
LSH-RANSAC: An Incremental Scheme for
Scalable Localization

言語: English

出版者:

公開日: 2010-02-18

キーワード (Ja):

キーワード (En):

作成者: SAEKI, Kenichi, TANAKA, Kanji, UEDA, Takeshi

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/2432URL

LSH-RANSAC: An Incremental Scheme for Scalable Localization

Kenichi Saeki Kanji Tanaka Takeshi Ueda

Abstract— This paper addresses the problem of feature-
based robot localization in large-size environments. With recent
progress in SLAM techniques, it has become crucial for a robot
to estimate the self-position in real-time with respect to a large-
size map that can be incrementally build by other mapper
robots. Self-localization using large-size maps have been studied
in litelature, but most of them assume that a complete map
is given prior to the self-localization task. In this paper, we
present a novel scheme for robot localization as well as map
representation that can successfully work with large-size and
incremental maps. This work combines our two previous works
on incremental methods, iLSH and iRANSAC, for appearance-
based and position-based localization.

I. MOTIVATION

Self-localization is an important task for mobile robot
environments [1]–[3]. With recent progress in SLAM tech-
niques, it becomes possible for a robot to obtain and use
large-size environment maps that are incrementally built
by other mapper robots [4]. For instance, such an online
information sharing network attracts much interest in recent
years, for example, in the context of networked robots, sensor
networks as well as robot GIS. As a result, it has become
crucial for a robot to estimate the self-position in real-
time with respect to such incremental maps. An important
challenge is self-localization using large-size maps where
increasing number of self-position hypotheses as well as
perceptual aliasing becomes a serious problem [1], [5], [6].

In this paper, we study the self-localization problem from
a perspective of large-size and incremental maps. Self-
localization using large-size maps have been studied in
literature. However, most of them consider familiar or static
environments and rely on a batch assumption, where a
complete map is given a priori and fixed during the self-
localization task. In such a situation, one can build the
map structure in a batch manner using typical optimization
techniques. On the other hand, we consider more general
environments where one can update or incrementally build
the map even during the self-localization task. In such a
situation, typical batch algorithms are no longer relevant.
To deal with the problem, we will present a novel scheme
for self-localization as well as map representation that can
successfully work with large-size and incremental maps.

This work was partially supported by MECSST Grant in-Aid for Young
Scientists (B) (17700200, 19700192), by Suzuki Foundation Research Grant,
by Electro Mechanic Technology Advancing Foundation, and by TATEISI
Science And Technology Foundation.

K. Saeki and K. Tanaka are with Graduate School of Engineering, Fukui
University, Japan. T. Ueda is with Graduate School of Engineering, Kyushu
University, Japan. kanji@rc.his.u-fukui.ac.jp

II. INTRODUCTION AND RELATED WORK

Approaches to self-localization can be broadly classified
into appearance-based [6]–[8], position-based [1], [3], [9]
or the combination of both [10]–[12]. Appearance-based
approaches efficiently prune pose hypotheses by using an ap-
pearance database, which associates the appearance of an ob-
served landmark with its location. Position-based approaches
verify each hypothesis based on the geometric constraints
among observed landmarks. In large-size problems, both
approaches play important roles to deal with large number
of hypotheses and constraints.

In appearance-based localization, high dimensional fea-
tures (e.g. SIFT [13], spin image [14], shape context [15])
are used to represent appearance features. For instance, 120-
dim shape features from laser scanners are considered in this
paper’s experiments. To deal with the high-dimensionality,
database techniques (e.g. PCA with kd-tree [11], visual
vocabulary with inverted file and words statistics [8], vo-
cabulary with ANN and feature selection [6]) are usually
employed. From our perspective, a major inconvenience of
typical database techniques is their batch structure as well
as expensive pre-processing. On the other hand, we use hash
tables as a basis of map structure (”hash maps”). Unlike
other structures such as trees, a hash table is essentially
an incremental structure. In [16], we developed incremental
maps based on locality sensitive hashing (iLSH) [17].

