.

I. INTRODUCTION

Omni-vision system using an omni-mirror is popular to ac-
quire environment information around an autonomous mobile
robot. In RoboCup soccer middle size robot league in partic-
ular, self-localization methods based on white line extraction
on the soccer field are popular[1], [2], [3]. White line points
in an omnidirectional camera image are identified as points if
a sequence of green-white-green segments on any line in the
image. These points on the omnidirectional camera image are
transformed into robot centered coordinates. A Monte-Calro
method or its derivatives are widely used for the localization
on the soccer field.
On the other hand, more general image features, for ex-

ample, SIFT and SURF[4] , are used for visual localization
or simultaneously localization and mapping (SLAM) ([5], for
example). We have studied a self-localization method based on
image features in omnidirectional and ceiling camera images,
so far. An omnidirectional camera image is mapped into
robot centered coordinate image. Image features detected on
the omnidirectional robot centered image are collected as a
template set of the image features into a map database with the
robot position in the field coordinate system. Image features on
a query image is matched with the templates and the camera
position in the field coordinate system. The idea of self-
localization based on the image features in omnidirectional
camera images is similar to [6]. Their method needs two
reference templates from a database with position information
because they use only image feature’s orientation information
on the omnidirectional image. Our method needs only one
reference template because it utilizes not only the orientation
but also distance of each image feature based on a camera
model.

Comparative studies with a conventional self-localization
method based on white line extraction are conducted in this
paper. Compared to the self-localization method based on
white line extraction, the method based on image feature can
be applied to a general environment with a compact database.
We focus on matching error distributions of two methods in
order to evaluate them from the view points of computational
efficiency and memory for maintaining a world model, in this
paper.

II. SELF LOCALIZATION BASED ON OMNIDIRECTIONAL
IMAGE

This section describes details of model matching error
calculation of two localization methods. One is based on
white-line point extraction and the other is based on image
feature extraction.

A. Localization based on extracted white line points

The method based on white-line point extraction follows a
procedure below:

1) Generate a model of white-line points on the field, lookup
tables of positions of white-line points at regular sampling
places on the field.

2) Capture a omnidirectional image.
3) Extract white-line points on the image
4) Compare the extracted white-line points to the model,

lookup tables, and calculate matching error.
5) Estimate the position and posture of the omnidirectional

camera by finding the minimum matching error with the
model.

6) goto 2).

It maintains a model of white lines on the field. For compu-
tational efficiency, it maintains lookup tables of positions of
white-line points Dm(x, y, θ) in the omnidirectional-camera
polar coordinate system (rm

i , φm
i ) i = 1, · · · when the robot

locates itself at position (x, y) and orientation θ in the field
coordinate system. Our experiments with the white-line-point
based localization use the look up tables at 0.1m by 0.1m
intervals.
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Dq is a set of white-line points (rq
j , φ

q
j) j = 1, · · · that the

robot captures on the field.

Dq = {(rq
1, φ

q
1), (r

q
2, φ

q
2), · · · , (rq

Q, φq
Q)}

Dm
(x,y,θ) = {(rm

1 , φm
1 ), (rm

2 , φm
2 ), · · · , (rm

M , φm
M )}

E(x,y,θ) =
Q∑

i=1





enone if ∀φq
i ?= φm

j

min
j|φq

i
=φm

j

??rq
i − rm

j

?? else (1)

Matching error E between a lookup table Dm(x, y, θ) and a
query Dq is calculated by Eq. 1 where M and Q are number
of white-line points of a lookup table at (x, y, θ) and the query
point, and enone is a penalty when there is no white-line point
in the lookup table.

B. Localization based on image features

The method based on image follows a procedure below:
1) Load a database of sets of image features, templates, on

the images captured at regular sampling position on the
field.

