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Abstract 

This report is concerned with theoretical demonstration of the spontaneous 

emulsification which has been observed in a soft contact of nitrobenzene with water 

without surfactant (Electrochem. Commn. 11 (2009) 239). The demonstration is based 

on the model of spherical oil droplets with any size in equilibrium. The droplets are 

composed of the smallest droplets, the total number of which is given. An assembly of 

small droplets has larger surface energy than that of large ones because the surface 

energy is proportional to the surface area. The former has larger configurational entropy 

than the latter because the number of small droplets is bigger than that of the large ones. 

Since the free energy is determined by the competition between the surface energy and 

the entropy, it is not clear which assembly has lower free energy. This question was 

solved numerically here by statistical mechanics calculation of the size distributions, 

which contained only a parameter of the surface energy. The results of the computation 

at small number of droplets were used for deriving approximate equations for extremely 

large number of droplets. The size distribution was localized both to the smallest and the 

largest droplets. The diameter of the largest droplet was estimated from the dynamics in 

which coalescence by diffusion of droplets is disturbed by gravitational convection. The 

size then predicted was of the order of micrometer, being close to experimental values. 

                                                 
*
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1. Introduction 

 

    Emulsions, being an assembly of oil droplets dispersed in aqueous phase or of 

aqueous droplets in oil phase, are formed temporarily when the two phases are mixed 

vigorously [1]. As they are left quiescent, they are gradually separated into the two 

phases depending on several conditions [2], or sometimes look to keep their state for a 

long time in the presence of surfactant, exemplified by milk or mayonnaise. Emulsions 

have been regarded as unstable, kinetic systems [ 3 ]. Instability mechanisms of 

emulsions have been categorized [3] to be Ostwald ripening [ 4-10] caused by 

combination of diffusion and formation of droplets, sedimentation or floatation called 

creaming [11-16] which is caused by difference between the density of droplets and that 

of continuous phase, aggregation or flocculation [17-21], and coalescence [22-32]. 

Measurements of time-varying emulsions can be categorized into a change in drop size 

distribution and a change in location of droplets by transport [7]. The former involves 

Ostwald ripening and coalescence, while the latter does creaming and aggregation. 

Physicochemical concern has paid to the former, especially Ostwald ripening, because it 

represents properties more specific to materials themselves rather than laboratory 

variables such as cell size and hydrodynamic conditions. Although coalescence is often 

considered as the most important destabilization mechanism, it depends strongly on a 

choice of stabilizers [10]. 

    Emulsions are generated spontaneously when surface tension at oil|water interfaces 

becomes small by addition of surfactants [33-36]. Even without adding surfactants, 

spontaneous emulsification has sometimes been found near the interface at quiescent 
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contact of oil with water [33-35,37]. The self-emulsification implies that emulsions 

should be more stable than the two-phase separation, and hence the emulsions would be 

better regarded as a quasi-equilibrium system than a dynamic one. 

     Implicitly time-independent emulsification has been interpreted theoretically by 

Lifshitz and Slyozov [38] and independently by Wagner [39]. The theory predicts the 

distribution of spherical droplets in radius r, which is normalized with the critical radius, 

rc, so that p = r /rc:  

      (1) 

 

This has been derived on the assumption that the free energy of pressure in droplets  

enhanced by the curvature is compensated with an increase in concentration of the 

species in the continuous phase. This assumption includes ambiguity in that the 

enhanced free energy can also be compensated with change in surface energy, in an 

amount of adsorbed surfactants, or impurities such as ions. The other question is that the 

distribution in Eq. (1) is independent of surface energy at oil|water interfaces. Stability 

of emulsions has been discussed thermodynamically in the context of the interfacial 

energy, the ratio of concentrations of surfactant [40] and of variation of interfacial 

tensions with curvature of droplets [41]. Therefore, the assumptions used for the 

derivation of Eq. (1) cannot be realized for actual emulsions.  

