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Vibration analysis of a circular disk tensioned
by rolling using finite element method

F. Kuratani, S. Yano

Summary The paper proposes a method in ®nite element analysis for estimating natural
frequencies of a disk tensioned by rolling, without the use of eigenvalue analysis. The natural
frequencies of a disk vary when the localized plastic deformation caused by roll-tensioning
induces residual stresses. Tensioning is used for improving the dynamic stability of circular
saws; the optimal condition of rolling can be predicted from natural frequency characteristics.
In the proposed method, the natural frequencies after rolling are easily estimated from the
mode shapes of the disk before rolling and the stress distribution after rolling. The method is
based on ideas similar to thermal stress and sensitivity analysis rather than on eigenvalue
analysis. The effectiveness of the method is shown by comparing the natural frequency char-
acteristics obtained by this method with those by eigenvalue analysis.
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1
Introduction
Circular saws are widely used for cutting and forming wood. Since large transverse displace-
ments by resonance occasionally occur in cutting works, a process called ``tensioning has been
traditionally used for improving the dynamic stability. It is reported in [1, 2] that the resonance
is caused by the reduction of natural frequencies of the sawblade due to the thermal com-
pressive stress induced by cutting heat in the peripheral region. It is desired, therefore, that the
tensile stress should be previously induced by tensioning, so that the natural frequency con-
cerning critical speed instability would be enhanced. Especially, the process using localized
plastic deformation by rollers, called roll-tensioning, and the automation of this process are
expected to improve the performance similarly to the skill and experience of craftsmen.

Some studies on roll-tensioning have been done in [3], where residual stresses of disks
induced by roll-tensioning were analyzed and compared with experimental results. In [4, 5]
natural frequencies of a disk tensioned by rollers as well as residual stresses were obtained.
These studies contained theoretical analyses for uniform thin disks, however, in practical
sawblades, there are some holes against heat, slots and tips at the periphery. It is not easy to
develop analytical theories for such sawblades. Contrary to this, sawblades with slots and tips
can be easily modeled within the FEM (Finite Element Method). In order to determine the
optimal rolling condition, it is important to grasp their relation to natural frequency charac-
teristics. The use of eigenvalue analysis for that purpose is accompanied by much computa-
tional effort.

In this paper, we propose a method using FEM for easy estimates of natural frequencies of
disks tensioned by rolling, which is based on an idea similar to the sensitivity analysis. The
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variation in stiffness due to rolling is analyzed in a way of temperature loading as shown in [3],
instead of the static stress analysis. Natural frequency characteristics for various rolling and
clamping positions by a ¯ange are obtained by the proposed method, and it is shown that there
exists an optimal position of rolling. The effectiveness of the proposed method is ascertained by
comparison with results obtained by eigenvalue analysis. The role of tensioning is assessed
from the change in natural frequencies and mode shapes.

2
Tensioning of circular sawblades by rollers
In the tensioning process, a sawblade is compressed within a certain annular contact zone
between two opposing rollers as shown in Fig. 1. The sawblade is plastically deformed in the
rolling region as shown in Fig. 2, [3], and there occur tensile residual stresses in the inner and
outer regions. Especially at the outer edge, the tensile residual stresses become large. The
tensile stresses overcome thermal compressive stresses induced during cutting, and result in
enhancing natural frequencies. Generally, it is known that the critical speed instability in
rotating disks occurs when the backward-traveling wave frequency is equal to zero, [3, 4]. In
the case of circular saws, the thermal stresses also affect the stability, and it is necessary to
enhance natural frequencies by tensioning.

As reported in [6], vibration characteristics are improved or not improved according to the
stress distribution within the sawblade induced by rolling, even if there occur residual tensile
stresses at the periphery. The residual stress distribution is affected by roller path position,
roller load, number of rolling processes and so on. The roller path position greatly affects the
residual stress distribution, and it is an important problem to determine the optimal rolling
position, [7]. However, it is dif®cult to determine the optimal position from stress analysis
alone. We investigate the optimal rolling position by vibration analysis, using FEM and a
method for estimating the change in natural frequencies.