In position-based localization, a difficulty is the com-
putational complexity which grows exponentially with the
number of landmarks. A solution to the difficulty is
RANSAC map-matching [1], whose objective is to find
reliable coordinate-transformation between a local map built
by the robot-self and the global map built by a mapper
robot. In [1], large-scale map-matching has been achieved
with purely position-based RANSAC by Neira, Tardós and
Castellanos [1]. In [18], map-matching has been robust even
when the ratio of outlier observations is high. From our
perspective, a major inconvenience of existing map-matching
is that they are essentially batch algorithms, assuming that
map features are fixed during the matching task. On the
other hand, we pose the self-localization as an incremental
map-matching problem. In [19], we proposed incremental
RANSAC (iRANSAC) scheme and found iRANSAC is ef-
fective even for incremental maps [19], [20].

In this paper, we combine the advantages of above two
methods, iLSH and iRANSAC, and develop a novel scheme
called LSH-RANSAC. The main contribution of the pro-
posed scheme is that it achieves self-localization with large-
size and fully incremental maps. We experiment the scheme

in large-size environments with over 10 mapper robots by
using radish datasets [21].

Self-localization has been a central research area in
robotics. It is difficult here to cover all the literature, in-
cluding pose tracking techniques using Kalman filters. We
review most relevant works in the following.

In position-based localization, another possible approach
is to generate and track multiple hypotheses of the robot
pose over time [3], [5], [9]–[12], [16], [19], [22]. Especially,
particle filter is a popular approach that has received consid-
erable attentions in recent years [10], [11], [22]. The methods
distribute a number of pose hypotheses covering the robot’s
environments, then track and evaluate the likelihood of each
hypothesis. In [16], we also developed a particle filter al-
gorithm combined with an appearance-based database. From
our perspective, a major drawback is that they consume a
significant amount of computational costs, in principle, linear
to the environment size. Scalable extension is an interesting
topic of on-going research [5].

In object recognition, the combination of LSH and
RANSAC also has been recently studied for large-size
problems [23]–[25]. There are important applications in-
cluding image retrieval [23], epipolar geometry [24] and
shape retrieval [25]. However, only a few use LSH as an
incremental database [26]. To our knowledge, incremental
extension of LSH-RANSAC as well as application to SLAM
& localization is novel.

In place recognition, visual dictionaries are recently used
to interpret a high-dimensional feature to a 1D visual word
[6]. However, such a dictionary is conditioned on a specific
feature type, parameter setting as well as training envi-
ronments. Naturally, there can be a risk of overfitting and
overgeneralization. Incremental building of vocabulary [27]
(e.g. k-means reclustering) is not a trivial problem [28], [29].
Our approach is rather similar with approaches in [30], [31]
for object recognition in that we directly discretize the feature
space without any dictionary.

In SLAM, localization using an incremental map is studied
in the context of loop closure. However, most of them rely
on prior knowledge (e.g. probability distribution) obtained
from typical pose-tracking in SLAM. Often, the robot pose is
simply represented as a 1D space of visited place ID instead
of the full pose space (e.g. 3D) considered in this paper.

In computer vision, RANSAC is a standard algorithm
for robust estimation [32]. To speed up for large problems,
a series of randomized RANSAC algorithms (rRANSAC)
as well as probabilistic variants and batch optimization of
rRANSAC [25] have been studied in recent years [24], [25],
[33]–[35]. The objective of most rRANSAC (e.g. Td,d test
[34]) is similar with original RANSAC in a sense that they
iterate the hypothesize-and-test until some reliable hypothe-
ses are found. On the other hand, preemptive RANSAC
(pRANSAC) proposed by Nister [35] deals with real-time
applications where the computation time is always limited
and typically constant. This property is appealing for real-
time problem of robot localization. Our iRANSAC is an
incremental extension of the pRANSAC scheme.

Fig. 1. Map matching problem. The objective is to estimate the coordinate-
transformation betweeen the local map built by the target robot and the
global map (a set of submaps) built by mapper robots.

III. MAP-MATCHING STRATEGIES

This section explains our basic strategies for the map-
matching problem in the RANSAC formulation. Let L denote
a local map. The map is built by the robot-self with its motion
measurements (e.g. odometry) and perceptual measurements
(e.g. laser scan) using map-building techniques such as
FastSLAM [36] as well as scan matching [37]. Let G denote
a global map. The global map is a set of R metrical submaps
G = {G1, · · · ,GR} built by R mapper robots and provided via
some information sharing network [4]. The maps represent
the configuration of landmarks or features in the individual
robots coordinates. Fig. 1 illustrates the relationships among
robots and maps. The objective of map-matching is to find
a reliable coordinate-transformation ψ (translation, rotation)
from the local map L to the global map G by which the two
maps maximally overlap.