     When interfacial tension is small, two phases are mixed well to make droplets of 

emulsions small. It is said that spontaneous emulsification would need negative 

interfacial tension [36]. This is not always true because the free energy is decreased not 

only by the interfacial tension but also by dispersion entropy [42,43]. The entropic 

contribution is enhanced with an increase in the number of droplets. The smaller are the 

droplets at a given value of the total volume of the dispersed compound, the larger is the 

entropy. As a simple example, we consider three smallest droplets, denoted by 1, in a 

continuous phase, which can coalesce to duplicate droplet, 2, and triplet one, 3. Possible 
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combinations are (1, 1, 1), (1, 2) and (3). Since the sum of the interfacial area of the 

three droplets of (1, 1, 1), 34r
2
, is larger than the area of (3), 4(3

1/3
r

2
), the surface 

energy of the former is larger than that of the latter by 3/3
2/3

. Therefore, the former is 

less stable than the latter in the view of inner energy. On the other hand, configurational 

entropy of the former is larger than that of the latter. A question is which has the lowest 

free energy of the three. In order to answer this question, it is necessary to compare each 

free energy of all the possible combinations. No discussion on configurational entropy 

has yet been performed for coexistence of various sized droplets, to my knowledge. 

Mixing entropy has been taken into account on the assumptions of the ideal mixing and 

of common size of droplets [42].  

     In this report, all the combinations of droplets are listed, from which their 

probabilities of taking the states are evaluated as a function of the surface tension and 

the number of the smallest droplets. The probabilities correspond to size distribution of 

droplets in equilibrium. Approximate expressions for the size distribution are derived at 

practical values of the surface tension and extremely large values of the number droplets. 

The possible largest size is estimated kinetically on competition of diffusion with 

convection. 

 

2. Model 

    The present model is composed of oil droplets in aqueous phase. The droplets 

aggregate to large droplets or are decomposed into small ones to reach equilibrium 

among droplets. It is assumed that all the droplets are composed of N smallest 

elementary droplets, r1 in radius. The elementary droplet would be a hydrated oil 

molecule. We consider a technique of forming K (  N) large droplets from N 

elementary droplets. The technique is to analogize dividing N shelved books into K 

groups with K-1 tags. Each of K groups contains kn books such that the summation of kn 

is K and that the summation of nkn is N. There are 2
N-1

 ways of the arrangements, each 
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of which is numbered m. Examples for N = 4 are shown in Table 1. K and kn vary with 

arrangement, m, and hence they are expressed well as Km and kn,m. Then Km and N are 

given by 

 

 (2) 

 

   (3) 

 

Km k1,m k2,m k3,m k4,m arrangement m 

4 4 0 0 0  1 

3 2 1 0 0  2 

3 2 1 0 0  3 

3 2 1 0 0  4 

2 1 0 1 0  5 

2 0 2 0 0  6 

2 1 0 1 0  7 

1 0 0 0 1  8 

Table 1. Arrangements of four books (N = 4) with Km-1 bookmarks. 

 

     Letting the radius of a droplet made of n elementary droplets be rn, the 

equivalence of the volumes leads to rn
3
 = nr1

3
. By use of the surface energy density or 

the surface tension, , at the oil|water interface, the surface energy of the droplet rn in 

radius is given by 

   (4) 

 

By letting the chemical potential for the elementary droplet be, the chemical potential 

of a droplet with radius rn is given by 
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  (5) 

 

The inner energy of the m-th group in all the arrangements is given by 

 

 

(6) 

 

The probability of forming the m-th group is given by the Boltzmann distribution: 

 

 

 

 

                                      (7) 

 

where  = 1/kBT (kB: Boltzmann's constant), and the product of kn,m! means the 

duplication of kn,m groups. Each of 2
N-1

 groups can be independently formed. The total 

probability, equivalent to the partition function, is given by 

 

          (8) 

 

    Our aim is to obtain size distributions of droplets. The probability of finding 

n-droplets in the m-th group is given by 

 

 

n-Droplets are included in each m-th group by the number of kn,m. Thus the expected 

value of the number of the n-droplets for all the groups is expressed by 
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 (9) 

 

 

This is the average number of n-droplet, normalized by N. The dimensionless averaged 

volume occupied by n-droplets is expressed by  

 

                                               

(10) 

 

 

3. Computation 

 

