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This paper presents a new feature selection (FS) algorithm based on the wrapper approach using neural

networks (NNs). The vital aspect of this algorithm is the automatic determination of NN architectures

during the FS process. Our algorithm uses a constructive approach involving correlation information in

selecting features and determining NN architectures. We call this algorithm as constructive approach

selecting less correlated (distinct) features if they enhance accuracy of NNs. Such an encouragement

will reduce redundancy of information resulting in compact NN architectures. We evaluate the

performance of CAFS on eight benchmark classification problems. The experimental results show the

essence of CAFS in selecting features with compact NN architectures.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection (FS) is a search process or technique used to
select a subset of features for building robust learning models,
such as neural networks and decision trees. Some irrelevant and/
or redundant features generally exist in the learning data that not
only make learning harder, but also degrade generalization
performance of learned models. For a given classification task,
the problem of FS can be described as follows: given the original
set, G, of N features, find a subset F consisting of N0 relevant
features where FCG and N0oN. The aim of selecting F is to
maximize the classification accuracy in building learning models.
The selection of relevant features is important in the sense that
the generalization performance of learning models is greatly
dependent on the selected features [8,33,42,46]. Moreover, FS
assists for visualizing and understanding the data, reducing
storage requirements, reducing training times, and so on [7].

A number of FS approaches exists that can be broadly classified
into three categories: the filter approach, the wrapper approach,
and the hybrid approach [21]. The filter approach relies on the
characteristics of the learning data and selects a subset of features
without involving any learning model [5,11,22,26]. In contrast, the
wrapper approach requires one predetermined learning model
and selects features with the aim of improving the generalization
performance of that particular learning model [9,12,26]. Although
ll rights reserved.
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the wrapper approach is computationally expensive than the filter
approach, the generalization performance of the former approach
is better than the later approach [7]. The hybrid approach
attempts to take advantage of the filter and wrapper approaches
by exploiting their complementary strengths [13,43].

In this paper we propose a new algorithm, called constructive
approach for FS (CAFS) based on the concept of the wrapper
approach and sequential search strategy. As a learning model,
CAFS employs a typical three layered feed-forward neural
network (NN). The proposed technique combines the FS with
the architecture determination of the NN. It uses a constructive
approach involving correlation information in selecting features
and determining network architecture. The proposed FS techni-
que differs from previous works (e.g., [6,9,11–13,22,43,46]) on
two aspects.

First, CAFS emphasizes not only on selecting relevant features
for building learning models (i.e., NNs), but also on determining
appropriate architectures for the NNs. The proposed CAFS selects
relevant features and the NN architectures simultaneously using a
constructive approach. This approach is quite different from
existing work [1,8,11,12,22,26,35,42,46]. The most common
practice is to choose the number of hidden neurons in the NN
randomly, and then selects relevant features for the NN
automatically. Although the automatic selection of relevant
features is a good step in improving the generalization perfor-
mance, the random selection of hidden neurons affects the
generalization performance of NNs. It is well known that the
performance of any NN is greatly dependent on its architecture
[14,15,18,19,23,39,48]. Thus determining both hidden neurons’
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number and relevant features automatically provide a novel
approach in building learning models using NNs.

Second, CAFS uses correlation information in conjunction with
the constructive approach for selecting a subset of relevant
features. The aim of using correlation information is to guide the
search process. It is important here to note that CAFS selects
features when they reduce the error of the NN. The existing
wrapper approaches do not use correlation information to guide
the FS process (e.g. [1,8,12,31]). Thus they may select correlated
features resulting in increase of redundant information among
selected features. Consequently, it will increase the computa-
tional requirements of NN classifiers.

The rest of this paper is organized as follows. Section 2
describes some related works about FS. Our proposed CAFS is
discussed elaborately in Section 3. Section 4 presents the results
of our experimental studies including the experimental metho-
dology, experimental results, the comparison with other existing
FS algorithms, and the computational complexity of different
stages. Finally, Section 5 concludes the paper with a brief
summary and a few remarks.
2. Previous work

The wrapper based FS approach has received a lot of attention
due to its better generalization performance. For a given dataset G

with N features, the wrapper approach starts from a given subset F0

(an empty set, a full set, or any randomly selected subset) and
searches through the feature space using a particular search
strategy. It evaluates each generated subset Fi by applying a
learning model to the data with Fi. If the performance of the
learning model with Fi is found better, Fi is regarded as the current
best subset. The wrapper approach then modifies Fi by adding or
deleting features to or from Fi and the search iterates until a
predefined stopping criterion is reached. As CAFS uses the wrapper
approach in selecting features for NNs, this section briefly describes
some FS algorithms based on the wrapper approach using NNs. In
addition, some recent works that do not use NN and/or concern
with the wrapper approach are also described.

There are a number of ways by which one can generate subsets
and progress the search process. For example, search may start
with an empty set and successively add features (e.g. [9,31,34]),
called sequential forward selection (SFS), or a full set and
successively remove features [1,8,12,38,42], called sequential
backward selection (SBS). In addition, search may start with both
ends in which one can add and remove features simultaneously [3],
called bidirectional selection. Alternatively, a search process may
also start with a randomly selected subset (e.g. [25,44]) involving a
sequential or bidirectional strategy. The selection of features
involving a sequential strategy is simple to implement and fast.
However, the problem of such a strategy is that once a feature is
added (or deleted) it cannot be deleted (or added) latter. This is
called nesting effect [33], a problem may encounter by SFS and SBS.
In order to overcome this problem, the floating search strategy [33]
that can re-select the deleted features or can delete the already-
added features is effective. The performance of this strategy has
been found to be very good compared with other search strategies
and, furthermore, the floating search strategy is computationally
much more efficient than a FS method branch and bound [30].