2) Capture a omnidirectional image.
3) Transform the image into robot centered coordinate sys-

tem.
4) Extract image features on the transformed image.
5) Ignore the image features outside of the field.
6) Compare the extracted image features to all templates in

the database, and calculate matching errors.
7) Estimate the position and posture of the omnidirectional

camera by finding the minimum matching error with the
template corresponding to the position on the field.

8) Eliminate wrong matching pair based on distribution of
distance of matching pairs.

9) Calculate the translation distance and orientation angles
from the position.

10) goto 2).

(a) Omnidirectional Image (b) Tranformed Image and Extracted
Image Features

Fig. 1. Input image captured by an omnidirectional camera (a) and extracted
image features on the image translated into robot centered coordinates (b)

Fig.1(a) shows a sample image captured by a omnidirec-
tional camera. This image is transformed into robot centered
coordinate system on the field. Fig.2 shows relationship be-
tween the distances from the center of camera and the point
on the field on camera image and field. The relationship

Fig. 2. Relationship between the distances from the center of camera and
the point on the field on camera image and field: cross points and a curve
indicates sampling points and estimated relation function.

is approximated with a fifth-order polynomial function f(r)
shown in Eq.(2) while r is distance from the center of camera
to the point on the omnidirectional camera image.

f(r) = ar5 + br4 + cr3 + dr2 + er + g (2)

The parameters, a, b, c, d, e and g, are estimated by the
least-square method. A sample transformed image is shown
in Fig.1(b).

Image features, SURF in this paper, are extracted from the
transformed image. The image features out of the ground are
ignored from the set of the image features. The ground region
on the image is extracted based on the color of the field, that is,
we assume that the green region is the ground. Image features
on a sample transformed image are shown in Fig.1(b).

A set of image features on the image captured at a position
corresponding to a position in the field coordinate system
is called a template in this paper. Database is generated by
collecting the templates at regular sampling position on the
field.

Flann based descriptor matcher provided by OpenCV library
[7] is used to find corresponded pair of the image features.
Then, a translation matrix and the matching error between
the image feature sets of database and query image are
calculated as follows. We define the translation matrix A with
parallel translation vector (∆x, ∆y) and orientation angle ∆θ
as below:

A(∆x, ∆y, ∆θ) =




cos∆θ −sin∆θ ∆x
sin∆θ cos∆θ ∆y

0 0 1


 (3)

Matching error is defined with Eq.(4)

E(∆x, ∆y, ∆θ) =
M∑

i=0

??tpi − A(∆x, ∆y, ∆θ)qpi

??2 (4)

where i and M are index and number of matching pair of
image features between the template and the query image,
respectively. tpi and qpi are position of image features in the
robot centered transformed coordinate system of template and
query image defined as below:

tpi = (txi,
tyi, 1)T (5)

qpi = (qxi,
qyi, 1)T (6)
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where (txi,
tyi), (qxi,

qyi), and T are position of ith matched
image feature of the template, position of ith matched image
feature of the query image, and transposition of matrix,
respectively.
In order to find the best parallel translation vector (∆x, ∆y)

and orientation angle ∆θ, we introduce a method similar to
Gibbs sampling as follows:
Step i Set (∆xt, ∆yt, ∆θt) = (0, 0, 0) at time t = 0, and

calculate E by Eq.(4).
Step ii Find the best ∆θt+1 to minimize E while ∆xt and

∆yt are fixed.
Step iii Find the best ∆yt+1 to minimize E while ∆xt and

∆θt+1 are fixed.
Step iv Find the best ∆xt+1 to minimize E while ∆yt+1 and

∆θt+1 are fixed.
Step v If ∆xt+1 = ∆xt ∧ ∆yt+1 = ∆yt ∧ ∆θt+1 = ∆θt,

stop searching.
Step vi Increment t and goto Step ii.
After the best parallel translation vector (∆x, ∆y) and

orientation angle ∆θ against to the template is calculated,
variance of distance of matching pairs is calculated and
eliminate wrong matching pairs based on the variance. Then,
(∆x, ∆y, ∆θ) is calculated again. Finally, estimated position
and orientation (x, y, θ) in the field coordinate system is de-
rived from the (∆x, ∆y, ∆θ) and the position of the template
in the field coordinate system.