     The size distribution, i.e., qn vs. n/N in Eq. (9), is a function of not only N and the 

reduced variable (r1
2) but also the auxiliary variables, kn,m. Values of kn,m vary so 

complicated with n, m and N through Eq. (3) that their analytical expression cannot be 

derived. We resorted to numerical techniques. We enumerated the repeated permutations 

by inserting Km tags into N-1 books in a computer memory, and counted the number of 

books (kn,m) between closest tags for a given m. The maximum of N was 17 because of 

limitations of the CPU time of a personal computer. We selected r1
2 = 7.210

-22
 J, 

which corresponds to the difference in the surface tensions between water and 

nitrobenzene,  = 0.03 N m
-1

 and a molecule with the diameter of water, 2r1 = 0.31 nm 

(= 18 cm
3
/610

23
)
1/3

. Then we have 4r1
2 = 2.2. This value can vary the exponential 

terms in Eq. (9) largely with kn,m and n because of exp(-4r1
2 ) = 0.10. We computed 

qn for N  17. 

     Figure 1 shows the dependence of the expected values of the number of 

n-droplets on n/N for some values of N. The smallest and the largest droplets are 
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preferentially formed at the cost of middle size droplets. This preference increased with 

an increase in N. For extremely large values of N, particle size would be localized both 

to the smallest (n = 1) and the largest (n = N) ones. Figure 2 shows variations of qn with 

n/N for several values of 4r1
2 at N = 17. For 4r1

2  0, most of droplets are small. 

In contrast, the population for 4r1
2 > 0.05 is occupied by the largest droplets. There 

are very few droplets with middle size for any value of 4r1
2. Figure 2 also shows the 

size-distribution (Eq. (1)) obtained by Lifshitz and Slyozov [38] and Wagner [39], 

where we used p = rn / rN = (n / N)
1/3

 on the assumption of rc = rN. This distribution is 

roughly close to the distributions at large values of 4r1
2 by Eq. (9), although the 

present concept is quite different from the assumptions in Eq. (1). 

 

 

 

 

 

 

 

 

 

Figure 1. Variations of expected values of forming n-droplets with n/N for N = (squares) 

8, (triangles) 12 and (circles) 17 at 4r1
2 = 2.22, computed from Eq. (9). The solid 

curve was obtained from approximation, Eq. (11) and (12) for N = 17. 
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Figure 2. Variations of expected values of the number of n-droplets with n/N for 4r1
2 

= (diamonds) 0.0, (open circles) 0.05 and (filled circles) 0.10 at N = 17, computed from 

Eq. (9). The solid curve was calculated from Eq. (1) when p = rn / rN = (n / N)
1/3

. 

 

 

     Figure 3 shows the distribution of volume of n-particles, calculated from Eq. (10) 

for some values of 4r1
2 at N = 17. The volume distribution for 4r1

2  0 is limited 

to small droplets, but not to the smallest one. The distribution for 4r1
2 > 0.05 is 

mainly composed of the largest particles. Attention should be paid to the equi-volume 

distribution at 4r1
2 = 0.05, where both the surface tension and the entropic 

dispersion contribute equivalently to the volume distribution. This value corresponds to 

r1
2 = 1.6410

-23
 J at 25

o
C or  = 0.0007 N m

-1
 for molar volume of water, 2r1 = 0.31 

nm. Since there is no report of typical liquid-liquid interfaces with surface tensions less 

than 0.0007 N m
-1

 [44], most emulsions should be composed of large droplets from the 

viewpoint of the volume fraction. Therefore removal of only largest droplets by filtering 

or centrifugation can decrease even small droplets efficiently. 
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Figure 3. Variations of the expected values of the volume of n-droplets with n/N for 

4r1
2 = (diamonds) 0.0, (open circles) 0.05 and (filled circles) 0.10 at N = 17. 

 

 

    Some combinations (not permutations) in each m are identical, for example kn,m = 

(2, 1, 0, 0) for m = 2, 3, 4 in Table 1. They cannot be distinguished each other in 

equilibrium, and have to be removed from Z. It may take extremely long time to 

recognize identical combinations in real emulsions because all the droplets have to 

collide with each other. Therefore Z including the identical combinations corresponds to 

quasi equilibrium. We tried to remove identical combinations in the computation, and 

compared qn of removing the identical combinations with that of including the 

combination in Fig. 4. Although the droplets in the quasi equilibrium (triangles) take the 

slightly smoother distribution that those in the true equilibrium (circles), the both 

distributions are close each other in shape. Consequently, there is no significant 

difference between the quasi equilibrium and true equilibrium in the view of the size 

distributions. 
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Figure 4. Variations of qn with n/N when identical combinations were included 

(triangles) and removed (circles) at 4r1
2 = 2.22 and N = 16. 

