
Incremental Data Migration for Multi-Database
Systems

言語: English

出版者:

公開日: 2012-12-06

キーワード (Ja):

キーワード (En):

作成者: HIGUCHI, Ken, WANG, Wenqian, TSUJI, Tatsuo

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/6943URL

Incremental Data Migration for Multi-Database Systems

Ken HIGUCHI
Graduate school of Engineering

University of Fukui
Fukui, Japan

higuchi@u-fukui.ac.jp

Tatsuo TSUJI
Graduate school of Engineering

University of Fukui
Fukui, Japan

tsuji@u-fukui.ac.jp

Wenqian WANG
AISIN AW CO., LTD.

Anjo, Japan
wen@pear.fuis.u-fukui.ac.jp

Abstract— Nowadays, database systems are one of the most
popular and essential software programs in computer systems.
Many computers are installed a database system and users
maybe want to use these database systems as one system. The
multi-database system is one of the solutions to this request.
The multi-database system is a kind of the distributed database
system. It is a cluster of independent database systems. As the
distributed database system, the multi-database system has
some problems. One of these problems is data migration
among individual database systems in the multi-database
system. Many reorganization techniques for distributed
database systems already proposed. But these techniques are
not always adaptive to the data migration in the multi-
database system. In order to overcome this problem, we adapt
the incremental scheme to the data migration in the multi-
database system. In our new scheme, a large data migration
operation is divided into small ones, and other operations are
inserted between them. The experimental result proves the
improvement of the turn-around times of other operations.

Keywords- multi-database, data migration, incremental data
migration

I. INTRODUCTION
Nowadays, database systems are one of the most popular

and essential software programs in computer system.
Because the introduction cost and the running cost of the
database system become to be low, many personal
computers can be installed and use the database system. It
is natural that users want to access large data in many
database systems that are running on independent computers.
One of its solutions is using the multi-database system. The
multi-database system is a kind of distributed database
systems. It is a cluster of independent database systems. But
it does not have a centralized data management method for
whole data in the multi-database system. Each data is stored
and managed by an independent database system running on
one computer. While it is necessary that each database

system has all facilities of the database system, it is not
necessary that the multi-database system has them. In
extreme cases, some multi-database system only has the
access method to data. Then, the multi-database system can
be constructed from existing database systems. Therefore,
the construction of the multi-database system is easier than
that of the centralized controlled distributed database system.

By using the multi-database system, user can access to
data in plural database systems. These data is larger than
that in a single database system, and user can benefit from it.
But the multi-database system has some problems that are
the same as the distributed database system. One of these
problems is data migration. In the distributed database, in
order to keep the load balancing or to reorganize to the data
partitioning, the data migration among individual database
systems is necessary. It is caused by change of the tendency
of retrieval queries, insertion of a large amount of data, a
global strategy for the database, and so on. The distributed
database can use its concurrency control to the data
migration [1][2][3][4][5]. But these techniques are not
always adaptive to the data migration in the multi-database
system (discussed in next section).

One way to solve the data migration in the multi-database
system is an incremental data migration scheme based on
the incremental online reorganization scheme in [8].
Because it does not use any snapshots or versions of data, it
can be adapted to the data migration in the multi-database
system.

In this paper, we adapt the incremental scheme to the data
migration in the multi-database system. In our new scheme,
one data migration operation is divided into small ones, and
other operations are inserted between them. The
experimental result proves the improvement of turn-around
times of other operations.

II. DATA MIGRATION IN MULTI-DATABASE SYSTEMS
In this paper, we only consider isolation and consistency to

the multi-database system. Because each individual database
system is managed according to its specification, its
isolation and consistency are kept by that individual
database system. Furthermore, we assume that the isolation
level of the multi-database system is SERIALIZABLE.

As mentioned in Sec. I, many reorganization techniques
are already proposed [1][2][3][4][5]. These typical
techniques use the snapshot function to target data of the
data migration (Fig. 1-(a)). By using the snapshots, other
queries can be processed while processing the data
migration (Fig. 2). These techniques can be adapted to the
data migration of the centralized controlled distributed
database system. But these techniques are not always
adaptive to the data migration in the multi-database system,
because these functions are not always implemented in the
individual database system in the multi-database system.

Then, in the multi-database system, other technique to the
data migration is necessary.

