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In this paper, the authors propose an experimental multi-objective evaluation method based on use of distribution network 

equipment to evaluate distribution network configuration candidates with distributed generators such as photovoltaic generation 
system and wind power generation system by hourly changing states of sectionalizing switches satisfied with constraints of 
voltage and line current limit. In the proposed experimental multi-objective evaluation method, the optimal network configuration 
is determined by using multi-objective evaluation based on total distribution loss rate, maximum voltage total harmonic distortion, 
and maximum voltage imbalance rate in order to reduce distribution loss and keep power quality. The proposed method is applied 
to radial and loop distribution network configuration by using an experiment of scaled-down three-phase distribution network 
with one bank distribution transformer, 5 distribution lines, 5 sectionalizing switches, 12 single-phase loads and 5 DGs. 

 
Keywords : Distribution network, Distributed generator, Sectionalizing switch, Distribution loss, Voltage total harmonic distortion, Voltage 
imbalance rate, Sending voltage 

 

1. INTRODUCTION  

Since a distribution system with many feeders has many 
sectionalizing switches, there are huge radial network 
configuration candidates by determining states (opened or closed) 
of sectionalizing switches. Recently, total number of distributed 
generators (DGs) such as photovoltaic generation system and wind 
power generation system connected to an actual distribution 
network increases drastically in Japan. The distribution network 
connected with many DGs must be operated while keeping 
reliability of power supply, power quality and loss reduction. 
Several methodologies to reliably operate distribution systems 
with DGs have been proposed, and these availabilities have been 
verified by computer simulation [1]-[17]. However, since 
computer modeling of the distribution system and DG can not 
recreate physical phenomenon such as harmonic accurately, the 
computer simulation can not correctly evaluate the power quality 
of the distribution network with DGs. Therefore, a novel 
experimental configuration evaluation method is needed, which is 
based on power quality data measured in a equipment of 
distribution network with DGs. So far, an experimental 
multi-objective evaluation method of the distribution network 
configuration with DGs has not been proposed from viewpoints of 
power quality, distribution loss, and reliability of power supply. 

In this paper, the authors propose an experimental 
multi-objective evaluation method based on voltage and current 
data measured by a distribution network equipment in order to 
accurately evaluate distribution network configuration candidates 
with DGs such as photovoltaic generation system and wind power 
generation system. In the proposed experimental multi-objective 

evaluation method, the optimal network configuration is 
determined in order to reduce distribution loss and keep power 
quality by using multi-objective evaluation based on total 
distribution loss rate, maximum voltage total harmonic distortion, 
and maximum voltage imbalance rate. The proposed method is 
applied to an experiment of scaled-down three-phase distribution 
network with 4 photovoltaic generation systems and a wind power 
generation system in order to realize the multi-objective evaluation 
based on measured power quality data while recreating various 
network configuration candidates. The results obtained by the 
proposed experimental multi-objective evaluation for radial and 
loop distribution network configuration with DGs are shown and 
compared to the conventional evaluation. 

2. OUTLINE OF DISTRIBUTION NETWORK 
EQUIPMENT 

Distribution network equipment installed in University of Fukui 
in Japan is a three-phase 200V distribution network that 6.6kV 
distribution one is scaled down. The photograph and structure of 
the scaled-down three-phase distribution network equipment are 
shown in Fig.1 and Fig.2, respectively. This equipment has AVR, 
sending voltage equipment, 7 distribution lines with switch, 18 
single-phase constant impedance loads, 5 inverters modeled as 
DGs, programmable control equipment and digital measuring 
instrument. Sectionalizing switches states (opened or closed), 
sending voltage profile (transformer’s tap position), single-phase 
load profile and output of DGs can be controlled by time-series 
data. Therefore, it is easy to apply the proposed multi-objective 
evaluation method based on the optimal radial configuration and 
sending voltage profile to the distribution network equipment. 
Outline of each equipment is shown in Table 1. 
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Fig.1. Picture of the scaled-down three-phase 

distribution network equipment. 
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Fig.2. Structure of the scaled-down three-phase 

distribution network equipment. 