In some studies (e.g., [42,46]), the goodness of a feature is
computed directly as the value of a loss function. The cross
entropy with a penalty function is used in these algorithms as a
loss function. In [42], the penalty function encourages small
weights to converge to zero or prevents the weights to converge
to large values. On the other hand, in [46], the penalty function
forces a network to keep the derivative of its neurons’ transfer
functions from becoming low. The aim of such a restriction is to
reduce output sensitivity to the input changes. In practice, these
approaches need extra computation and time to converge as they
augment the cost function by an additional term. In another study
[45], three FS algorithms are proposed for multilayer NNs and
multiclass support vector machines, using mutual information
between class labels and classifier outputs as an objective
function. These algorithms employ backward elimination and
direct search in selecting a subset of salient features. As the
backward search strategy is involved in these algorithms, the
searching time might be longer specifically for high dimensional
datasets [20].

Pal and Chintalapudi [35] proposed a novel FS technique in
which each feature was multiplied by an attenuation function
prior to its entry for training an NN. The parameters of the
attenuation function were learned by the back-propagation (BP)
learning algorithm, and their values varied between zero and one.
After training, the irrelevant and salient features can be
distinguished by the value of attenuation function that is close
to zero and one, respectively. On basis of this FS technique,
a number of algorithms have been proposed that combines fuzzy
logic and genetic programming in selecting relevant features for
NNs [4] and decision trees [27], respectively. In addition,
Rakotomamonjy [37] proposed new FS criteria derived from
Support Vector Machines and were based on the generalization
error bounds sensitivity with respect to a feature. The effective-
ness of these criteria was tested on several problems.

Ant colony optimization, a meta-heuristic approach is also
used in some studies (e.g. [2, 43]) for selecting salient features.
A number of artificial ants are used to iteratively construct feature
subsets. In each iteration, an ant would deposit a certain amount
of pheromone proportional to the quality of the feature subset in
solving a given dataset. In [43], the feature subset is evaluated
using the error of an NN, it is evaluated using mutual information
is used in [2].

A FS technique, called automatic discoverer of higher order
correlations (ADHOC) [40], has been proposed that consists of two
steps. In the first step, ADHOC identifies spurious features by
constructing a profile for each feature. In the second step, it uses
genetic algorithms to find a subset of salient features. Some other
studies (e.g. [13, 32]) also use genetic algorithms in FS. In [13], a
hybrid approach for FS has been proposed that incorporates the
filter and wrapper approaches in a cooperative manner. The filter
approach involving mutual information is used here as local
search to rank features. The wrapper approach involving genetic
algorithms is used here as global search to find a subset of salient
features from the ranked features. In [32], two basic operations,
i.e., deletion and addition are incorporated that seek the least
significant and most significant features for making stronger local
search during FS.

In [47], a FS algorithm has been proposed which first converts
a C class classification problem in C two-class classification
problems. It means the examples in a training set are divided into
two classes (say, C1 and C2). For finding feature subset of each
binary classification problem, the FS algorithm then integrates
features in SFS manner for training a support vector machine.

Most of the FS algorithms try to find a subset of salient features
by measuring contribution of features, while others use a penalty
term in the objective function. In addition, a sort of heuristics
functions in conjunction with ant colony optimization algorithms,
fuzzy logic, genetic algorithms or genetic programming are
used to find a subset of salient features. The main problem in
most of these algorithms is that they do not optimize the
configuration of the classifier in selecting features. This issue is
important in the sense that it affects the generalization ability of
NN classifiers.
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Fig. 2. Scenario of the grouping of features for vehicle dataset. Here, S and D

groups contain similar and dissimilar features, respectively.
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3. A constructive approach for feature selection (CAFS)

The proposed CAFS uses a wrapper approach in association
with incremental training to find a feature subset from a set of
available features. In order to achieve a good generalization
performance of a learning model (i.e., NN), CAFS determines
automatically the number of hidden neurons of the NN during the
FS process. The same incremental approach is used in determining
hidden neurons. The proposed technique starts with a minimum
number of features and hidden neurons. It then adds features and
hidden neurons in an incremental fashion one by one. The
proposed CAFS uses one simple criterion to decide when to add
features or hidden neurons.

The major steps of CAFS are summarized in Fig. 1, which are
explained further as follows:

Step 1: Divide the original feature set into two different subsets
or groups equally as shown in Fig. 2. The most correlated N/2
features are put in one group called similar group S, while the least
correlated N/2 features in the other group called dissimilar group D.
Here N is the total number of features in the original feature set.

Step 2: Choose a three layered feed-forward NN architecture
and initialize its different parameters. Specifically, the number of
neurons in the input and hidden layers is set to two and one,
respectively. The number of output neurons is set to the number
of categories in the given dataset. Randomly initialize all
connection weights of the NN within a small range.

Step 3: Select one feature from the S or D group according to
feature addition criterion. Initially, CAFS selects two features: one
from the S group and one from the D group. The selected feature is
the least correlated one among all the features in the S or D group.
Fig. 1. Flowchart of CAFS. NN and HN refer to neural network and hidden neuron,

respectively.
Step 4: Partially train the NN on the training set for a certain
number of training epochs using the BP learning algorithm [41].
The number of training epochs,t, is specified by the user. Partial
training, which was first used in conjunction with an evolutionary
algorithm [48], means that the NN is trained for a fixed number of
epochs regardless whether it has converged or not.

