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Abstract  A method is described for the sequential determination of Sb(III) and Sb(V) using 

Osteryoung square wave cathodic stripping voltammetry. It employs an in-situ plated 

bismuth-film on edge-plane graphite substrate as the working electrode. Selective 

electro-deposition of Sb(III)/Sb(V) is accomplished by applying a potential of –500 mV vs 

Ag/AgCl, this followed by reduction to stibine at a more negative potential in the stripping step. 

Stripping was carried out by applying a square wave waveform between –500 and –1400 mV to 

the antimony deposited. The stripping peak current at –1150 mV is proportional to the 

concentration of Sb(III)/Sb(V). The calibration plots for Sb(III) were linear up to 12.0 µg L-1 

depending on the time of deposition. The calibration plots for Sb(V) were linear up to 7.0 µg L-1, 

also depending on the time of deposition. The relative standard deviation in the determination of 

0.1 µg L-1 of Sb(III) is 4.0% (n = 5), and the limit of detection is as low as 2 ng L-1. In case of 0.1 

µg L-1 Sb(V), the relative standard deviation is 3.0% (n = 5) and the detection limit also is 2 ng 

L-1. The method was applied to the analysis of river water and of sea water samples. 
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Introduction  

 

Antimony is present as the oxidation states (III) and (V) in environmental, biological and 

geological samples [1-4]. Antimony(III) is generally accepted to be more toxic than antimony(V). 

Since the toxicity depends on its chemical form and oxidation state, the speciation technique for 

antimony is required for a risk assessment to be performed. Until now, a variety of methods that 

meet these requirements have been developed and well established for the speciation of 

antimony(III) and antimony(V) at trace levels in natural waters. They include fluorometry [5], 

spectrophotometry [6], atomic absorption spectrometry [7-12], inductively coupled plasma 

optical emission spectrometry [13, 14], atomic fluorescence spectrometry [15, 16] and neutron 

activation analysis [17]. Among them, the spectroscopic techniques combined with volatile 

hydride generation (SbH3) have extensively been utilized for this purpose, being detection limits 

of 0.1 or lower μg/L [7, 13, 15]. A variety of electrochemical methods have been reported for the 

determination of antimony by differential pulse anodic stripping voltammetry [18-22], differential 

pulse adsorptive stripping voltammetry [22, 23], anodic stripping voltammetry [24, 25], cathodic 

stripping voltammetry [26], constant-current stripping analysis [27], and coulometry [28]. The 

anodic or cathodic stripping voltammetry for antimony analysis was conducted on carbon 

screen-printed electrodes [24], gold film electrode [25], gold fiber electrode [28] as well as 

mercury-based electrodes [29-31]. Due to its high toxicity, use of mercury electrodes must be 

avoided because the increased risks in the environment and human health are associated. As an 

alternative to mercury electrodes, bismuth electrodes received much attention in electrochemical 

analysis [32], being used in anodic stripping, adsorptive stripping, and cathodic stripping 
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voltammetry [33-36]. To date, however, there is no report about antimony speciation by using 

bismuth related electrodes.   

This paper describes a highly sensitive and simple method for the determination/speciation of 

Sb(III) and Sb(V) using in-situ bismuth film electrode by Osteryoung squre wave cathodic 

stripping voltammetry (OSWCSV). This method is based on the discrimination of Sb(III)/Sb(V) 

at different oxidation states to be performed by adjusting the acidity of test solution. Experimental 

parameters, calibration curves, detection limits, reproducibility, interferences from foreign ions, 

and sample analyses are investigated and discussed from the analytical point of view. 

 

Experimental  

 

Reagent and Chemicals 

 

All chemicals used were of analytical reagent grade, and all solutions were prepared with 

deionized and distilled water. The stock Bi(III) solution was prepared by dissolving solid BiCl3 in 

0.5 mol L-1 hydrochloric acid. The stock Sb(III) solution was prepared by diluting a 1000 mg L-1 

standard for atomic spectroscopy with 0.1 mol L-1 hydrochloric acid. The stock Sb(V) solution 

(1000 mg L-1) was prepared by dissolving a definite amount of SbCl5 in 6 M hydrochloric acid. 