3
Analysis of the problem
We explain the method using FEM for analyzing and estimating vibration characteristics of
thin circular disks tensioned by rolling.

3.1
Equation of motion
In general, the equation of motion of a disk modeled by FEM is described by

�M�f�ug � �K�fug � ff g ; �1�

Fig. 1. Roll tensioning of a circular
sawblade

Fig. 2. Typical distribution of residual
stresses induced by the plastic deforma-
tion at rolling
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where [M] and [K] are mass and stiffness matrices; {u} and {f} are de¯ection and external force
vectors, respectively. Natural frequencies of disks can be changed by roll-tensioning, which
induces a certain pattern of residual stresses by the localized plastic deformation. The mass
distribution is not changed due to rolling, but the stiffness characteristics vary greatly. Let the
variation in stiffness from [K] be [K(r)]. Then, the equation of motion of a disk after rolling is
described by

�M�f�~ug � ��K� � �K�r���f~ug � f f g ; �2�

where f~ug denotes the de¯ection of a disk after rolling. In the case of shell elements and plane
stress, the elements of the matrix [K(r)] are given by

�K�r�i � �
Z

V

�Bd�T

rx

sxy ry sym.
0 0 rx

0 0 sxy ry

0 0 0 0 rx

0 0 0 0 sxy ry

26666664

37777775�Bd�dV ; �3�

where rx and ry are normal stresses in the x and y directions in the element coordinates and sxy

is the shearing stress; [Bd] is a matrix whose components consist of derivatives of de¯ection.
The symbol T means the transpose of a matrix, and V is the volume.

3.2
Stress analysis for [K(r)]
In order to calculate [K(r)], we must know the stress distribution of a disk after rolling. For
obtaining the stress distribution, we adopt a similar thermal stress analysis as in Ref. [3],
without directly analyzing plastic deformation by rolling. Namely, a temperature distribution
load, which is considered to induce the same stress distribution as that by plastic deformation,
is used for the analysis. It is assumed that the plastic deformation induced by rolling has the
maximum value at the center of rolling region and decreases toward the peripheral region
rapidly and continuously. We use the temperature distribution of the Gaussian function type

T�r� � A exp ÿ�r ÿ rc�2
2s2

( )
; �4�

where T(r) is the temperature at the radius r, A is the maximum temperature, rc is the radius
at the center of the temperature distribution, and s is the standard deviation related to the
width of the distribution determined from the roller load, the number and the width of rolling.
The distribution of 95% is included within the extent of 4s that is considered to be an ap-
propriate rolling width, [3].

This analytical method has the advantage of less computational effort than a method directly
analyzing the plastic deformation. The effectiveness of this method is shown by the comparison
of both analytical results and measurements concerning residual stresses,[3], and natural
frequencies, [4], of tensioned disks.

3.3
Vibration analysis of the variation in natural frequencies
Natural frequencies of a disk with a stress distribution can be obtained from the following
eigenvalue problem, after calculating [K(r)] by the thermal stress analysis,

��K� � �K�r�� ÿ ~x2�M��f ~/g � f0g ; �5�

where ~x and f ~/g with the upper tilde � denote the natural frequency and the mode shape
vector of a disk after rolling, respectively. To obtain natural frequency curves for the center
radius rc, it is necessary to determine the optimal rolling radius. A large amount of eigenvalue
analysis is required for that.
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We propose, therefore, a method for easy prediction of natural frequencies after rolling
similar to the sensitivity analysis rather than the eigenvalue analysis. Let xi and f/ig be the i-th
natural angular frequency and the mode shape vector of a disk before rolling, respectively.
These satisfy the following relation:

��K� ÿ x2
i �M��f/ig � f0g : �6�

Considering rc as a design variable, the partial derivative of Eq. (6) with respect to rc produces