 

4. Approximations 

 

     Values of N are of the order of the Avogadro constant in conventional emulsions, 

and hence the distributions for N  17 do not represent real emulsions. Unfortunately, it 

was difficult for me to transform the summation of Eq. (9) into a closed analytical 

expression. Equation (9) for large values of N was evaluated approximately by selecting 

the significant terms of the summations in Z, i.e., smaller values of the summation of 

kn,mn
2/3

 in Eq. (9), for example, for Km = 0 (n = N) and Km = 1 (n = 1, N-1). The partition 

function at Km = 0 and 1except for N is approximated as 

 

           (11) 

 

Then approximations for qn are, depending on n, reduced to 

 

  (12) 
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The pre-exponential term "2" in Eq. (12) comes from symmetry of permutations. 

Equation (12) indicate that the variations of qn with n should be symmetric with respect 

to n = N/2 at an even number N. The variation of qn calculated from Eq. (12) for N = 17 

is shown in Fig. 1 as a solid curve. It is similar to the plot by the exact equation (circles 

in Fig. 1) although the valley was underestimated. Therefore the approximate equations 

are acceptable for values of n close to 1 or N. 

     The expression for Z' is still too complicated to see the dependence of qn on n/N 

clearly for an extremely large values N. Instead of investigating qn, we pay attention to 

qn/q1. Carrying out the Taylor expansion of (N-n)
2/3

 for 1 < n << N yield 

 

 (13) 

 

Figure 5 shows dependence of qn/q1 on n (close to unity) for several values of 4r1
2. 

This equation holds even for n close to N because of the symmetric distribution of qn/q1 

with respect to n = N/2. Droplet size is localized to the smallest and the largest for large 

values of 4r1
2. 
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Figure 5. Dependence of qn/q1 on n for extremely large values of N at 4r1
2/3 = (open 

circles) 0.2, (full circles) 0.5 and (triangles) 1, obtained from Eq. (13). 

 

     Volume concentration is more important than the number concentration in an 

analytical meaning. By combining Eq. (13) with Eq. (10), the volume concentration 

normalized by q1 is expressed approximately by  

 

  (14a) 

 (14b) 

 

Values of vn' at n close to N are much larger by N than those at n close to 1. Therefore 

the volume is mostly occupied by N-droplets. Since it may be slightly distributed, we 

obtain the domain of the preferential size distribution. The accumulated volume, which 

is the integration of the Eq. (14b) with respect to n from n to N is introduced to have the 

form: 

 

 

 

The integration was carried out by substitution of (N-)
3/2

 = x to yield 
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where  =4r1
2 and  = 4r1

2 (N - n)
3/2

. The above equation for large values of  

and N tends to VN/2 = (3/2)
1/2

v1
 -3/2

. The ratio becomes 

 (15) 

 

Figure 6 shows the variation of Vn/VN/2 with , which increases and reaches almost unity 

at  = 4. Most droplets are within the domain 4r1
2(N - n)

 2/3 
< 4, which corresponds 

to n N-12, n N-4 and n N-2 for  = 10, 20 and 30 mN m
-1

 at 2r1 = 0.31 nm and 25
o
C. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Variation of accumulated volume fraction with the dimensionless surface 

tension,  = 4r1
2 (N - n)

3/2
, calculated from Eq. (15). 
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5. Maximum droplets 

 

     The largest droplet would be ideally a single oil phase into which all the droplets 

coalesce after a huge number of collisions. It would take extremely long time to 

accomplish forming a single droplet. The thermally random dispersion of droplets for a 

long time is really subjected to external forces such as gravity by difference in densities, 

motion by evaporation from surfaces of emulsions, variations of surface tensions near a 

container wall, stirring by mechanical vibration, gradient of temperature, and electric 

field. The first three factors are inevitable against attaining equilibrium. They ought to 

hinder the coalescence so that droplets cannot grow further to take an equilibrium size. 

We consider here only the effect of gravity on the disturbance of equilibrium.  