One way to solve the data migration in the multi-database
system is the classical data migration technique that uses the
locking function, the insertion function, and the deleting
function of the individual database system in the multi-
database system (Fig. 1-(b)). In this scheme, queries that use
the target data of the data migration cannot be processed
until the data migration is completed (Fig 3). Then, turn-
around times of other queries using this scheme are more
degraded than that using the data migration scheme using
the snapshots. On the other hand, the turn-around time of
the data migration operation using this scheme is shorter
than that using the data migration scheme using snapshots.
It can be adapted to almost all of multi-database systems.
Then, we consider only this classical data migration
technique.

(a) The data migration algorithm using snapshots. (b) The data migration algorithm without a snapshot.

Figure. 1 data migration algorithms for the multi-database system

Figure. 2 a data migration operation and other operations in the data migration using snapshots

data migration

making a snapshot

moving the target
data

queries using the
target data

query processing

queries not using
the target data

query processing

time sequence

1. lock queries that use the target data
2. make a snapshot for the target data
3. unlock that queries
4. move the target data (or the snapshot)
5. lock queries that use the target data
6. delete the snapshot (or the target data)
7. unlock that queries

1. lock the queries that use the target data
2. move the target data using insertion and deletion
3. unlock that queries

 Figure. 3 a data migration operation and other operations in the data migration scheme without snapshot

III. INCREMENTAL DATA MAIGRATION
In [8], we proposed an incremental on-line reorganization

scheme for distributed index systems. In this scheme, a large
reorganization operation is divided into small reorganization
operations and other queries are inserted to these small
reorganization operations. By this insertion of other queries,
turn-around times of these queries are improved. This
incremental scheme can be adapted to the data migration in
the multi-database system because the data migration is
included in the reorganization on the distributed database

system. Fig. 4 shows an overview of the incremental data
migration scheme. Fig. 5 shows the procedure of one step of
the incremental data migration. The incremental scheme
repeats this step until all target data are moved. Then, the
number of these locking operations is increased. But by
dividing the data migration operation, these locking areas are
expected to become small and the total cost of these locking
operations is expected to be not much different. Furthermore,
the inserted queries can be started early and these turn-
around times can be improved.

Figure. 4 the incremental scheme for the data migration in the multi-database system

original data migration

data migration

incremental data
migration

query operations

query operations

query operations

data migration

data migration

data migration

query operations

query operation

query operation

time sequence

data migration

moving the target

data

queries using the
target data

query processing

queries not using
the target data

query processing

query processing

time sequence

Figure. 5 one step of the incremental data migration in the multi-

database (from source database system to destination database system)

IV. EXPERIMENTS
To show the improvement by our incremental data

migration scheme, we evaluate its performance by
experiments on a cluster of database systems using
MySQL[9]. The multi-database system used in the
experiment is an elementally one. It can process only
retrievals and data migrations using MySQL API.

A. Experiment Environment
Experiment conditions are listed below:

(a) The number of database servers is 4 (db1, db2, db3, db4).
Each server is running on an individual node (Table 1).

(b) The number of tables in one server is 4 (t1, t2, t3, t4).
(c) Only one node controls all data migration. But plural

operations can be processed in parallel if possible.
(d) Our scheme is evaluated in following two conditions. In

each data migration, target records are moved between
two tables that have same name.
(Exp.1) Each table stores 2,500,000 records. In each table,

500,000 records are moved to another table in
another node.

(Exp.2) 4 tables in db1 store 2,000,000 records
respectively and other tables store 1,000,000
records respectively. In each table of db1,
750,000 records are moved to other tables in db2,
db3, and db4 in order to equalize the numbers of
records in one table.

In each condition, the number of steps of the incremental
data migration is 1, 5, and 10. Here, 1-step data migration
is equal to the data migration without incremental scheme.

(e) The number of clients for queries is 16 and each client
requests queries repeatedly. Each query has to be access
to only one table in some node and the client changes the
target node in order.

Here, a set of successive 4 queries is called a cycle. In

one cycle, query processing accesses 4 tables that are stored
by separate database systems. One cycle is not one
transaction but it uses all database servers. Then, one cycle is
not a query to the multi-database system but it can evaluate
the performance of our scheme as the multi-database system.