Step 5: Check the termination criterion to stop the training and
FS process in building a NN. If this criterion is satisfied, the current
NN architecture with the selected features is the outcome of CAFS
for a given dataset. Otherwise continue. In this work, the error of
the NN on the validation set is used in the termination criterion.
The error, E, is calculated as

E¼
1

2

XP

p ¼ 1

XC

c ¼ 1

ðocðpÞ�tcðpÞÞ
2

ð1Þ

where oc(p) and tc(p), respectively, are the actual and target
responses of the cth output neuron for the validation pattern p.
The symbols P and C represent the total number of validation
patterns and of output neurons, respectively.

Step 6: Check the training progress to determine whether
further training is necessary. If the training error reduces by a
predefined amount, e, after the training epochs t, it is assumed
that the training process is progressing well; thus further training
is necessary and go to the Step 4. Otherwise, go to the next step
for adding a feature or hidden neuron. The reduction of training
error can be described as

EðtÞ�EðtþtÞ4e, t¼ t, 2t, 3t, . . . ð2Þ

Step 7: Compute the contribution of the previously added
feature in the NN. The proposed CAFS computes the contribution
based on the classification accuracy (CA) of the validation set. The
CA can be calculated as

CA¼ 100
Pvc

Pv

� �
ð3Þ

where Pvc refers to the number of validation patterns correctly
classified by the NN and Pv is the total number of patterns in the
validation set.

Step 8: Check the criterion for adding a feature in the NN. If the
criterion is satisfied, go to Step 3 for adding one feature according
to the FS criterion. Otherwise continue.

Step 9: Since the criterion for further training and feature
addition is not satisfied, the performance of the NN can only be
improved by increasing its information processing capability. The
proposed CAFS, therefore, adds one hidden neuron to the NN and
go to Step 4 for training.

It is now clear that the idea behind CAFS is straightforward, i.e.,
minimize the training error and maximize the validation
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accuracy. To achieve this objective, CAFS uses a constructive
approach to find a salient feature subset and to determine NN
architectures automatically. Although other approaches such as
pruning [39] and regularization [10] could be used in CAFS, the
selection of an initial NN architecture in these approaches is
difficult [18,19]. It is, however, very easy in case of the
constructive approach. For example, the initial network architec-
ture in the constructive approach can be consisted of an input
layer with one feature, a hidden layer with one neuron and an
output layer with C neurons, one neuron for each class. If this
minimal architecture cannot solve the given task, features and
hidden neurons can be added one by one. Due to the simplicity of
initialization, the constructive approach is used widely in multi-
objective learning tasks [19,24]. The following section gives more
details about different components of our proposed algorithm.

3.1. Grouping of features

Grouping of features is actually a division of features into
groups of similar objects. Different practitioners used to entitle the
task of grouping by clustering. In [28], it is found that solving the
feature selection task by clustering algorithm requires large
number of groups of original features. It can be done by dividing
the input features with assigning user-specified thresholds. On the
other hand, proper consciousness is necessary for handling the
multiple grouping of features, otherwise, superiority might fall.

The aim of grouping in CAFS is to find relationships between
features so that the algorithm can select distinct and informative
features for building robust learning models. Correlation is one of
the most common and useful statistics that describes the degree of
relationship between two variables. A number of criteria have been
proposed in statistics to estimate correlation. In this work, CAFS uses
the best known Pearson product–moment correlation coefficient to
measure correlation between different features of a given training
set. The correlation coefficient rij between two features i and j is

rij ¼

P
pðxi�xiÞðxj�xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

pðxi�xiÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

pðxj�xjÞ
2

qr ð4Þ

where xi and xj are the value of features i and j, respectively. The
variables xi and xj represent the mean values of xi and xj, averaged
over p examples. If the features i and j are completely correlated, i.e.,
exact linear dependency exist, then rij would be 1 or �1. If i and j are
completely uncorrelated then rij would be 0. After computing the
correlation coefficient for all possible combinations of features, CAFS
computes the correlation of each feature and arranges features in
descending order. The correlation, Cori, of any feature i is

Cori ¼

PN
j ¼ 1

rij

�� ��
N�1

if ia j ð5Þ

where N is the number of features used in representing a given
dataset. Finally, CAFS creates two groups. One group contains the
first N/2 features and we call it similar (S) group, while the other
group contains the remaining N/2 features and we call it as dissimilar

(D) group. The first feature in the S group and the last feature in the
D are the most and least correlated features in the dataset.

3.2. Termination of NN training

Since CAFS adds features and hidden neurons one by one
during the training process of a NN, the training error would
reduce as the training process progresses. However, the objective
of CAFS is to improve generalization ability of the NN. This means
the training error may not be a right choice to be used for
terminating the training process of the NN. Generally, a separate
dataset, called the validation set, is widely used for termination. It
is assumed that the validation error gives an unbiased estimate
because the validation data are not used for modifying the
weights of the NN.

In order to achieve good generalization ability, CAFS uses
validation error in its termination criterion. This criterion is very
simple and straightforward. CAFS measures validation error after
every t epochs of training, called strip. It terminates training when
the validation error increases by a predefined amount (l) for
T successive times, which are measured at the end of each of
T successive strips [36]. Since the validation increases not only
once but T successive times, it can be assumed that such increases
indicate the beginning of the final over fitting not just the
intermittent. The termination criterion can be expressed as

Eðtþ iÞ�EðtÞ4l, i¼ 1, 2, . . ., T ð6Þ

where t and T are positive integer number specified by the user.

Our algorithm, CAFS, tests the termination criterion after every
t epochs of training and stops training when the condition
described by Eq. (6) is satisfied. On the other hand, if the condition
is not satisfied even though the required number of features and
hidden neurons has already been added to the NN then CAFS tests
the CA of NN on validation set for some t epochs according to
Eq. (3). If it does not increase significantly, then the training is
stopped automatically. In this work, the value of T is chosen as 3.