A. RANSAC Map-Matching

The general RANSAC algorithm is described as follows.
U = {xi} denotes a set of N data-points. fm : S→ p denotes a
model function that computes the model parameters p from a
sample set S of data-points. c(p,x) denotes the score function
for a single data-point x with model parameter p, and takes
1 if x is an inlier to the model or 0 otherwise. The objective
is to find a ”best” model parameter p∗ (with its associated
cost value C∗) that should maximize the score function. The
RANSAC algorithm iterates the following steps until some
reliable hypotheses are found.

1) Select randomly a set Sk ⊂ U and compute a model
parameter hypothesis pk = fm(Sk).

2) Compute score Ck = ∑x∈U c(pk,x).
3) If Ck > C∗ then C∗←Ck, p∗← pk.
It is possible to directly apply the RANSAC algorithm

to a batch map-matching problem. In the setting, the above
parameters are interpretted as follows:
• N : the number of features on the local map L,
• x : a feature on the local map L,

• p : a transformation from the local map L to the global
map G,

• c(p,x) : the score function takes 1 if a feature point x
on the transformed map Lp matches a feature point on
the global map G or 0 otherwise. Here, Lp is the local
map transformed by p.

• fm : the model function generates a candidate transfor-
mation from the local map to a global map based on
some local matches.

B. pRANSAC Scheme

pRANSAC maintains the history H = {(p j,x j,C j)} of
every feature-hypothesis pair (p j,x j) scored so far and its
corresponding scoring result C j = c(p j,x j). It also employs
two user-defined functions, the order rule

(p,x) = fo(H) (1)

that decides which pair should be scored next based on the
history H of scoring results, and the preference rule

p∗ = fp(H) (2)

that decides which hypothesis is best based on H. Suppose
we have been given a set of features

U = {xi} (3)

and already generated a set of hypotheses

V = {p j}. (4)

pRANSAC iterates the following steps until the computation
time is exhausted.

1) Select a feature-hypothesis pair (pk,xk)= fo(H) and
compute the score c(pk,xk).

2) Update the history H based on the scoring results.
If necessary, it outputs the best hypothesis p∗ = fp(H).

C. Breadth-First Rule

The performance of pRANSAC depends largely on the
order rule fo(H). The order rule proposed by Nister, called
preemptive breadth-first rule has some appealing properties
[35]. Firstly, its computation time is bounded by a constant
proportional to the size of hypothesis set. Secondly, it com-
pares the hypotheses against each other, rather than against
some absolute quality measure. Thirdly, its characteristics
have been studied analytically using an inlier-outlier model.
In the following, we briefly summarize the preemption rule.

To save the computation time, it employs a decreasing
preemption function

fb(i), (5)

and limits the number of hypotheses to be considered (active
hypotheses). It randomly permutes the sequence of feature
ids 1, · · · ,N as well as randomly permutes the sequence of
hypotheses ids 1, · · · ,M. It initializes the score C j = 0 for
every hypothesis j(1 ≤ j ≤ M). It performs the following
steps for each iteration i until the computation time is
exhausted.

Fig. 2. Incremental map-matching system. The appearance database, the
global map and the local map can be incrementally updated by robots during
the map-matching task.

1) Compute the scores C j←C j + (̧p j,xi) for each hypoth-
esis j(1≤ j ≤ fb(i)).

2) Reorder the hypotheses ids 1, · · · ,M so that the range
1, · · · , fb(i) contains the best fb(i) active hypotheses
according to the accumulated score C j.

The preemption function fb(i) is in the form:

fb(i) = ⌊M2−⌊
i
B ⌋⌋, (6)

where ⌊·⌋ denotes downward truncation, and B is a preset
constant (”block size” [35]). Note that the size of hypothesis
set reduces to the half every Bth iteration. This results in an
approximately O(BM) time cost.

IV. INCREMENTAL LSH-RANSAC SCHEME

So far, we considered batch map-matching task where the
feature and the hypothesis sets are fixed. This is not the case
for the real-time task of robot localization [3], [5], [12]. To
see this, we briefly describe a typical localization task in the
following.