TABLE I. SECIDICATION OF NODES

the number of nodes 21
CPU Intel Corei5-650 (3.2GHz)
OS Fedra 14
network 1 G bps Ethernet
database system MySQL 5.5.14

In Exp.1, the numbers of records stored in one table are
equal to each other before the data migration and after the
data migration. Exp. 1 can evaluate our scheme without the
influence of the improvement of load-balance. In Exp.2,
before the data migration, db1 stores records whose amount
is double of other database servers. After the data migration,
the numbers of records stored in one table are equal to each
other. Then Exp. 2 can evaluate our scheme in the data
migration that improves load-balance.

In both conditions, experiments are executed ten times
and the results of these experiments are averages of them.

B. Results of Experiment
Fig. 6 and Fig. 7 show results of Exp1. and Exp2

respectively. Vertical axes are the total execution time (sec)
and horizontal axes are the cycle number. One curve is the
average of the total execution times of 16 clients. Here the
total execution time means the finish time of some cycle and
not a turn-around time of that cycle (the difference between
the total execution times of two successive cycles is the
turn-round time).

In both two experiments, the curves of the 1-step data
migration have one clear step. It is caused by the data
migration operation and many execution times of other
queries in this step are degraded by it. On the other hand,
the curves of the 5-steps data migration and the 10-steps
data migration are smooth and lower than that of 1-step data
migration. In each client, curve of total execution time has 5
or 10 steps but timings of these steps are different to each
other. Then, curves in Fig. 5 and Fig 6 become to be smooth.
On comparison between the 5-steps data migration and the
10-steps data migration, total execution times of queries in
the 10-steps data migration are faster than that in the 5-steps
data migration in Exp.1. In Exp. 2, the total execution time
of the last query in the 10-steps data migration is equal to
that in the 5-steps data migration. It is because that the
source database server of the data migration in Exp.2 is only
one, many tables are not locked, and many queries can be
processed. On the other hand, in Exp.1, many divided data
migration operations are processed in parallel and many
tables are locked. Because the duration of locking for one
step in the 5-steps data migration is longer than that in the
10-steps data migration, the 10-steps data migration is more
efficient than the 5-steps data migration. The deference
between curves of the 1-step data migration and curves of
the 5-steps data migration is caused by the same reason.

1. get an exclusive lock to the target data in the
source database system

2. get some locks in the destination database system
if necessary

3. transfer the target data
4. insert the target data to the destination database

system
5. delete the target data in the source database system
4. unlock (according to 1 and 2)

Figure. 6 results of Exp.1

Figure. 7 results of Exp.2

V. CONCLUSIONS
We adapted the incremental scheme to the data migration

in the multi-database system. By experimental results, our

incremental scheme is effective for the improvement of
execution time. But queries of our experiments are not
corrective queries for the multi-database system. For future
works, we need to evaluate the performance of our scheme in
more real situations.

REFERENCES

[1] Salzberg, B., and Dimock, A., Principles of Transaction-Based On-
line Reorganization, Proc. of 18th International Conf. on Very Large
Data Bases, pp. 511-520, 1992..

[2] Achyutuni, K., Omiecinski, E., and Navathe, S., Two techniques for
on-line index modification in shared nothing parallel database, Proc.
of the 1996 ACM SIGMOD International Conf. on Management of
Data, pp. 124-136, 1996.

[3] Omiecinski, E., Concurrent File Reorganization: Clustering,
Conversion and Maintenance, Data Engineering Bulletin, 19, 2, pp
25-32, 1996.

[4] Zou, C. and Salzberg, B., Safely and Efficiently Updating References
During On-line Reorganization, Proc. of 24th International Conf. on
Very Large Data Bases, pp. 512-522, 1998.

[5] Lakhamraju, M. K., Rastogi, R., Seshari, S., and Sudarshan, S., On-
line Reorganization in Object databases, Proc. of the 2000 ACM
SIGMOD International Conf. on Management of Data, pp.58-69,
2000.

[6] Higuchi, K. and Tsuji, T., and Hochin, T., Distributed Index System
for Complex Objects with On-line Modification, IPSJ Trans. of
Databases, 43, SIG12(TOD16), pp.64--79, 2002.

[7] Higuchi, K. and Tsuji, T., On-line Reorganization for Distributed
Index System for Complex Objects, IPSJ Trans. of Database, 45,
SIG10(TOD23), pp 1-17,2004

[8] Higuchi, K., Nomura, T, and Tsuji, T., Incremental reorganization for
distributed index system, Systems Modeling and Simulation,
Proceedings of Theory and Applications Asia Simulation Conference
2006, pp 223-227, 2006.

[9] www.mysql.com