3.3. Feature addition and selection

The proposed CAFS uses a straightforward criterion for
deciding when to add a feature to an existing NN. It employs a
simple criterion for such additions. This criterion decides the
addition of features based on their CA on the validation set. The
reason for using the validation data also here is to emphasis on
selecting salient features for achieving good generalization. The
CA can be calculated according to Eq. (3) and the corresponding
feature addition criterion can be described as

CAðtþtÞ4CAðtÞ, t¼ t, 2t, 3t, . . .: ð7Þ

Our CAFS tests the feature addition criterion after every
t epochs and adds one feature to the feature subset if the
criterion is satisfied. The most important point in the feature
addition process is the selection so that the added features can
improve accuracy of classifiers. As we have already seen, CAFS has
divided the original features into S and D groups based on their
correlation. The main philosophy of CAFS is to find distinct and
informative features to reduce redundancy in learning. To achieve
this goal, CAFS puts emphasis on the features of the D group
because they are less correlated than those of the S group. The
way CAFS selects features from two groups in every feature
addition step can be described as follows.

The proposed algorithm first adds the most distinct (i.e., least
correlated) feature from the available features in the D group and
then trains the network for a certain number of epochs. It considers
the addition of a feature successful, when such an addition
increases accuracy of the network on the validation set. CAFS
attempts to add the second most distinct feature from the D group
and this process repeats until the D group is empty. For further
addition, CAFS adds features from the S group in the same manner.
Such a selection process is called here as the ‘‘regular selection’’.

In course of regular selection, when adding a feature from the
D group fails to improve accuracy of the network, CAFS tries to
improve accuracy by increasing the network processing power.
The proposed algorithm, therefore, adds a hidden neuron to the
existing network architecture and trains the modified architec-
ture for a certain number of t epochs. If the network accuracy
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does not improve yet, the added feature is considered irrelevant
and CAFS restores the previous network. To improve accuracy of
the network, CAFS adds the most distinct feature that is available
in the S group and trains the network for a certain number of
epochs. On the other hand, since the addition of a feature from the
D group does not improve accuracy, it is reasonable to think that
the distinct nature of features is not sufficient and the network
may need some general information about a given learning
problem. To achieve this objective, CAFS adds a feature from the
S group that maintains more correlation than any feature from the
D group. The feature from the S group therefore can be considered
as the source of providing general information about the problem.
It should be kept in mind that when the addition of a feature from
the S group is found successful, CAFS adds the next feature from
the D group because the proposed technique emphasis on the
distinct nature of features. On the other hand, if the addition of
the feature from the S group is found unsuccessful, it is assumed
that the network still requires the distinct informative features
about the dataset. Thus CAFS adds the next feature from the
D group with the aim of improving accuracy of the network. We
call such a selection process here as the ‘‘irregular selection’’. In
order to complete the FS process, CAFS proceeds by following the
regular selection and irregular selection strategies simultaneously
until all elements of the S and D groups are empty.
3.4. Computational complexity

Rigorous analysis of computational complexity helps to under-
stand the actual computational cost of an algorithm. As Kudo and
Sklansky [17] showed such an analysis in the form of big-O notation,
we are inspired to compute the computational cost of our CAFS. The
following few paragraphs present the computational complexity of
CAFS to show that the inclusion of different techniques does not
increase computational complexity of training NNs.
(i).
 Correlation computation: In this work, we use Pearson

product–moment correlation coefficient technique to compute
correlation using Eq. (5). If the total features of a given
learning problem is N, the cost of computing correlation is
O(N2

� Pt), where Pt denotes the number of examples in the
training set. It is important here to note that this cost
requires only once, i.e., before starting the training process
of an NN.
(ii).
 Partial training: We use standard BP [41] for training. Each
epochs of BP takes O(W) computations for training one
example. Here, W is the number of weights in the current
NN. Thus training all examples in the training set for
t epochs needs O(t� Pt�W) computations.
(iii).
 Termination criterion: The termination criterion employed
in CAFS for stopping training of the NN uses both training
and validation errors. Since the training error is computed
as a part of the training process, the termination criterion
takes O(Pv�W) computations, where Pv denotes the
number of examples in the validation set. Since PvoPt,
O(Pv�W)oO(t� Pt�W).
(iv).
 Further training: Our CAFS uses Eq. (2) to check whether
further training for the added feature is necessary. The
evaluation of Eq. (2) takes a constant computation O(1),
since the error values used in Eq. (2) have already evaluated
during training.
(v).
 Contribution computation: CAFS computes the contribution
of the added feature using Eq. (3). This computation takes
O(Pv) operations, which is less than O(t� Pt�W).
(vi).
 Feature addition criterion: CAFS uses Eq. (7) for determining
whether a feature is to be added. Since CAFS evaluates the
accuracy of the validation set in the previous step, the
evaluation of Eq. (7) involving such accuracy requires
constant computation O(1).
(vii).
 Adding a feature: This operation takes O(h) computations for
initializing the connection weights of the newly added
feature, where h is number of hidden neurons in the current
network and O(h)5O(t� Pt�W).
(viii).
 Adding a hidden neuron: The computational cost for adding
a hidden neuron is O(N1+C) for initializing its connection
weights, where N1 is the number of added input features
and C is the number neurons in the output layer. It is also
noted that O(N1+C)oO(t� Pt�W).
All the above mentioned computation is done for a partial training
consisting of t epochs. In general, CAFS needs several, say M,
such partial trainings. Thus the total computational cost of
CAFS for training a total of T epochs (T¼t�M) is O(N2