During the localization task, the localization process (i.e.
the map-matching process) continues to search for answer
by incorporating the latest sensor measurements. The local-
ization process is initialized only once at the beginning of
the localization task at the start viewpoint and starts with
empty sets. There are two types of events by which the sets
are modified:

1) When new local features arrive,
- the local map is modified with each feature,
- the appearance database is queried for each feature,
- new hypotheses are generated from the retrieval result,
- the hypothesis set is modified with the new hypotheses,

2) When new features arrive in a global map,
- the global map is modified with each feature,
- the appearance database is updated with each feature.
Considering the above, we need to take two points into

account. Firstly, the problem size becomes intractable even
by the efficient pRANSAC with O(BM) complexity as the

number M of hypotheses grows constantly in an unbounded
fashion. To deal with this, we adapt an appearance-based
technique to prune a potentially large number of new hy-
potheses into a tractable size (e.g. 1,000). In particular, we
will use the incremental LSH (iLSH) technique to realize
an incremental appearance database that can be built from
scratch and incrementally updated by mapper robots. Sec-
ondly, the assumption of fixed feature and hypothesis sets is
violated as the local and the global maps can be incremen-
tally updated. To deal with this, we adapt our incremental
RANSAC (iRANSAC) [19] scheme to incorporate the new
features in local and global maps during the map-matching
task. In particular, we will develop an incremental extension
of the preemptive breadth-first rule so that the number of
surviving hypotheses (or active hypotheses) are pruned into
a tractable size in a preemptive manner.

In the following, we explain the methods to implement the
above idea in more detail (Fig.2).

A. Appearance Database

The appearance database employs an approximate near
neighbor technique called locality sensitive hashing (LSH)
[38]. LSH uses a continuous representation of data-point,
and searches points that are near from the query point in
l2 space. The E2LSH algorithm addresses an (R,cR)-Near
Neighbor problem, where the goal is to report a point within
distance cR from a query q, if there is a database point
within distance R from q [39]. E2LSH is O(nρ(c) logn) time
complexity where ρ(c) < 1 is an approximation factor. In
some applications, LSH is shown to be significantly faster
than other fast ANN algorithms [39].

Unlike other structures such as tree, structures based on
hash tables have strong advantages in incremental settings
where insertion/deletion of database elements is frequently
required. In the pre-processing of E2LSH, L hash functions
with K dimensions are probabilistically generated using a
p-stable distribution (e.g. the normal distribution). When a
new feature arrives in global maps, the database is updated
in the following procedure:
• memorizes the real-world location of the feature,
• hashes the feature using the E2LSH function and ac-

cesses the corresponding bins,
• associates the real-world location of the feature to the

accessed bins.
In our LSH system, the high-dimensional feature itself is
not memorized on the database and also not used in the
retrieval task. This is a simple modification but quite effective
to significantly reduce the space and time costs of a database
[39]. In [16], we have applied this technique to Monte
Carlo localization and reported its performance. Note that
the above process for updating the database (learning and
dimensionality reduction) can be performed in a completely
incremental manner.

We also adapt the hash maps [16]. The real-world loca-
tions of features are commonly memorized on grid maps. In
large-size environments, naive implementation of a grid map
consumes a significant amount of memory, in proportional to

the number of grid cells. To deal with this, we adapt universal
hashing (UH) technique that maps the real-world space (e.g.
2D or 3D space) onto 1D hash table. The size of hash table
should be determined so that the probability of collision is
sufficiently low taking into account the spatial density of
features. Moreover, there is a technique to incrementally
extend a hash table when the current hash table is found
to be too small. In consequence, the space cost of such an
approximated grid map is less than 3% of the original grid
map in our experimental settings.

B. Map-Matching Process

The iRANSAC algorithm is summarized as follows. At
the beginning of the task, it initializes the feature and the
hypothesis sets to empty sets U ← ϕ , V ← ϕ . During the
task, it iterates the following steps:

1) When new features Unew arrive, modify the feature set

U ←Unew∪U, (7)

2) When new hypotheses V new arrive, modify the hypoth-
esis set

V ←V new∪V, (8)

3) Perform the steps 1,2 of pRANSAC.
The modified breadth-first rule performs the following

steps for each iteration i:
1) Perform the step 1,2 of the iRANSAC algorithm,
2) Perform the step 1,2 of the original breadth-first rule.

The preemption function fb(i) is in the form:

fb(i) =
{

m(i−1)/2 (i mod B = 0)
m(i−1) (i mod B ̸= 0) , (9)

where m(i) denotes the number of hypotheses at the end of
i-th iteration.

