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SUMMARY This paper describes high-temperature electron transport 

properties of  AIGaN-channel HEMT fabricated on a free-standing  A1N 
substrate, estimated at temperatures between 25 and 300°C. The  AIGaN-
channel HEMT exhibited significantly reduced temperature dependence in 

DC and RF device characteristics, as compared to those for the conven-

tional  A1GaN/GaN HEMT, resulting in larger values in both saturated drain 
current and current gain cutoff frequency at 300°C. Delay time analyses 

suggested that the temperature dependence of the  AIGaN-channel HEMT 
was primarily dominated by the effective electron velocity in the  A1GaN 

channel. These results indicate that an  A1GaN-channel HEMT fabricated 

on an AIN substrate is promising for high-performance device applications 
at high temperatures. 
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was still larger for the conventional  A1GaN/GaN HEMT 
than that for the  A1GaN-channel device, and no data have 
been reported on the high-temperature RF performance for 
the  AlGaN-channel HEMT. 

   In this paper, DC and RF performance of  A1GaN-
channel HEMTs fabricated on an  A1N substrate is presented. 
The maximum drain current and the current gain cutoff fre-

quency measured at temperatures from RT to 300°C are 
compared between devices with an  AIGaN channel and a 
GaN channel. The mechanism responsible for the superior 

performance for the developed  A1GaN-channel HEMT at 
high temperatures is discussed.

1. Introduction

2. Device Fabrication
GaN-based HEMTs are expected as promising devices for 
high-voltage, high-frequency and high-temperature elec-
tronic applications. With an ability to exhibit extremely 
reduced intrinsic carrier concentration, DC characteristics 
of  AlGaN/GaN HEMTs at elevated temperatures have been 
reported by many authors  [1]—[7]. Kordos et al. reported 
that with increasing the device temperature to more than 

 200°  C, the saturated drain current of a  2pm gate-length Al-
GaN/GaN HEMT decreased to below one half of that mea-
sured at room temperature [6]. It is evident that the temper-
ature dependence in the DC characteristics of GaN-based 
HEMTs should be further improved to ensure stable device 
operation at high temperatures. 

   Recently, a novel nitride-based HEMT structure, in 
which  A1GaN is used as a channel layer, has been pro-

posed [8]—[13]. Nanjo et al. demonstrated that a drain break-
down voltage as high as 1650 V was achieved for an  A1GaN-
channel HEMT with an Al composition of 38% [9]. Tokuda 
et al. reported that the degradation in the drain current by 
increasing the device temperature from room temperature 

(RT) to 300°C was significantly suppressed within 20% by 
using an  A1GaN channel with an Al composition of  51% 

[11]. However, the magnitude of the drain current at 300°C
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Figure 1 shows the schematic diagram of an  A1GaN-channel 
HEMT fabricated on a free standing C-plane  AN substrate. 
Epitaxial layers were grown by metal-organic vapor phase 
epitaxy (MOVPE). The structure consists of a 200-nm-thick 

 A1N buffer, an undoped 600 nm  A1GaN channel layer with 
an Al composition of 0.26, and an undoped 27 nm  A1GaN 
barrier layer with an Al composition of 0.50. Device fab-
rication began with mesa isolation using ICP-RIE based on 
BC13 plasma. Then, the source and drain ohmic contacts 
were formed using a Zr/Al/Mo/Au metal stack annealed at 
950°C for 30 s [14]. The specific ohmic contact resistiv-
ity and the sheet resistance, estimated by transmission-line-
model (TLM) measurements were 5.0 x  10-4  S2 cm2 and 
4550  f2/sq, respectively. Ni/Au was used as Schottky gate 
metallization. 
   DC characteristics were measured using on-wafer DC 

probes for a device with a gate length  (Iv) of  6pm and a gate

 Fig.  1 Schematic cross section of  A10.5oGao.5oN/A10.26Ga0.74N HEMT 
on  A1N substrate.
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width  (WO of  515pm. S-parameter measurements were per-
formed using on-wafer  RF probes from  10  MHz to  4  GHz 
for a device with  Lo=2  pm and  1470 = 2 x  50pm. A standard 

 A1GaN/GaN HEMT with identical electrode dimension was 
fabricated on a Si substrate. The thickness and Al compo-
sition for the  A1GaN barrier layer were 25 nm and 0.25, re-
spectively. Since the main purpose of this work is to study 
the importance of channel materials, no surface passivation 
films were used for all the devices.