��K� ÿ x2
i �M��

of/ig
orc

� o�K�
orc
ÿ x2

i

o�M�
orc

� �
f/ig ÿ

ox2
i

orc
�M�f/ig � f0g : �7�

Multiplying Eq. (7) by f/igT from the left side, and considering the symmetry of [M] and [K],
we obtain the sensitivity of the eigenvalues (squared frequencies) for rc

ox2
i

orc
�
f/igT o�K�

orc
ÿ x2

i
o�M�
orc

� �
f/ig

f/igT �M�f/ig
: �8�

Since for a disk after rolling the matrix [M] is not changed, but [K] is changed by [K(r)], the
variation in the i-th eigenvalue for arbitrary rc is given by

Dx2
i �rc� � f/igT�K�r��f/ig

f/igT�M�f/ig
: �9�

Equation (9) means that once the mode vector before rolling f/ig is obtained, natural fre-
quencies after rolling can be easily predicted without eigenvalue analysis.

Equation (9) can also be derived in another way. We assume that the mode vector after
rolling f ~/g is described by superposition of mode vectors before rolling as

f ~/g � �U�fng � �f/1g � � � f/ng�fng ; �10�
where fng is the modal coordinate vector. Substituting Eq. (10) into Eq. (5) and multiplying
the resulting equation by �U�T from the left side, we obtain

�dkc � �U�T �K�r���U� ÿ ~x2dmc�fng � f0g; �11�
dmc � �U�T�M��U�; dkc � �U�T�K��U� :
Here dmc and dkc are diagonal matrices whose elements consist of modal masses mi (i = 1; . . . ; n)
and modal stiffnesses ki, respectively. If �U�T �K�r���U� also becomes a diagonal matrix, the left-
hand side of Eq. (11) becomes a system of uncoupled equations, whose i-th equation is expressed
by

�ki � f/igT�K�r��f/ig ÿ ~x2
i mi�ni � 0 : �12�

Then, looking for natural frequencies after rolling we obtain

~x2
i � x2

i �
f/igT�K�r��f/ig

mi
: �13�

It is found from mi � f/igT �M�f/ig that the second term in the right-hand side of Eq. (13),
which means the variation from x2

i ��ki=mi� before rolling, is equal to Eq. (9) and the natural
frequency characteristic after rolling can be predicted from Eq. (9).

Next, we consider the prediction accuracy of Eq. (9) or (13) in relation to diagonal
�U�T �K�r���U�. Let [F] and �~U� be the modal matrix before and after rolling, respectively. The
matrix �U�T �K�r���U� becomes a diagonal matrix when vibration modes before and after rolling
are not changed regardless of stress distribution, that it, �~U� � �U� holds. This condition is
introduced as follows: since vibration modes after rolling have orthogonality with respect to the
stiffness matrix [K] + [K(r)], the relation
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�~U�T��K� � �K�r����~U� � d~kc ; �14�

holds. If �~U� � �U� holds, the following relation is also satis®ed:

dkc � �U�T �K�r���U� � d~kc ; �15�
Since dkc and d~kc are diagonal matrices, �U�T �K�r���U� must also be diagonal under the
condition that �~U� � �U�. Therefore, it is expected that the prediction of natural frequencies
by Eq. (9) has high accuracy when there is little difference between mode shapes before and
after rolling, because then �U�T �K�r���U� is approximately diagonal. Later we calculate and
ascertain whether or not

�K̂�r�� � �U�T �K�r���U� ; �16�
is approximately a diagonal matrix. Concerning the condition that �~U� � �U�, we ascertain by
checking the orthogonality of the following matrix with respect to mass matrix:

�m̂� � �~U�T �M��U� : �17�
When [F] and �~U� are normalized so that modal masses become unity, �m̂� will be approxi-
mately a unit matrix.

4
Numerical examples and considerations
First, we obtain the variation in natural frequencies for various rc by eigenvalue analysis and
show that there exists an optimal rolling radius. Next, we compare the variation in natural
frequencies by Eq. (9) with that by eigenvalue analysis. A sawblade is modeled by a circular
disk of the outer diameter 255 mm, as shown in Fig. 3. The disk is analyzed by FEM (the
software ANSYS) using four-node plane shell elements.