The preference rule is slightly modified. In the incremental
setting, the number N j of scored can be very different among
individual hypotheses. Younger hypotheses tend to be scored
smaller times than older ones. For fair comparison, we use
a normalized measure

C j/N j (10)

(in place of the original measure C j) to compare among the
hypotheses. In addition, a young hypothesis whose score
is yet smaller than a threshold Co is not considered as a
candidate of the best hypothesis.

The modified breadth-first rule degenerates to the original
breadth-first rule in a special case where the hypothesis set
is fixed. It is known that the performance of rRANSAC
is maximized when a randomly permutated sequence is
used [35]. However, it is no longer possible to permute
the hypothesis set beforehand in the incremental setting.
The process of random permutation of a set U (or V) can
be implemented as a O(|Unew|) process of inserting each
element in Unew at a random point in U because the U has
been already permuted.

(a) (b)

(c)

(d)

Fig. 3. Experimental environments. (a),(b),(c) The target robot’s building.
The solid and the dotted curves respectively are the trajectories of the target
robot and the mapper robot. (d) The individual buildings including the target
robot’s building.

V. EXPERIMENTS

We evaluate our approach through robot localization ex-
periments using radish datasets [21] (Fig. 3). For each
dataset, there are sequences of motion and perception mea-
surements. Each motion measurement indicates the robot’s
movement from one viewpoint to the next and represented
in a forward-sideward-rotate (FSR) format in our system.
Each perception measurement is a single scan by the front
laser scanner and represented by a set of 180 data-points in
a robot centric coordinate. In the case of laser data-points,
shape feature has been considered an appropriate type of
appearance feature [23]. In particular, we use a shape feature
called generalized shape context (GSC) [15] that is found to
be stable and useful for robot localization applications in
our previous works [16], [20]. We employ a simple scan
matching algorithm as a SLAM method. The number of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06 4e+06 6e+06 8e+06

co
st

[m
s]

feature id

albert
fr079
fr101

(a)

 0

 1

 2

 3

 4

 5

 0 100000 200000

co
st

[m
s]

feature id

albert
fr079
fr101

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

co
st

[m
s]

viewpoint id

albert
fr079
fr101

(c)

Fig. 4. Time costs of each process. (a) Database updating process (per
feature). (b) Database retrieval process (per feature). (c) RANSAC map-
matching process (per feature-hypothesis pair).

new features and new hypotheses are set to |Unew|= 10 and
|V new|= 1,000. The block size used for preemption is simply
set as B = |Unew|. The parameters for LSH are set empirically
to K = 30, L = 20.

We consider a typical scenario where R mapper robots
are exploring R different buildings. There is no a priori
knowledge on the buildings as well as on which buildings the
individual robots are exploring. Each submap Gr (1≤ r≤ R)
is initialized to an empty map at the beginning of the map-
building task, then incrementally built by each mapper robot
during the task. Every time a novel scan arrives, a set
of appearance features are extracted from the scan points.
Then, the grid maps as well as the appearance database are
updated with the extracted features. Fig. 4(a) shows the time
consumed by this updating process per feature for different
size global maps for three different environments ”albert”,
”fr079” and ”fr101”. It can be seen that the required time
is independent of the map size and bounded by a constant.
The direct implementation of a submap consumes around
2.1×107 cells in the 3D xyθ pose space and the global map
consumes around 3.4× 108 cells in total. Our system can
translate the grid map into a UH hash table of size 1×107

bins. The size of UH table is less than 3% of the original grid
map. The LSH table consumed by the LSH database is at
most 7.2×106 bins in this experiment. It can be concluded
that our structure is completely incremental and scales to
large-size maps.

Fig. 5. Estimated trajectory. The blue curve indicates the estimated
viewpoints (i.e. the top-ranked hypotheses). Each red line segment connects
each hypothesis with the corresponding base feature point.

(a) (b)

(c) (d)

Fig. 6. Evolution of map-matching as we get more viewpoints from
the target robot. (a),(b),(c),(d) The top-ranked hypotheses respectively at
viewpoint #66, #292, #891 and #999. The green points are features in global
maps. The blue and the red points respectively are inlier and outlier local
features. While not yet correct in Figs. (a)(b)(c), the map matching is finally
correct in Fig (d).