3. Results and Discussion

Figures 2(a) and (b) show DC drain I-V characteristics 
for the fabricated  AJGaN-channel HEMT  (L0=6  pm and 

 1470=515  pm) measured at 25°C and at 300°C, respectively. 
The maximum drain current defined at a gate-to-source bias 
voltage  (Vg,) of 2 V was 175 mA/mm at 25°C and was 
106 mA/mm at 300°C. 

   Figure 3 shows the maximum drain current as a func-

 100 - 

 90 

 80 

 70 
4E' 60 
cu L 

50 
•40 
.5. 
12 30 
•

20 

  10 

  0

 100 

 90 

 80 

    „ E-,u 
.5 60 

w t-. 50 

 40 

Ei 30 
•20 

  10 

   0

 . RT 

 Lg=  61.tm 

 W,  =  515  I-1,M

 0  2

 Vgs=  2  V

2 V step

                     =-8V 
--•• 

4 6 8 10 12 14 16 18 20 
  Drain Voltage (V)

(a)

 0 2 4 6 8 10 12 14 16 18 20 
        Drain Voltage (V)

              (b) 

 Fig.  2 Drain I-V characteristics for  AlGaN-channel HEMT with  L, = 

6pm and  W0 =  515pm at (a) RT and (b) 300°C.

tion of temperature for the  A1GaN-channel HEMT and 
for the conventional  A1GaN/GaN HEMT. The maximum 
drain current for the GaN-channel HEMT decreased from 
281 mA/mm at 25°C to 97 mA/mm at 300°C, corresponding 
to about 65% degradation. Similar degradation trend has 
been observed for  A1GaN/GaN HEMT fabricated on a sap-

phire substrate, suggesting that the substrate thermal con-
ductivity has minor influence on the comparison of drain 
current at high temperatures. On the other hand, the degra-
dation for the  A1GaN-channel device was only 40%. There-
fore, although the maximum drain current at RT was smaller 
for the  A1GaN channel, its magnitude was reversed with 
each other at around 250°C. At 300°C, the maximum drain 
current for the  A1GaN-channel HEMT was about 10% larger 
than that for the GaN-channel HEMT. This is the first report 
demonstrating that an  A1GaN-channel HEMT, having iden-
tical device dimension, shows better DC characteristics than 

 A1GaN/GaN HEMTs when estimated at high temperatures. 
   In order to investigate the mechanism for the reversal 

in drain current observed between GaN and  A1GaN chan-
nels, temperature dependent Hall-effect measurements have 
been performed using the van der Pauw method. Figure 4 
shows the Hall mobility measured from RT to 300°C for 
heterostructures with an  A1GaN channel and with a conven-
tional GaN channel. It was found that the channel mobility 
decreased monotonically with the increase in temperature 
for both channel materials, indicating that no reversal in the 
magnitude of channel mobility occurred between the sam-

ples at temperatures up to 300°C. 
   Figure 5 shows temperature dependence of the current 

gain cutoff frequency for  AIGaN-channel and GaN-channel 
HEMTs  (L0=2,um and  lif,=100  pm) estimated by on-wafer 
S-parameter measurements. Devices were biased at  Vg5=0 V 
and at a drain-to-source voltage  (Vds  ) of 25 V. The current 

gain cutoff frequency was estimated by extrapolating cur-
rent gain (h21) using —20 dB/dec roll-off. S-parameters at 
each frequency were used after de-embedding parasitic pad 
capacitance and inductance  [15]. The current gain cutoff fre-

quency monotonically decreased with increasing tempera-
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 Fig.  5 Current gain cutoff frequency (fT) as a function of temperature 
for  AIGaN-channel HEMT and for GaN-channel HEMT with  L9=2 µm and 

 14/9=100pm.

ture in both devices. However, it is obvious that the decrease 
ratio for the  A1GaN-channel HEMT is extremely smaller 
than that for the GaN-channel HEMT. More interestingly, 
the magnitude of the current gain cutoff frequency for the 