� Pt)+
O(t�M� Pt�W). However, in practice, the first term, i.e., N2

� Pt is
much less than the second one. Hence the total computational cost
CAFS is O(t�M� Pt�W), which is same for training a fixed network
architecture using BP [41]. It is clear that the incorporation of several
techniques in CAFS does not increase its computational cost.
4. Experimental studies

This section presents CAFS’s performance on eight well-known
benchmark classification datasets. The datasets that have been
used to evaluate the performance of CAFS are diabetes, breast
cancer, glass, vehicle, hepatitis, horse colic, ionosphere, and splice
junction. Detailed descriptions of these datasets are available at
UCI machine learning repository. The characteristics of the datasets
and their partitions are summarized in Table 1, which shows a
considerable diversity in the number of examples, features, and
classes among datasets. The above mentioned datasets were used
widely in many previous studies, and they represent some of the
most challenging datasets in the NN and machine learning [36,48].
Experimental details, results, the roles of architecture deter-
mination and grouping of features in CAFS and finally the compa-
risons with other works are described in this context.

4.1. Experimental setup

In this study, we follow the benchmarking methodology and
suggestions in doing experiments. All datasets were partitioned
into three sets: a training set, a validation set and a testing set.
The number of examples in these sets is shown in the Table 1. The
training and testing sets were used to train NNs and to evaluate
the classification accuracy of trained NNs, respectively. The
validation set was used to stop the training process of CAFS. It
has been known that the experimental results may vary
significantly for different partitions of the same data collection,
even when the number of examples in each set is the same [36]. It
is necessary to know precise specification of the partition in order
to replicate an experiment or conduct fair comparisons. For all
datasets, the first P1 examples were used for the training set,
the following P2 examples for the validation set, and the final
P3 examples for the testing set. It should be kept in mind that such
partitions do not represent the optimal one in practice.

We preprocessed the datasets found from UCI database by
rescaling input attribute values between 0 and 1 with a linear
function. The outputs were encoded by the 1-of-c representation
of c classes. The most commonly used winner-takes-all method
was used for selecting the NN output. One bias neuron with a
fixed input of 1 was used for the hidden and output layers.
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The hidden and output neuron functions were defined by the
logistic sigmoid function f(x)¼1/(1+exp(�x)).

There are some parameters in CAFS which need to be specified
by the user. These are described as follows. The initial connection
weights for an NN were randomly chosen in the range between
�1.0 and 1.0. The learning rate and momentum term for training
of NN were chosen as 0.1–0.15 and 0.8–0.9, respectively. The
number of partial training epochs (t) of NN was chosen between
5 and 70. The training error threshold value (e) for diabetes, cancer,
glass, vehicle, hepatitis, horse, ionosphere, and splice datasets was
set to 0.003, 0.0001, 0.13, 0.04, 0.035, 0.001, 0.008, and 0.02,
respectively. In addition, the validation error threshold value (l) for
diabetes, glass, vehicle, and ionosphere was set to 0.0 while 0.001,
0.0045, 0.02, and 0.0008 were set for cancer, hepatitis, horse, and
splice datasets, respectively. The initial weight values, learning
rate, and momentum term are the parameters of the well known
BP algorithm [41]. According to the suggestions of many previous
studies [8,15,16,36] and after some preliminary runs these values
were set. They were not meant to be optimal. We conducted two
sets of experiments to investigate the essence of FS. In one set, we
Table 1
Characteristics and partitions of different benchmark classification datasets.

Dataset Number of

Features Output

classes

Training

examples

Validation

examples

Testing

examples

Diabetes 8 2 384 192 192

Cancer 9 2 349 175 175

Glass 9 6 108 53 53

Vehicle 18 4 424 211 211

Hepatitis 19 2 77 39 39

Horse 21 2 172 86 86

Ionosphere 34 2 175 88 88

Splice 60 3 1584 793 793

Table 2
Performance of CAFS for different classifications datasets.

Dataset CAFS No. of feature No. of HN

Mean SD Mean

Diabetes Without FS 8.00 0.00 2.90

With FS 5.80 0.90 1.53

Cancer Without FS 9.00 0.00 2.50

With FS 6.33 0.47 1.36

Glass Without FS 9.00 0.00 3.06

With FS 4.73 0.81 1.70

Vehicle Without FS 18.0 0.00 1.80

With FS 2.70 0.64 1.30

Hepatitis Without FS 19.0 0.00 1.20

With FS 2.06 0.35 1.03

Horse Without FS 21.0 0.00 3.10

With FS 8.10 1.16 2.60

Ionosphere Without FS 34.0 0.00 1.30

With FS 6.73 1.93 1.76

Splice Without FS 60.0 0.00 3.50

With FS 4.26 1.61 1.80

The results were averaged over 30 independent runs. Here SD and HN refer to standar
used CAFS that selects salient feature subset and hidden neurons
during the learning process of a given dataset. We call this set of
experiment as CAFS with FS. In the other set, the FS part of CAFS
was not used. We call this set of experiment as CAFS without FS.