Fig. 5, 6 illustrate localization results. At the beginning
of the localization task, the local map is initialized to an
empty map. Every time a novel scan arrives, the local map is
updated with the scan points. Then, a set of appearance fea-
tures are extracted from the scan points. Then, the appearance
database is retrieved using each feature as a key. Then, new
hypotheses are generated based on the retrieval results. Fig.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 200 400 600 800 1000

ra
nk

viewpoint id

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

ra
te

viewpoint id

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 200 400 600 800 1000

ra
nk

viewpoint id

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

ra
te

viewpoint id

Fig. 7. Scoring results. The curves in the left and the right figures are
the rank and the rate of individual hypotheses. For clarity, only those
hypotheses that are top-ranked at least once are shown. The blue and the
green curves in the bottom figures respectively indicate the correct and the
wrong hypotheses.

4(b) shows that the time consumed by the retrieval process is
actually bounded by a constant as explained in the previous
section. Fig. 6(a),(b) and Fig. 6(c) show two typical cases
where the map-matching is not yet successful. The first case
is that the local map is yet not informative and as a result, all
the matching results are not reliable. The second case is that
most part of the local map is originated from unknown region
which is not described in the global map and as a result, all
the matching results are caused by false matches (e.g. the
local map is matched with a wrong building). Fig. 6(d) shows
that the matching finally becomes successful. This is because
of that the local map now becomes informative and reliable
so that much part of the map is originated from known region
in the global map. Fig. 4(c) shows that the time consumed
by the map-matching process is also bounded by a constant.
Importantly, the time cost is independent of the size of map
database.

Fig. 7 illustrates scoring results. In the figure, ”rank” is
a relative measure that indicates the height of score of one
hypothesis against others. For the sake of clarity, only those
hypotheses that are top-ranked (i.e. assigned rank 1) at least
once are shown in the figure. The scoring by iRANSAC
is performed in a preemptive manner similar with other
rRANSAC schemes such as [25] and [35]. Good hypotheses
supported by many data-points tend to be efficiently detected.
Bad hypotheses contaminated by noises tend to be quickly
weeded out. Once a good hypothesis is high-ranked it tends
to stay in the high-rank group for a long period of time.
A key difference from typical rRANSAC schemes is that
the rate and the ranking of a hypothesis tend to decrease as
the robot navigates. This is because of that old hypotheses
tend to be inconsistent with new data-points due to the
accumulation of errors in the odometry as well as in the local
map. In consequence, old and new hypotheses are compared
against each other in a preemptive manner and the top-ranked
hypothesis supported by many recent data-points tends to be
output as a best hypothesis at each viewpoint.

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

er
ro

r[
m

]

viewpoint id

map size16
map size 9
map size 4
map size 1

(a)

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

er
ro

r[
m

]

viewpoint id

map size16
map size 9
map size 4
map size 1

(b)

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

er
ro

r[
m

]

viewpoint id

map size16
map size 9
map size 4
map size 1

(c)

Fig. 8. Localization error results (y-axis) when the amount of measurements
or iterations (x-axis) increases. (a) ”fr101”, (b) ”albert”, (c) ”fr079”. For
each environment, the localization tasks are conducted for four different
global maps respectively composed of 1, 4, 9 and 16 submaps.

Fig. 8 reports the localization performance in several
experiments. A series of localization tasks are conducted in
12 different scenarios, for three different local maps shown
in Fig. 3 (a)-(c), and for four different size global maps
respectively composed of 1, 4, 9 and 16 submaps. The
target robot is assumed to be located in the same building
as one of the mapper robots. A pair of non-overlapping
measurement sequences are created from the same dataset
with a procedure described in [16] and respectively assigned
to the target robot and the mapper robot located in the
same building. In the case of Fig. 8 (b) and (c), it can be
seen that localization is not successful at the initial stage
of the localization task. This is because of that the robot is
initially located in unknown region that is not described in
the global map. It can be seen for all the experiments that
the localization errors finally become lower than 1 m. The
global map size 16 corresponds to over 3.5×105 appearance
features. In the Fig. 8, it can be seen that the localization
task is successful even for 16 submaps environments. This
is a quite large-size map compared with previously published
works on fully incremental systems. It is noteworthy that the
proposed incremental scheme is successful even for such a
large-size map. We also conducted additional experiments to
investigate the parameter sensitivity and the scalability of our
scheme.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

er
ro

r[
m

]

viewpoint id

K=10, L= 5
K=10, L=10
K=10, L=20
K=10, L=30

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

er
ro

r[
m

]

viewpoint id

K=20, L= 5
K=20, L=10
K=20, L=20
K=20, L=30

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500
er

ro
r[

m
]

viewpoint id

K=30, L= 5
K=30, L=10
K=30, L=20
K=30, L=30

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

er
ro

r[
m

]

viewpoint id

K=40, L= 5
K=40, L=10
K=40, L=20
K=40, L=30

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

er
ro

r[
m

]

viewpoint id

K=50, L= 5
K=50, L=10
K=50, L=20
K=50, L=30

(e)