4.1
Stress distribution
We consider the case where rolling is performed around the center radius 65 mm. Figure 4
shows the temperature distribution T(r) which is assumed to induce an equivalent stress
distribution to that by rolling. Parameters of Eq. (4) are rc = 65 mm, A = 50°C and s = 5.

Figure 5 shows a stress distribution within the disk induced by temperature distribution
loading shown in Fig. 4, where only 1/12 part of the disk is drawn. It is found that large
circumferential compressive stresses are recognized within the region of T(r) loading, and there
appear circumferential tensile stresses.

4.2
Natural frequency characteristics by eigenvalue analysis
We investigate the effect rc in T(r) on natural frequencies after rolling ~xi. Even if the tem-
perature loading is the same as in Fig. 4, ~xi varies with rc and there exists the optimal rolling
position for enhancing ~xi. Since a practical circular sawblade is clamped by a ¯ange, the
clamping radius rf affects the optimal rolling position, and then ~xi curves are calculated for rc

and rf. The disk for analysis is assumed to be perfectly ®xed in the region of r � rf . The outer
edge is free. Regarding the relationship between tensioning and the number of nodal diameters
of vibration modes Nd, it is reported in [6] that compressive stresses during cutting make
natural frequencies of Nd � 0 and 1 increase, but those of Nd � 2 decrease. Therefore, it
becomes necessary to enhance natural frequencies of Nd � 2 beforehand, and appropriate
positions for rolling should be selected so that natural frequencies of Nd � 2 become large.

Figure 6 shows ~xi curves of Nd � 0 to 4 calculated by FEM when rc is varied from 25 mm to
105 mm by 10 mm, with keeping the temperature distribution in Fig. 4. Figure 6a±c present the
results for rf = 25 mm, 55 mm and 75 mm, respectively. For reference, natural frequencies
before rolling xi are marked at rc = 0. It is seen that the tendency of curves of Nd = 2 to 4
differs from that of Nd = 0 and 1. For example, in Fig. 6a, natural frequencies of Nd = 2 to 4
increase with rc until they reach the maximum values near rc = 65 mm; then they decrease.
They become smaller than xi for rc near the outer edge, and the effect of rolling is not
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recognized. Contrary to this, natural frequencies of Nd = 0 and 1 reach the minimum values
near rc = 45 mm; then they increase. In Fig. 6b and c, curves of Nd = 2 are not much changed
for rc. Comparing Fig. 6a±c, such rc, for which ~xi of Nd = 3 and 4 becomes maximal, also
increases for larger rf. It is found that the optimal rolling position should be determined from
~xi curves for rc and rf.

Next, we consider the optimal rolling position from the viewpoint of sensitivity of natural
frequencies in relation to the difference of tendency between curves of Nd = 3 and 4 and curves
of Nd = 0 and 1. The reason why natural frequencies are varied due to rolling is that stiffness
characteristics within the disk are locally changed by the stress distribution. In order to in-
vestigate the effect of stiffness characteristics on the change in natural frequencies, a disk is

Fig. 3. FEM model for the disk

Fig. 4. Temperature distribution as-
sumed for residual stresses induced by
rolling

Fig. 5. Stress distribution in the disk
subjected to the temperature distri-
bution shown in Fig. 4
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analyzed whose stiffness for the annular zone of the width 10 mm centered at the radius ra is
enhanced by 1%. The relationship between the sensitivity of natural frequencies and ra is
shown in Fig. 7 for rf = 25 mm. The sensitivity for Nd = 0 and 1 monotonously decreases
toward the outer edge, whereas the sensitivity for Nd = 3 and 4 substantially increases. Re-
member the results by T(r) loading as shown in Fig. 5. Large compressive stresses occur near rc,
and tensile stresses occur in the inner and outer regions, where the absolute values of com-
pressive stresses are quite larger than tensile stresses. When rc is selected to be near the outer
edge, natural frequencies of Nd = 3 and 4 decrease due to the compressive stresses as shown in
Fig. 6a because the sensitivity for Nd = 3 and 4 is high.