     The model of estimating equilibrium size is a uniform distribution of k common 

sized droplets (radius: r) in a given volume of the emulsion, V. Since the volume 

fraction is given by vf = k(4/3)r
3
/V, the average distance between closest two droplets 

is expressed by  (V/k)
1/3

 = (4/3vf)
1/3

r. A condition of coalescence is to move a droplet 

to the closest neighboring droplets by the distance, (V/k)
1/3

- 2r, which is reduced to 

 

 (16) 

When the motion in this distance is due to diffusion for the period, td, the thickness of 

the diffusion layer, (Dtd)
1/2

, is equal to r. Applying the Stokes-Einstein equation to this 

equality yields 

 

 (17) 

where  is the viscosity of the emulsion.  

     The gravity causes sedimentation or buoyancy of droplets, depending on 

difference in densities,  between the droplet and the continuous phase. The gravity 

force is balanced with Stokes' friction force when the particle moves at velocity, v, i.e., 
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 (18) 

Sedimentation prevails over equilibrium process through coalescence for td > tg to make 

the droplet small. On the contrary, the former is inferior to the latter for td < tg to make 

the droplet large. The curves of Eq.(17) and (18) are illustrated as a function of r in Fig. 

7. The balanced radius is at the intersection, rm, given by 

 

 (19) 

This corresponds to the maximum droplet size, rN, in the previous section. Values of rm 

are 0.76 and 0.55 m for vf = 0.1 and 0.01, respectively. Experimentally controllable 

variables in Eq. (19) are  and vf. Variations of rm with vf are shown in Fig. 8 for some 

values of . Values of rm are less than 1 m for any practical value of  and vf.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Predicted maximum radius, rm, from competition between diffusion and 
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Figure 8. Variations of rm with vf for  = (a) 0.1, (b) 0.2, (c) 0.5 and (d) 1.0 g cm
-3

. 

 

 

 

     The assumptions used in the above derivation are summarized here.  

(i) Droplets with any size are in equilibrium by exchanging size through coalescence 

and decomposition. 

(ii) The surface tension is independent of droplet size or mutual solvation. The 

independence has been extensively used for estimating the Ostwald ripening [4-10] 

although small curvature may vary concentrations of droplets and surfactant by the 

Laplace pressure. 

(iii) Local fluctuation of the surface tension, as is noticed in color fluctuation on surface 

of soap bubbles, has been neglected.  

(iv) Estimation of td and tg was based on the mono-size distribution. This assumption 

corresponds to dependence of the quasi-equilibrium time on droplet size. 
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6. Conclusion 

      The partition function of assemblies of dispersed oil droplets with any diameter 

was derived as a function of the surface energy on the assumption that droplets were 

decomposed or coalesced under equilibrium. Size distribution was evaluated 

numerically for small values of N. The results were extended to deriving approximate 

equations for extremely large values of N. The size distribution of the number of 

droplets was localized both to the smallest and the largest droplets at conventional 

values of interfacial tensions. This result is consistent with the observation of water 

droplets in the aqueous solution, previously reported [37]. The volume distribution was 

concentrated only to the largest droplets. This is of analytical importance for removing 

droplets. 

     A qualitative reason for taking a large population at the largest droplet is the 

minimum of the interfacial energy, whereas that at the smallest droplets is the 

enhancement of entropy caused by a huge number of droplets. The both contributions to 

the free energy are cancelled each other at droplets with middle size at conventional 

values of surface tension. This variation makes the volume-distribution, given by Eq. 

(10), be the maximum at the largest droplet. 

     Large droplets are subject to external forces readily enough to be far from 

equilibrium because their small diffusion coefficients delays exchange of droplets. 

When diffusion is disturbed by gravitational motion, the coalescence is hindered, and 

the equilibrium conditions are not satisfied for actual suspensions. The competition of 

diffusion with the gravitational effect yielded the droplet size of the order of micrometer. 

This calculation supports the observation of droplets spontaneously generated near 

water|nitrobenzene interfaces . 

    This is a revisit of theoretical estimation of size distributions of emulsions. The 

present concept is useful not only for emulsion polymerization and size-control of 
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dispersed nanoparticles but also for electrochemically controlled ion transfer at oil|water 

interfaces. 
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