3. EXPERIMENT OF MULTI-OBJECTIVE 
EVALUATION OF RADIAL AND LOOP 
DISTRIBUTION CONFIGURATION 

In the proposed multi-objective evaluation method, the optimal 
network configuration is determined by using multi-objective 
evaluation based on total distribution loss rate, maximum voltage 
total harmonic distortion, and maximum voltage imbalance rate in 
order to reduce distribution loss and keep power quality. Radial 
network configuration candidate N and loop configuration are 
evaluated by multi-objective evaluation value EN expressed by 
Eq.(1)-(4). The network configuration candidate with the 
minimum multi-evaluation value min{EN} is determined as the 
optimal distribution network configuration. 
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Table 1. Outline of Distribution Network Equipment 
・ Range of voltage variation 200V±10%. 
・ Accuracy 180V～220V±3V. 
・ Rated capacity: 15kVA. AVR  

・ Response time: 1s. 
・ 2V of 21 taps from 180V to 220V (correspond to 30V 
of 21 taps from 6300V to 6900V of 6.6kV distribution 
system). 

Sending 
voltage 
equipment ・ Tap position can  be controlled by digital signal from 

PC. 
・ Aluminum wire 120mm2 (ALOE120) model. 
・ State (opened or closed) of sectionalizing switch can 
be controlled by digital signal from PC. 
・ Line impedance can be controlled from 0km to 1.5km. 

Distribution 
line with 
switch 

・ Line capacity: 30A.  
・  Rated current 2A, constant impedance load 
(correspond to 50A of 6.6kV distribution system). 
・ Combination of R, L, and C (R:29, L: 9 and C: 8) can 
be controlled by digital signal from PC. 

Single-phase 
load 
(constant 
impedance 
load） 

・ Heavy load and light load model (downtown, 
industrial , residence , and rural area) . 
・ Pulse width modulation (PWM). 
・  Switching frequency (chopper ： 18kHz, inverter ：
9kHz) . 
・  Output current harmonic distortion (THD ≦ 5%, 
distortion of each harmonic order≦3%). 
・ Output of active power, reactive power, and current 
can be controlled by digital signal from PC. 
・  Distributed generator modeled by positive signal, 
constant power load modeled by negative signal. 

Distributed 
generator 
(constant 
power load)

・ Output range of active power: -9.2kW~9.2kW, Output 
range of reactive power: -9.2kvar~9.2kvar, and Output 
range of line current: 0A~26A. 
・ Measurement (measured data are saved as CSV files). 

 Line voltage of primary transformer and secondary 
transformer (root-mean-square value). 
 Phase voltage of secondary transformer 
(instantaneous value). 
 Line current, Phase voltage of node (instantaneous 

value). 

Digital 
measuring 
instrument 

 Sampling time: 10μs～10s . 
・ INPUT: range of input voltage ±5V or ±10V ( 32 A/D 
input channels ). Program 

control 
equipment ・ OUTPUT: range of output voltage ±5V or ±10V ( 32 

D/A output channels ). 
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(Multi-objective evaluation value) 
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where  LOSSN [Wh] is total distribution loss rate of candidate 

N(=1~M); IAtj , IBtj , ICtj [A] are each phase line section j(=1~5) 
current at t(=1-24) [h]; Rj [Ω] is line resistance of line section j; 
DmaxN [%] is maximum value of voltage THD of candidate N; V1tip , 
V5tip , V7tip [V] are p(=A,B,C) phase fundamental wave voltage, 5th 
harmonic voltage, and 7th harmonic voltage at node i at t [h], 
respectively; UmaxN [%] is maximum value of voltage imbalance 
rate of candidate N; CtfiBtfiAtfi VVV &&& ,,  are A, B, C phase voltage 
vector at node i at t [h], respectively; a&  is vector operator 
( 2/32/1 ja +−=& ), EN is multi-objective evaluation value of 
candidate N; LN is normalized total distribution loss rate of 
candidate N; DN is normalized maximum value of THD of 
candidate N; and UN is normalized maximum value of voltage 
imbalance rate of candidate N. 