4.2. Experimental results

Tables 2 and 3 show the results of CAFS over 30 independent runs
on eight classification datasets and Fig. 3 shows FS and architecture
determination process for the glass dataset. The classification
accuracy (CA) in Table 2 refers to the percentage of exact
classifications produced by trained NNs on the testing set of a
classification dataset. The average run time, i.e., CPU time (Table 3) for
each dataset includes the time taken for computing the correlation of
each feature, training the NN with adding features and hidden
neurons, and computing contribution of added features. The following
observations can be made from Tables 2 and 3 and Fig. 3:
(i).
s

d dev
It can be observed that CAFS was able to select a smaller
number of features for solving different datasets. For example,
CAFS selected on average 5.80 features from a set of 8 features
in solving the diabetes dataset. It also selected on average 4.26
features from a set of 60 features in solving the splice dataset.
In fact, CAFS selected a very small number of features for
datasets with more features. The feature reduction in such
datasets was several orders of magnitude (Table 2).
(ii).
 The positive effect of FS is evident on the hidden neurons of
NNs. For example, NNs produced by CAFS for the cancer dataset
had on average 1.36 hidden neurons, while those produced by
CAFS without FS had on average 2.50 hidden neurons. However,
CAFS with FS took a smaller number of hidden neurons for
solving all the datasets except only ionosphere. This is reason-
able in the sense that the reduction of feature may sometime
make a problem harder to solve, thereby an NN may require
more hidden neurons. Since we do not know in advance
whether the reduction of features would make a problem
No. of connections Class. acc. (%)

SD Mean SD Mean SD

0.94 32.00 9.43 75.95 0.95

0.71 15.46 7.26 76.18 1.32

0.67 30.50 7.37 98.17 0.30

0.54 14.36 4.62 98.76 0.70

1.65 40.73 18.17 74.02 6.65

0.64 18.50 4.86 76.91 2.26

0.90 41.00 18.18 72.68 4.55

0.52 11.30 3.31 74.56 0.76

0.47 28.20 9.99 69.57 5.32

0.17 7.26 1.43 79.40 0.46

1.46 74.30 33.77 84.10 1.95

0.98 29.76 11.86 83.41 3.65

0.93 49.80 33.70 95.56 1.76

0.84 19.20 10.12 96.55 1.82

1.66 221.0 103.4 74.84 2.55

0.83 16.46 9.02 77.78 3.43

iation and hidden neurons, respectively.



Table 3
Average run time for different datasets over 30 independent runs.

Datasets Diabetes Cancer Glass Vehicle Hepatitis Horse Ionosphere Splice

Time (min:s) 0:25.76 0:17.24 0:22.13 0:6.97 0:2.35 2:08 0:11.91 33:43

Fig. 3. Training process of CAFS for the glass dataset: (a) training error,

(b) classification accuracy on validation set, (c) the feature addition process, and

(d) the hidden neuron addition process.
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harder, it is very difficult to decide the number of hidden
neurons in NNs for solving given datasets. One solution to this
dataset is the automatic determination of hidden neurons
during the FS process, which is adopted in our proposed CAFS.
(iii).
 It can be seen that CAFS with FS produced compact NN
architectures for solving all eight datasets we used in this
work. For example, NNs produced by CAFS with FS for the
hepatitis dataset had on average 7.26 connections, while that
produced by CAFS without FS had on average 28.20
connections. The reduction of network architecture is several
orders of magnitude for most of the datasets (Table 2). The
positive effect of compact architectures is clearly visible on
the classification accuracy of produced NNs. For example, for
the glass dataset, the average CA of NN produced by CAFS
with FS was 76.91%, while it was 74.02% for the NN produced
by CAFS without FS. The only exception is the horse dataset
where CAFS without FS showed better accuracy than CAFS
with FS. It is well known that compact NN architectures are
beneficial for achieving good classification accuracy.
(iv).
 It can be seen that the average run time for all datasets is less
or slightly more than 1 min in most of the datasets (Table 3).
For the splice dataset, CAFS, however, took on average about
33 min which is much larger than other datasets. This is
natural because the splice dataset consists of a large number
features and examples (Table 1).
(v).
 It can be seen that training error on training set converged
up to a certain limit as the training process progresses
(Fig. 3(a)). However, there are some instances where the
training error goes up. This is due to the addition of some
irrelevant features and unnecessary hidden neurons that
hamper the classification accuracy of the validation set or
keep similar (Fig. 3(b)). Therefore, CAFS deletes such
irrelevant features (Fig. 3(c)) with corresponding unneces-
sary hidden neurons (Fig. 3(d)) to generate a compact and
salient feature subset.
In order to understand the essence of selected features, we
measured information gain [29] and the frequency of features.
The information gain IG(P, Ni) of a feature Ni relative to a
collection of examples P is defined as

IGðP,NiÞ � EntropyðPÞ�
X

sAValuesðNiÞ

Ps

P
EntropyðPsÞ, ð8Þ

where Values(Ni) is the set of all possible values for the feature
Ni, and Ps is the subset of P for which Ni has value s, i.e.,
Ps¼(pAP9Ni(p)¼s). It should be noted that Ps is the number of
sub-examples for a particular value of s among the total number
of examples P of the given dataset. The frequency of a feature Ni

can be defined as

fr¼
H

R
ð9Þ

where R is the total number of simulation runs and H is the
number of times a particular feature is selected in all runs. Table 4
shows that information gain and frequency of features for
diabetes, cancer, and glass datasets. It can be seen in Table 4
that CAFS selected features 1, 2, 6, 7, and 8 of the diabetes dataset
vary frequently. This is why the frequency of selection for these



Table 4
Frequency (fr) of the features selected by CAFS and their information gain (IG) for diabetes, cancer, and glass datasets.