III. EXPERIMENTS

Comparative studies with a conventional self-localization
method based on white line extraction are conducted to eval-
uate the method based on image features of omnidirectional
camera image. We set up a soccer field which is smaller than
the official field of RoboCup Middle Size league and a soccer
robot with an omnidirectional camera on the field.

A. Matching error distributions between one model/template
and a query point

Fig.3 shows and example matching error distribution be-
tween a query and a white line model of translation and
orientation error to the query. In this experiment, the query
is fixed on the field and the virtual position and orientation on
the field of the white line model varies. Red circle indicates
the minimum point where the position of the model is same
to the query on the field.
This figure shows that the matching error distribution has

steeply local minima so that full search is needed to find
the global minimum. This figure indicates that it needs a
computational high cost method to find the best parameters.
Monte-Carlo methods, include particle filter, are widely used
to estimate the position with limited computational cost.
Fig.4 shows an example of matching error distribution

between a template and query one that has parallel trans-
lation and orientation difference from the template. In this
experiment, the template is fixed and the query has parallel
translation and orientation difference (∆x, ∆y, ∆θ) from the
template. Red circle indicates the minimum point where the
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Fig. 3. Matching error distribution between a query and a white line model
of translation and orientation error to the query: Red circle indicates the
minimum point.

query is at same position and orientation to the template on
the field.

This figure shows that the matching error distribution is
smooth and there is only one local minimum in global. This
insight suggests that a simple gradient method, as we proposed
in the previous section, is enough to find the best parameter
values (∆x, ∆y, ∆θ).

B. Estimation error distribution between one template and
query points

Fig.5 shows estimated position and orientation error dis-
tribution. Query points are sampled at 0.2m by 0.2m
intervals on the field. The estimated position error is√

(∆̂x− ∆x)2 + (∆̂y − ∆y)2 while (∆̂x, ∆̂y) is the esti-
mated parallel translation difference and (∆x, ∆y) is the
ground truth. Fig.5(a) shows that estimation error of query
position depends on the distance from the template. The
error is small enough to estimate the the parallel translation
difference (∆x, ∆y) though it becomes bigger if the distance
from the template is over 1500 [mm]. This experimental result
suggests that template sampling at 1000 [mm] by 1000 [mm]
is enough for self-localization on the field. Fig. 5(b) shows
the estimated orientation error at a query point. The query
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Fig. 4. Matching error distribution between one template and the query one
with translation and rotation error from the template: Red circle indicates the
minimum error point.

orientation are sampled at 10 degree intervals at the query
point. The error is less than ± 15 degree in all orientation.
Our primitive experiments use a set of look-up tables of

white line points model at 0.1[m] by 0.1[m] interval. The den-
sity of the models is necessary for adequate self-localization.
Image feature based localization needs 1 [m] by 1 [m] interval-
template database. The image feature based localization needs
less computational memory to store the database than the white
line point based localization.

IV. CONCLUSION

We conducted comparative studies of our proposed self-
localization method based on image features in omnidirec-
tional camera images with a conventional self-localization
method based on white line extraction. Our method maps an
omnidirectional camera image into robot centered coordinate
image, then, the image features detected on the omnidirec-
tional robot centered image are collected as a template set of
the image features into a map database with the robot position
in the field coordinate system. Image features on a query image
is matched with the templates and the camera position in the
field coordinate system.
The comparative studies show that our method has a good

property on matching error distribution, therefore, less-cost
searching algorithm is applicable to find the best parameter
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Fig. 5. Estimation error distribution between one template and query points

for localization while conventional one needs high cost search
methods. Compared to the self-localization method based on
white line extraction, the method based on image feature can
be applied to a general environment with a compact database.
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