 A1GaN-channel HEMT was reversed near 300°C. 
   Using the measured current gain cutoff frequency, de-

lay time analysis was conducted following Moll's method 
[16]. It was found that the effect of drain delay  (Td) was 
negligible for our devices with  4=2  pm biased at  Vds=15 V. 
It is presumably because the effective channel velocity in 
the saturation region is not only dominated by the high-field 
drift velocity (or saturation velocity) but also considerably 
affected by the channel mobility. Thus our device exhibited 
a slight increase in the current gain cutoff frequency with 
an increase in  Vds up to 25 V, leading to difficulties in de-
termining  Td. In this work, the effect of  Td was neglected 
and the intrinsic delay  (TO was defined as  Tt =  Tt Tc, 
where  Tt is the total delay time and  Tc is the channel charg-
ing time. Using  Tt, the effective channel electron velocity 
was derived by  Lg/Ti. Table 1 shows the effective channel 
electron velocity estimated at 25 and 300°C for an  A1GaN-
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Table 1 Effective channel electron velocity of  A1GaN-channel HEMT 

and GaN-channel HEMT evaluated at 25°C and at 300°C.

 veff  @  25 °C 

 (106 cm/s)

 vat-  @ 300 °C 

 (106 cm/s)

 AlGaN channel

GaN channel

2.7

6.0

1.7

1.5

channel HEMT and for a GaN-channel HEMT. Although 
the effective channel electron velocity for the GaN-channel 
HEMT was about 2 times larger at 25°C, its magnitude was 
reversed at 300°C, suggesting that the reversal of the maxi-
mum drain current observed at high temperatures, as shown 
in Fig. 3, was closely related to the temperature dependence 
of the effective channel electron velocity that was predomi-
nantly governed by the high-field saturation velocity. 

   Figure 6 shows the maximum drain current, Hall mo-
bility, and effective electron velocity as a function of temper-
ature for the  A1GaN-channel HEMT. All values were nor-
malized to those at 25°C. It is evident that the degradation in 
the drain current at elevated temperatures corresponds well 
to the temperature dependence of the effective electron ve-
locity in the channel and does not show good correlation 
with the temperature dependence of the channel mobility. 
These results suggest that the reduced degradation in the 
maximum drain current at high temperatures was mainly 
dominated by the temperature dependence of the effective 
electron velocity in the  AlGaN channel. At present, it is 
not well understood why the effective electron velocity in 

 AlGaN exhibited reduced degradation as compared to the 
temperature dependence of the channel mobility. In our de-
vices with  Lo=2/.2m, all the channel region under the gate 
would not be in such enough high electric fields to allow all 
the channel electrons moving with a high-field (saturated)
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electron velocity. The slight deviation observed between the 

temperature dependences of effective electron velocity and 
maximum drain current, in Fig. 6, may be due to the fact that 

some of the channel electrons are still affected by the low-

field mobility though they are mostly accelerated by the high 
electric field in the channel region. To clarify the mechanism 

in more details, it would be desirable to perform similar ex-

periments on shorter gate length  HEMTs, where high-field 
transport is dominant under the whole gate region.

4. Conclusion

An  A1GaN-channel HEMT has been fabricated on a free-
standing  A1N substrate and its device performance has been 
compared to that for a standard  A1GaN/GaN HEMT. At 
room temperature, the conventional GaN-channel HEMT 
exhibited much better performances in most of the de-
vice properties, such as maximum drain current, channel 
electron mobility, current gain cutoff frequency, and effec-
tive electron velocity, than those for the  AlGaN-channel 
HEMT. However, the difference in those properties was re-
duced with increasing the device temperature. At 300°C, 
the magnitude of the maximum drain current and the cur-
rent gain cutoff frequency was reversed between the two 
devices, showing that an  A1GaN-channel HEMT is supe-
rior to a conventional  A1GaN/GaN HEMT at high tempera-
tures. These results indicate that an  A1GaN-channel HEMT 
on an  A1N substrate is promising for high-temperature elec-
tronics applications at more than 300°C. The superior high-
temperature performance of  AlGaN-channel HEMTs is pre-
sumed to be due to the comparatively small temperature de-

pendence in electron drift velocity at high fields.
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