Dataset Feature number

1 2 3 4 5 6 7 8 9

Diabetes fr 0.63 1.0 0.37 0.37 0.50 0.93 1.00 1.00 –

IG 0.06 0.37 0.09 0.15 0.32 0.48 0.76 0.19 –

Cancer fr 1.00 0.30 0.00 1.00 1.00 1.00 0.03 1.00 1.00

IG 0.43 0.65 0.63 0.45 0.5 0.52 0.54 0.46 0.2

Glass fr 0.33 0.03 1.00 0.80 0.10 0.67 0.80 0.00 1.00

IG 2.1 1.93 1.46 1.77 1.95 1.34 1.91 0.51 0.42

Table 5
Effect of the architecture determination and grouping of features on the

classification accuracy of CAFS for different classification datasets.

Dataset Classification accuracy (%)

CAFS with fixed

architecture

CAFS without

grouping

CAFS

Mean SD Mean SD Mean SD
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features is one or nearly one. It can be seen that the information
gain of features 2, 6, and 7 was high, while that of features 1 and 8
was low. These results indicate that CAFS can select features that
contain good amount of information. It should be kept in mind
that the salient features selected by CAFS cannot match
completely with respect to the information gain. This is
reasonable in the sense that information gain is a statistical
procedure, while CAFS selects features during learning based on
their performance for different experimental conditions.
Diabetes 71.04 3.84 73.50 3.27 76.18 1.32

Cancer 98.39 0.78 96.83 1.08 98.76 0.70

Glass 75.47 3.08 74.08 4.46 76.91 2.26

Vehicle 70.85 5.70 74.31 1.81 74.56 0.76

Hepatitis 74.51 1.62 72.19 4.97 79.40 0.46

Horse 82.67 3.96 84.61 4.44 83.41 3.65

Ionosphere 94.62 2.70 89.50 11.70 96.55 1.82

Splice 72.74 1.93 81.22 3.77 77.78 3.43
4.3. Effect of architecture determination

The results presented in Table 2 show that the essence of using
FS and architecture determination in the same learning process. It
is, however, not clear the effects of architecture determination in
the whole system of CAFS. To observe such effects, we conducted
a new set of experiments. The setup of these experiments was
exactly the same as those described previously. The only
difference was that CAFS did not determine here network
architectures during the FS process. Rather, CAFS used fixed sized
network architectures like conventional approaches. It is noted
that CAFS used 15 hidden neurons individually for diabetes,
cancer, glass, vehicle, hepatitis, and horse datasets while 20 and
25 hidden neurons were used in ionosphere and splice datasets,
respectively.

Table 5 shows the average results of our new experiments over
30 independent runs. The positive effect of determining network
architecture during the FS process is clearly visible from these
results. For example, for the vehicle dataset, the classification
accuracies of CAFS without architecture determination and CAFS
were 70.85% and 74.56%, respectively. The similar results can be
found for the other datasets as well. t-test was used here to
determine whether the performance difference between CAFS and
CAFS without architecture determination is statistically significant
or not. It was found that CAFS was significantly better than CAFS
without architecture determination at 95% confidence level for the
all datasets except cancer, hepatitis, and horse dataset.
4.4. Effect of grouping of features

The essence of using FS in CAFS can be seen in Table 2, but the
effect of grouping in the FS process of CAFS is not clear. Therefore,
a new set of experiments has been carried out to observe such
effects. The setup of these experiments was exactly the same as
those described before. The only difference was that CAFS did not
divide the original feature set into two groups before training.
Rather, CAFS kept the features in the same group as the original
feature set and selected features one by one randomly as the
conventional forward FS approach.
Table 5 also shows the average results of our new experiments
over 30 independent runs. The positive effect of grouping of
features can clearly be understood from these results.
For example, for the ionosphere dataset, the classification accuracy
of CAFS with and without grouping of features was 96.55% and
89.50%, respectively. A similar classification improvement for CAFS
with grouping of features was also observed for the other datasets
except horse and splice. The performance of CAFS was also found
very consistent, i.e., low standard deviation (SD), under different
experimental set-ups. Furthermore, t-test shows that the classifi-
cation accuracy of CAFS with grouping was significantly better than
that of CAFS without grouping at 95% confidence level for the all
datasets, except the vehicle, horse, and splice datasets.
4.5. Comparison with other works

The obtained results of CAFS on several benchmark classifica-
tion datasets have been compared here with the results of
different FS algorithms. Table 6 shows the results of CAFS and
seven other algorithms, i.e., neural network feature selector
(NNFS) [42], MLP-based FS method (MLPFS) [8], incremental
approach to contribution-based FS (ICFS) [9], artificial neural net
input gain measurement approximation (ANNIGMA) [12], hybrid
genetic algorithm for FS (HGAFS) [13], genetic programming for
FS (GPFS) [27], and automatic discoverer of higher-order
correlations (ADHOC) [40]. We used two parameters for
comparisons. They are the number of selected features and
classification accuracy.

The aforementioned eight FS techniques represent a wide
range of FS techniques. The five FS techniques, i.e., CAFS, NNFS,
MLPFS, ANNIGMA, and ICFS use NNs as classifiers. In the
remaining three techniques, GPFS and ADHOC use decision trees
as classifiers, while HGAFS uses support vector machine. An



Table 6
Comparison among CAFS, NNFS [42], ICFS [9], MLPFS [8], ANNIGMA [12], HGAFS [13], GPFS [27], and ADHOC [40] for the diabetes, cancer, glass, vehicle, and ionosphere

datasets. ‘‘–’’ means not available.