In addition, for the radial configuration candidates and loop 
configuration, determination of the optimal sending voltage profile 
is carried out in order to maintain node voltage within the secure 

AVR 

Sending voltage 
equipment 

Distribution line 
with switch

Single-phase 
load 
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voltage range. The optimal sending voltage profile is determined 
so as to minimize total number of tap position’s changing per day 
E and maximize voltage margin H under the voltage and current 
limit constraints as formulated by Eq.(5)-(13). 

 
[Objective function] 
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where, ILOAD [A], IDG [A] are profile of load current and DG 

output current; xit(ILOAD，IDG) is 0-1 variable to determine tap 
position i at t(=1-24)[h] (if use 1, otherwise 0) (xi,0(ILOAD ，

IDG)=xi,24(ILOAD，IDG)); E is total number of tap position changes per 
day, H is total error for target voltage; Vit [V] is sending voltage at 
t[h] using tap position I; Vmint [V], Vmaxt [V] are lower and upper 
voltage limit at t[h]; VTARGETt [V] is target sending voltage at t[h]; S 
is set of pole transformer tap section number; Ws is set of feeder 
section number in pole transformer tap section s; vsw (Vitxit(ILOAD, 
IDG)) is 6.6kV system voltage based on Vitxit(ILOAD, IDG) for feeder 
section w in pole transformer tap section s at t[h]; ss VV ,  are lower 
and upper limit of 6.6kV system voltage in pole transformer tap 
section s; M is total number of tap positions(=11); α is coefficient 
(=10-8) 

The proposed method is applied to distribution network 
equipment. The experimental configuration has one bank 
distribution transformer, 5 distribution lines, 5 sectionalizing 
switches, 12 single-phase R-L-C constant impedance loads, one 
wind power generation system (WP) and 4 photovoltaic generation 
systems (PVs) as shown Fig.3. Daily active power and reactive 
power of single-phase load, WP output and PVs output are shown 
in Fig.4 and Fig.5, respectively. Power factor of PV and WP is set 
as 1 from viewpoint of the severest condition of voltage rise. Since 
the experiment configuration has five sectionalizing switches, 

there are 5 radial distribution network configuration candidates 
(candidate1-5) and one loop configuration closed all switches. 5 
radial distribution network configuration candidates and loop 
configuration of the distribution network equipment are shown in 
Fig.6.  

After three-phase node voltage and three-phase line current are 
measured for 5 configuration candidates and loop configuration of 
distribution network equipment, total distribution loss rate, 
maximum voltage THD, maximum voltage imbalance rate and 
multi-objective evaluation value EN are calculated. 
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Fig.3. Experiment configuration. 
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(a) Active power 
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(b) Reactive power 

Fig.4. Active power and reactive power of single-phase load. 
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Fig.5. Output of DGs. 
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Fig.6. Radial distribution network configuration 

candidates and loop configuration. 
 

4. EXPERIMENTAL RESULTS OF 
MULTI-OBJECTIVE EVALUATION OF 
RADAIAL AND LOOP DISTRIBUTION 
CONFIGURATION 

Experimental results of total distribution loss rate, maximum 
voltage THD, maximum voltage imbalance rate, multi-objective 
evaluation value and optimal sending voltage profile for each 
configuration and loop configuration are shown in Fig.7-12, 
respectively. As shown in Fig.7, total distribution loss rate which is 
a conventional evaluation index decreases after DGs are connected. 
Fig. 8 and 9 shows that though maximum voltage THD and 
maximum voltage imbalance rate increase after connecting DGs, 
maximum voltage THD and maximum voltage imbalance rate are 
kept within the acceptable range (voltage THD ≤5% and voltage 
imbalance rate ≤3%). The optimal configuration obtained by using 
total distribution loss rate as the conventional index becomes the 
loop configuration when DG is connected or not. On the other 
hand, it is seen from Fig.10 that when the multi-objective 
evaluation value EN as the proposed configuration evaluation 
index is used, the loop configuration becomes the optimal 
configuration without DG and configuration candidate 3 becomes 
the optimal configuration with DGs. Since the power qualities 
such as voltage THD and imbalance are evaluated by the proposed 
multi-objective evaluation, the optimal configuration with the 
minimum multi-objective evaluation value is changed before and 
after connecting DGs as shown in Fig.10. From Fig.11-12, it is 
seen that the sending voltage for each configuration and loop 
configuration can be controlled within the proper range by 
changing a few tap position. 