The other metal ion solutions were prepared by diluting their standard solutions (1000 mg L-1, 

Wako Pure Chemical Industries, Japan, http://www.wako-chem.co.jp) with 0.1 mol L-1 

hydrochloric acid. All stock solutions were stored in refrigerator at 2 °C. 
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Apparatus 

 

A BAS Model CV-50W voltammetric analyzer (Bioanalytical system, USA) was employed for 

measurements of cyclic voltammetry (CV) and OSWCSV. Unless otherwise stated, the settings 

for OSWCSV measurements were as follows: 4 mV step potential; 25 mV square wave amplitude; 

15 Hz frequency; 10 s equilibrium time prior to cathodic scan. An edge-plane pyrolytic graphite 

disk (3.0 mm diameter, BAS) was used as the working electrode substrate. A platinum wire 

counter electrode and a Ag/AgCl (sat. KCl) reference electrodes from BAS were also used. 

 

Procedures 

 

The edge-plane graphite electrode surface was initially polished with aluminum oxide (Al2O3, 

Wako Pure Chemical industries, Japan) slurry and next with a piece of filter paper. The treated 

electrode was then immersed in 1.0 mol L-1 hydrochloric acid for 1 min, and rinsed with distilled 

water. After voltammetric measurements, the working electrode was treated again and reactivated 

each time by keeping the electrode potential at 800 mV for 30 s.  

The established procedures for the determination of Sb(III)/Sb(V) by OSWCSV were carried 

out as follows: an aliquot (5.0 mL) of standard Sb(III)/Sb(V) solution was placed into a 10.0-mL 

electrochemical cell; the reagent solutions were then added to the standard solution, and the total 

volume of the test solution was finally made up to 10.0 mL with water; the equilibrium 

concentrations were adjusted to 0.1/0.6 mol L-1 hydrochloric acid, 10 g L-1 potassium chloride, 

and 100 µg L-1 Bi(III) concentration. Nitrogen was then purged into the test solution for 5 min. 
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The Sb(III)/Sb(V) was initially reduced on the working electrode at a potential of –500 mV for 30 

s in a stirred solution. After 10 s equilibrium time, the electrode potential was scanned from –500 

mV to -1400 mV in the negative direction. 

The real samples of seawater (Mikuni, Fukui, Japan) and river water (Kuzuryu, Fukui, Japan) 

for speciation analysis of Sb(III)/Sb(V) were filtered through a piece of 0.45-µm Nuclepore filter 

and acidified by 0.1/0.6 mol L-1 hydrochloric acid. An aliquot of sample solution (5.0 mL) was 

introduced into 5.0 ml of blank solution for analysis at the final concentrations of 100 µg L-1 

Bi(III) and 10 g L-1 potassium chloride. All water samples were analyzed by standard addition 

and background subtraction method. 

  

Results and Discussion  

 

Electrochemical Behavior of Antimony(III,V) on the Bismuth Film Modified Graphite Electrode 

 

The electrochemical nature of a catalytic hydrogen wave due to Sb(III,V) was investigated by CV. 

Fig. 1 shows typical CV curves obtained for 0.1 mol L-1 hydrochloric acid (1) and the blank 

solution containing 100 µg L-1 Bi(III) in the same acid solution (2), respectively. When the 

potential was scanned to a negative direction after 30 s pre-concentration at –400 mV, a small 

cathodic response due to Bi(III) was observed at about –1150 mV vs. Ag/AgCl before the final 

rise of hydrogen reduction wave. With the addition of 1.0 µg L-1 Sb(III) to the blank solution, the 

hydrogen catalytic peak increased obviously, as shown in Fig.1(3). Our preliminary studies 

showed that there was no cathodic response due to Sb(III,V) observed at about –1150 mV without 
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Bi(III). 

In order to clarify the electrode process of a cathodic hydrogen wave, the effect of scan rate (v) 

on the peak current (Ip) was investigated. The results showed that there was a linear relationship 

between |Ip| and v1/2 and no zero intercept (|Ip| = 2.7636 v1/2 + 11.839, R2=0.9968), suggesting a 

typical irreversible and catalytic behavior of antimony. The dependence of (|Ip| / v
1/2) on the scan 

rate is used as a diagnostic test for catalytic reactions.  The value of |Ip| / v1/2 decreased with 

increasing scan rate in the range of 25─600 mV s-1. The enhanced cathodic peak due to Sb(III) at 

–1150 mV, therefore, is considered to have a nature of catalytic electrode process. 

In this study, OSWCSV was employed for the determination of Sb(III)/Sb(V) at sub-ppb levels 

in aqueous media at ppt concentration levels. It can be seen from Fig. 2 that the catalytic stripping 

peak current  is directly proportional to Sb(III)/Sb(V) concentration initially taken. This 

indicates that the proposed OSWCSV method enables determination of traces of Sb(III)/Sb(V) in 

natural waters.  