Dataset CAFS NNFS ICFS MLPFS ANNIGMA HGAFS GPFS ADHOC

Diabetes No. of features 5.80 2.03 2.50 – 5.20 – – 3.00

Class. acc. (%) 76.18 74.30 78.79 – 77.80 – – 71.20

Cancer No. of features 6.33 2.70 5.00 8.00 5.80 – 2.23 –

Class. acc. (%) 98.76 94.10 98.25 89.40 96.5 – 96.84 –

Glass No. of features 4.73 – 4.50 8.00 – 5.00 – 4.00

Class. acc. (%) 76.91 – 65.19 44.10 – 65.51 – 70.50

Vehicle No. of features 2.70 – – 13.00 – 11.00 5.37 7.00

Class. acc. (%) 74.56 – – 74.60 – 76.36 78.45 69.6

Ionosphere No. of features 6.73 – – 32.00 9.00 6.00 – –

Class. acc. (%) 96.55 – – 90.60 90.20 92.76 – –
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important component of any FS technique is the searching
strategy used for finding a set of salient features. The NNFS,
ANNIGMA and MLPFS use a backward selection strategy in finding
salient features, while CAFS and ICFS use a forward selection
strategy. The ADHOC and HGAFS use a global search strategy
genetic algorithm in finding salient features, while GPFS uses
genetic programming, a variant of genetic algorithm. The NNFS
uses training set, validation set and testing set, while ANNIGMA,
ICFS, and ADHOC use only the training set and testing set. The two
algorithms MLPFS and GPFS use 10-fold cross-validation. A similar
method, i.e., k-fold cross-validation is used in HGAFS where
k refers to the value ranging 2–10 depending on the given dataset
scale. The above-mentioned algorithms not only use different
data partitions but also employ different number of independent
runs in measuring average performances. For example, CAFS and
ANNIGMA used 30 runs; ICFS used 20 runs; MLPFS, GPFS, and
ADHOC used 10 runs. It is important to note that no more
information regarding the number of runs was mentioned in the
literature of NNFS and HGAFS.

It can be seen that NNs produced by CAFS achieved the best
classification accuracy among all other algorithms for three out of
five datasets. For the remaining two datasets, CAFS achieved one
as a third best and the next one as the fourth best, while ICFS and
GPFS achieved the best classification accuracy for one dataset
each. In terms of features, CAFS selected the smallest number of
features for one out of five datasets and the second smallest for
one dataset, i.e., next to HGAFS.

It can importantly be said that FS improves the performance of
classifiers by ignoring the irrelevant features from the original feature
set. An important task in such a process is to capture necessary
information in selecting salient features; otherwise, the performance
of classifiers might be degraded. For example, for the diabetes dataset,
NNFS selected the smallest feature subset consisting of 2.03 features
but it achieved lower CA. On the other hand, CAFS selected a bulky
feature subset that provides better CA compared to others for the
cancer dataset. In fact, the results presented for other algorithms
presented in Table 6 indicate that the smallest or largest feature
subset does not guarantee the best or worst CA.

Some good aspects of CAFS amplify the performances which can
be summarized as follows. First, in course of FS process CAFS
automatically determines the architecture of the NN classifier,
while the other approaches (e.g., ICFS, MLPFS, and ANNIGMA) use
bulky and randomly selected NN architectures. It has been known
that the automatic selection of NN architecture is beneficial for
achieving good classification accuracy [14,15,18,19,23,39,48].
Second, CAFS utilizes correlation information in order to capture
general and special characteristics of a given dataset, so that a
classifier can learn all necessary information about the dataset. The
proposed CAFS therefore selects features from both S and D groups.
This kind of technique is not used in other FS techniques; thereby
they may select redundant features or may not capture necessary
information to learn a dataset in a better way. Third, CAFS uses
mainly three user-specified parameters: number of training epochs
t, training error threshold e, and validation error threshold l. In
contrast, other FS approaches use many user-specified parameters.

One drawback of CAFS is that it uses a sequential search
strategy in selecting salient features and hidden neurons of NNs.
Although the sequential search strategy is simple to implement
and fast in producing results, it ignores the completeness and thus
there are risks in losing optimal feature subsets [21] and hidden
neurons. This may be the main reason that the performance of
CAFS in terms of selected features and classification accuracy was
not better in some cases.
5. Conclusions

A desirable aspect of using NNs is their good classification
accuracies, which is greatly dependent not only on the selected
features of datasets but also on the architecture of NNs. Although
a number of techniques exist to select salient features for solving
datasets efficiently, most of them do not pay attention on the
architecture of NNs. They use a predefined, fixed and manually
determined NN architectures. This manual determination scheme
may hurt classification accuracy of NNs. In this paper, we propose
a new a wrapper based FS technique, CAFS, using NNs. The idea
behind CAFS is to put emphasis on the simultaneous selection of
input features and NN architectures automatically. The proposed
CAFS divides the input features into two groups based on their
correlation. It then uses a constructive approach to select a set of
distinct features from two groups and to determine the archi-
tecture of NNs. The reason for using the two groups and
constructive approach is to reduce the number of user-specified
parameters in the whole system of CAFS.

The extensive experiments reported in this paper have been
carried out to evaluate the essence of using different schemes of
CAFS and to compare CAFS with other FS techniques. Eight
benchmark classification datasets were used in our experimental
studies. The positive effect of using the constructive approach and
grouping of features based on correlation is observed (Table 5).
The comparison of CAFS with other FS techniques showed that
CAFS was better or comparable. Since CAFS uses a sequential
approach in selecting a set of salient features and the number of
hidden neurons for NN classifiers, it may suffer from the so-called
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nesting effect [33]. This is because the features once selected
cannot be discarded in the scheme of CAFS. One way to avoid this
effect is to incorporate a global search procedure such as genetic
algorithms, evolutionary programming, and genetic program-
ming. The main challenges in such incorporation are the use of a
minimum number of user-specified parameters in the whole
scheme of CAFS. This could be an interesting future research topic.
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