In addition, in order to evaluate influence of DGs connection to 
distribution network, before and after connecting DGs, hourly 
distribution loss rate, hourly maximum voltage THD, and hourly 
maximum voltage imbalance rate for candidate 3 and loop 
configuration are shown in Fig.13-15. Furthermore, hourly node 

voltage THD and hourly node voltage imbalance rate for candidate 
3 and loop configuration before and after connecting DGs are 
shown in Fig.16-19. 

From Fig.14, Fig.16 and Fig.17, it can be seen that hourly 
voltage THD at each node increases before and after connecting 
DGs, and those increasing rate THD are different by affection of 
DGs connection. The more it approaches the edge of feeder, the 
bigger the increasing rate is. As shown in Fig.15, Fig.18 and 
Fig.19, before and after connecting DGs, though hourly maximum 
voltage imbalance rate increases, tendency to increase and 
decrease of hourly node voltage imbalance rate is different in each 
node, since the hourly node voltage imbalance is depended on 
hourly load current imbalance. 
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Fig.7. Total distribution loss rate  

for each candidate and loop configuration. 
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Fig.8. Maximum voltage THD  

for each candidate and loop configuration. 
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Fig.9. Maximum voltage imbalance rate  

for each candidate and loop configuration. 
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Fig.10. Multi-objective evaluation value  

for each candidate and loop configuration.
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(a) Configuration candidate 1 
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(b) Configuration candidate 2 
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(c) Configuration candidate 3 
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(d) Configuration candidate 4 
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(e) Configuration candidate 5 
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(f) Loop configuration 

Fig.11. Optimal sending voltage profile for each candidate  
and loop configuration without DG. 
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(a) Configuration candidate 1 
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(b) Configuration candidate 2 
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(c) Configuration candidate 3 
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(d) Configuration candidate 4 
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(e) Configuration candidate 5 
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(f) Loop configuration 

Fig.12. Optimal sending voltage profile for each candidate  
and loop configuration with DGs.
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(a) Loop configuration 
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(b) Radial configuration candidate 3 

Fig.13. Hourly distribution loss rate before and after connecting DGs.
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(a) Loop configuration 
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(b) Radial configuration candidate 3 

Fig.14. Hourly maximum voltage THD before and after connecting DGs.
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(a) Loop configuration 
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(b) Radial configuration candidate 3 

Fig.15. Hourly Maximum voltage imbalance rate before and after connecting DGs.
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(a) Without DG 
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(b) With DGs 

Fig.16. Hourly node voltage THD in phase B before and after connecting DGs for loop configuration.
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(a) Without DG 
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(b) With DGs 

Fig.17. Hourly node voltage THD in phase B before and after connecting DGs for radial configuration candidate 3.
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(a) Without DG 
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(b) With DGs 

Fig.18. Hourly node voltage imbalance rate in phase B before and after connecting DGs for loop configuration.
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(a) Without DG 
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(b) With DGs 

Fig.19. Hourly node voltage imbalance rate in phase B before and after connecting DGs for radial configuration candidate 3. 
 

5. CONCLUSION 

In this paper, an experimental multi-objective evaluation 
method of distribution network configuration candidates with 
distributed generators by using distribution network equipment 
was proposed. The optimal network configuration candidate can 
be determined by using multi-objective evaluation based on total 
distribution loss rate, maximum voltage total harmonic distortion 
and maximum voltage imbalance rate in order to reduce 
distribution loss and keep power quality. The proposed method is 
applied to an experiment of scaled-down three-phase distribution 
network with 4 photovoltaic generation systems and a wind power 
generation system. As the experimental results, it was shown that 
the total distribution loss rate of configuration decreases and the 
maximum voltage THD increases of configuration before and after 
connecting DGs. Since the power qualities such as voltage THD 
and imbalance are evaluated in the proposed multi-objective 
evaluation method, it was seen that the optimal configuration 
obtained by the proposed multi-objective evaluation is changed 
before and after connecting DGs. 
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