Fig. 9. Comparison of localization performance for different settings of K
and L.

Fig. 9 summarizes the sensitivity against LSH parameters.
It can be seen that our system is stable for a wide range
of parameters. We also conducted experiments with much
larger global maps using synthesized datasets, and found that
our scheme is successful as much as 40 submaps (1.2×
106 features) environments. From above results, it can be
concluded that the proposed scheme is fully incremental and
scales to large-size problems.

VI. CONCLUSIONS

The primary contribution of this paper is the development
of a localization system that is completely incremental and
scales to large-size environments. By using an LSH ap-
pearance database and a RANSAC map-matching scheme,
we efficiently solve the real-time localization in large-size
environments. The provided experimental results show the
system can efficiently deal with increasing number of fea-
tures in local and global maps which are incrementally
arriving during the localization task. Because we combine
the appearance-based and the position-based methods, our
system would be effective even in large and dynamic en-
vironments. In future, we plan to further optimize the data
structures as well as to apply our system to other platforms
such as vision-guided mobile robots.

ACKNOWLEDGEMENT

We are grateful to Dr. Alexandr Andoni for providing a
useful code of LSH (Locality-Sensitive Hashing).

REFERENCES

[1] Neira J., Tardos J.D., and Castellanos J.A. Linear time vehicle
relocation in slam. IEEE International Conference on Robotics and
Automation, 1:427– 433, 2003.

[2] Kin Ho and Paul Newman. Multiple map intersection detection using
visual appearance. 3rd International Conference on Computational
Intelligence, Robotics and Autonomous Systems, 2005.

[3] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. IEEE International Conference on Robotics and
Automation (ICRA), 1999.

[4] Lars A. A. Andersson and Jonas Nygards. C-sam: Multi-robot slam
using square root information smoothing. IEEE Int. Conf. Robotics
and Automation (ICRA), pages 2798–2805, 2008.

[5] Rainer Kummerle, Rudolph Triebel, Patrick Pfaff, and Wolfram Bur-
gard. Monte carlo localization in outdoor terrains using multilevel
surface maps. Journal of Field Robotics, 25:346 – 359, 2008.

[6] Schindler G., Brown M., and Szeliski R. City-scale location recogni-
tion. IEEE Conference on Computer Vision and Pattern Recognition,
pages 1 – 7, 2007.

[7] Murillo A.C., Guerrero J.J., and Sagues C. Surf features for efficient
robot localization with omnidirectional images. IEEE International
Conference on Robotics and Automation, pages 3901–3907, 2007.

[8] J. Wang, H. Zha, and R. Cipolla. Coarse-to-fine vision-based local-
ization by indexing scale-invariant features. IEEE Transactions on
Systems, Man, and Cybernetics, 36:413–422, 2006.

[9] Lina M. Paz, Pdro Piniés, José Neira, and Juan D. Tardós. Global
localization in slam in bilinear time. Proc. 2005 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, pages 655–661, 2005.

[10] Arturo Gil, Oscar Reinoso, Asuncion Vicente, Cesar Fernandez, and
Luis Paya. Monte carlo localization using sift features. Lecture Notes
in Computer Science (LNCS), 1(3523):623–630, 2005.

[11] Nikos A, Vlassis, Bas Terwijn, and Ben J. A. Kroese. Auxiliary parti-
cle filter robot localization from high-dimensional sensor observations.
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2002.

[12] J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based local-
ization by combining an image retrieval system with monte carlo
localization. Trans. IEEE Robotics, 21(2):208–216, 2005.

[13] Jun Jie Foo and Ranjan Sinha. Pruning sift for scalable near-duplicate
image matching. Proc. Int. Conf. ACM, pages 63–71, 2007.