Fig. 6a±c. Relation between natural frequencies and rc. a rf � 25 mm, b rf � 55 mm, c rf � 75 mm
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4.3
Verification of estimation of natural frequencies by Eq. (9)
Figure 8 shows values of Dxi � ~xi ÿ xi estimated by Eq. (9) for rc = 25 mm to 105 mm by
10 mm. Figures 8a±c present the results for rf � 25 mm, 55 mm and 75 mm, respectively,
which correspond to Fig. 6a±c by eigenvalue analysis. Comparing them we observe, that natural
frequencies of Nd = 2 to 4 become maximal for such values of rc which well coincide with each
other except for Nd = 2 in Fig. 8c. We compare values for Nd = 4 for rf � 25 mm, at which
large variation takes place. In Fig. 8a, Dx = 70.0 Hz at rc = 65 mm, whereas in Fig. 6a
Dx = 67.6 Hz from ~x � 502:1 Hz and x = 434.5 Hz. The difference between both values is
2.4 Hz and small enough. Accordingly, it is possible to predict the variation in natural fre-
quencies by Eq. (9) with high accuracy.

Next, we check two matrices of Eqs. (16) and (17) concerning the accuracy of Eq. (9).

Table 1 shows the components of �K̂�r�� with respect to Nd = 0 to 4 for rc = 65 mm and
rf � 25 mm. Most of nondiagonal components are zero. There appear nonzero components
between Nd = 0 and 3 and between Nd = 1 and 4, but these values are quite smaller than the

diagonal components. Therefore, �K̂�r�� is approximately diagonal, and it is considered that
Eq. (9) has a high accuracy. Table 2 shows components of �m̂� in Eq. (17) for rf � 25 mm and
rc � 65 mm. All the nondiagonal components are zero, and the diagonal ones, except for
Nd = 3, become unity. Since �m̂� is approximately a unit matrix, the condition that �~U� � �U�
also holds. Accordingly, it is concluded that natural frequencies are greatly varied due to roll-
tensioning, but the mode shapes change little.

5
Conclusions
A method in ®nite element analysis for estimating natural frequencies of disks tensioned by
rolling without the use of eigenvalue analysis has been proposed. Instead of static stress
analysis, the temperature distribution load assumed for plastic deformation was used for cal-
culating the variation in stiffness due to rolling. The summary of results is as follows:
(1) It is ascertained from veri®cation by Eqs. (16) and (17) and comparison with results by

eigenvalue analysis that the change in natural frequencies can be predicted from Eq. (9)

Fig. 7. Sensitivity of natural frequency
with respect to stiffness (rf � 25 mm)

Table 1. Matrix �K̂�r�� for rc = 65 mm and rf = 25 mm

Nd 0 1 2 3 4

0 )1.70 ´ 105 0.00 0.00 0.00 )6.26
1 0.00 )3.41 ´ 104 0.00 )4.35 0.00
2 0.00 0.00 3.82 ´ 105 0.00 0.00
3 0.00 )4.35 0.00 1.16 ´ 106 0.00
4 )6.26 0.00 0.00 0.00 2.40 ´ 106
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Fig. 8a±c. Variation in natural frequencies for rc by Eq. (9). a rf � 25 mm, b rf � 55 mm, c rf � 75 mm

Table 2. Matrix �m̂� for rc = 65 mm and rf = 25 mm

Nd 0 1 2 3 4

0 1.00 0.00 0.00 0.00 0.00
1 0.00 1.00 0.00 0.00 0.00
2 0.00 0.00 1.00 0.00 0.00
3 0.00 0.00 0.00 0.93 0.00
4 0.00 0.00 0.00 0.00 1.00

mode shape
before
rolling

mode shape
after rolling
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with the advantage of less computational effort and high accuracy. It is found that natural
frequencies are greatly varied due to rolling, but the mode shapes change little.

(2) For certain rolling radii rc and clamping radii rf , natural frequencies of Nd � 2 become
smaller than those before rolling, and the purpose of tensioning cannot be achieved.
Therefore, it is necessary to determine the optimal rolling position from natural frequency
characteristics calculated for various rc and rf .
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