[14] Andrew Johnson. Spin-Images: A Representation for 3-D Surface
Matching. PhD thesis, Carnegie Mellon University, 1997.

[15] Mori G., Belongie S., and Malik J. Shape contexts enable efficient
retrieval of similar shapes. IEEE Computer Vision and Pattern
Recognition, pages 723–730, 2001.

[16] Tanaka K. and Eiji K. A scalable algorithm for monte carlo localiza-
tion using an incremental e2lsh-database of high dimensional features.
IEEE Int. Conf. Robotics and Automation, pages 2784–2791, 2008.

[17] Gionis A., Indyk P., and Motwani R. Similarity search in high
dimensions via hashing. Proceedings of the 25th Very Large Database
(VLDB) Conference, 1999.

[18] Yamauchi B. and Langley P. Place recognition in dynamic environ-
ments. Journal of Robotic Systems, 14, 1997.

[19] Tanaka K and Kondo E. Incremental ransac for online vehicle
relocation in large dynamic environments. Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), pages 1025–1030, 2006.

[20] Takeshi Ueda and Kanji Tanaka. On the scalability of robot localiza-
tion using high-dimensional features. IAPR International conference
on pattern recognition, 2008 (to appear).

[21] Andrew Howard and Nicholas Roy. The robotics data set repository
(radish), 2003.

[22] F. Linaker and M. Ishikawa. Real-time appearance-based monte carlo
localization. Robotics and Autonomous Systems, 54(3):205–220, 2006.

[23] B. Matei, Y. Shan, H.S. Sawhney, Y. Tan, R. Kumar, D. Huber, and
M. Hebert. Rapid object indexing using locality sensitive hashing and
joint 3d-signature space estimation. Trans. IEEE PAMI, 28(7):1111–
1126, 2006.

[24] Goshen Liran and Shimshoni Ilan. Balanced exploration and exploita-
tion model search for efficient epipolar geometry estimation. Trans.
IEEE PAMI, 30:1230–1242, 2008.

[25] Chum O. and Matas J. Optimal randomized ransac. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30:1472–1482, 2008.

[26] Ming Yang, Junsong Yuan, and Ying W. spatial selection for atten-
tional visual tracking. IEEE Computer Vision and Pattern Recognition,
2007.

[27] Sivic J. and Zisserman A. Video google: a text retrieval approach to
object matching in videos. Ninth IEEE International Conference on
Computer Vision, pages 1470–1477, 2003.

[28] Yeh T., Lee J., and Darrell T. Adaptive vocabulary forests br dynamic
indexing and category learning. IEEE International Conference on
Computer Vision, 2007.

[29] Zhiwei Zhu, T. Oskiper, S. Samarasekera, R. Kumar, and H.S.
Sawhney. Ten-fold improvement in visual odometry using landmark
matching. IEEE International Conference on Computer Vision, 2007.

[30] Tuytelaars T., C. Schmid, and Leuven K.U.Leuven. Vector quantizing
feature space with a regular lattice. IEEE Computer Vision and Pattern
Recognition, 2007.

[31] Moosmann F., Nowak E., and Jurie F. Randomized clustering forests
for image classification. IEEE Trans. Pattern Analysis and Machine
Intelligence, 30(9):1632–1646, 2008.

[32] 25 years of ransac. Proc. IEEE Int. Workshop in conjunction with
CVPR ’06, 2006.

[33] Ondrej Chum and Jiri Matas. Matching with prosac progressive sample
consensus. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), pages 220–226, 2005.

[34] O. Chum and J. Matas. Randomized ransac with td,d test. Proc. British
Machine Vision Conference, pages 448–457, 2002.

[35] David Nister. Preemptive ransac for live structure and motion estima-
tion. Machine Vision and Applications, 16:321 – 329, 2005.

[36] Michael Montemerlo. FastSLAM: A Factored Solution to the Si-
multaneous Localization and Mapping Problem with Unknown Data
Association. PhD thesis, Carnegie Mellon University, 2003.

[37] Juan Nieto, Tim Bailey, and Eduardo Nebot. Recursive scan-matching
slam. Robotics and Autonomous Systems, 55:39–49, 2007.

[38] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.
Locality sensitive hashing scheme based on p-stable distributions.
Proc. Symposium on Computational Geometry, pages 253–262, 2004.

[39] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions.
Nearest Neighbor Methods in Learning and Vision: Theory and
Practice, 2006.