 

Effect of Hydrochloric Acid and Potassium Chloride Concentration 

 

A supporting electrolyte mostly used for the voltammetric determination of antimony is 

hydrochloric acid solution or a mixture of hydrochloric acid and potassium chloride. The Effect 

of hydrochloric acid concentration on the catalytic peak currents due to Sb(III) and Sb(V) was 

investigated. The results shown in Fig. 3 indicate that the stripping signal for Sb(III) reached a 

maximum at 0.1 mol L-1 hydrochloric acid, and then decreased with increasing the acid 

concentration. Sb(III) gave no stripping peak in the range of 0.4─0.8 mol L-1 hydrochloric acid. 
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The peak current for Sb(V), on the other hand, was negligibly small at 0.1 mol L-1 hydrochloric 

acid and gradually increased with the acid concentration up to 0.3 mol L-1. A constant Sb(V) 

peak current was obtained at acidities ranging form 0.3 to 0.8 mol L-1. The difference in peak 

current between Sb(III) and Sb(V) was observed, and the speciation analysis of both species was 

performed at 0.1 and 0.6 mol L-1 hydrochloric acid, respectively. The addition of potassium 

chloride enhanced stripping responses for Sb(III) and Sb(V) in the range of 0─30 g L-1. In the 

subsequent experiments, a potassium chloride concentration of 10 g L-1 was chosen as the 

optimum.  

 

Effect of Bi (III) Concentration 

 

The effect of Bi(III) concentration on the OSWCSV peak currents was investigated for 1.0 µg L-1 

Sb(III) / Sb(V) at 0.1/0.6 mol L-1 hydrochloric acid, respectively. It can be seen from Fig. 4 that 

the peak currents decreased exponentially as Bi(III) concentration increased from 10.0 to 500 µg 

L-1. The addition of Bi(III) at higher concentrations interfered with co-deposition antimony 

species on the electrode surface, which resulted in decrease of the antimony stripping signals. 

Furthermore, our preliminary studies showed that no OSWCSV response was observed in the 

absence of Bi(III). All subsequent experiments were conducted using a Bi(III) concentration of 

100 µg L-1. 

 

Effect of Deposition Potential and Time 

 



9 

The effect of deposition potential on OSWCSV peak currents was investigated in the range of 

–100 to –800 mV vs. Ag/AgCl. The results shown in Fig. 5 indicate that the antimony peak 

currents reached maxima at –500 mV and then decreased sharply at more negative potentials up 

to –800 mV as hydrogen was evolved on the working electrode. The effect of deposition time on 

the antimony peak currents was investigated in the range of 10─60 s. The antimony peak current 

(Ip, -µA) increased linearly as the deposition time (t, s) increased (for Sb(III) Ip = 1.66t - 10.2, R2 

= 0.9940; for Sb(V) Ip = 1.62t - 17.5, R2 = 0.9896). A longer deposition time may improve the 

sensitivity of OSWCSV method but produce a poor reproducibility. In order to achieve antimony 

determination at ultra-trace concentrations, a deposition potential of –500 mV and a deposition 

time of 30 s were chosen in this study. 

 

Calibration Curve and Detection Limit 

 

Under the optimized experimental conditions, the calibration curves for Sb(III)/Sb(V) 

determination were constructed by this OSWCSV at different deposition times. Although an 

S-shaped calibration curve for Sb(III) was obtained with 30 s deposition time, the linear 

relationships between cathodic peak current and Sb(III) concentration held over the concentration 

ranges of 0.01─0.10 µg L-1 (Ip = 360C + 13.6, R2 = 0.9961, where Ip is peak current in -µA and C 

is antimony concentration in µg L-1) and 0.10─1.0 µg L-1 (Ip = 61.7C + 45.8, R2 = 0.9922). The 

relative standard deviation was 4.0% (n = 5) for a 0.1 µg L-1 Sb(III) solution. The detection limit 

calculated as 3σ from a calibration point at 10 ng L-1 of Sb(III) was 2 ng L-1 with a deposition 

time of 30 s. The calibration curve obtained with a shorter deposition time of 10 s was linear over 
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the concentration range of 1.0─12.0 µg L-1 (Ip = 6.53C + 9.95, R2 = 0.9974), and the 3σ detection 

limit was 0.08 µg L-1.   

For the OSWCSV determination of Sb(V), the linear calibration curves were obtained over the 

concentration ranges of 0.01─0.20 µg L-1 (Ip = 309C + 9.47, R2 = 0.9911) and 0.20─0.80 µg L-1 

(Ip = 66.0C + 57.1, R2 = 0.9968) with 30 s deposition time. The relative standard deviation was 

3.0% (n = 5) for a 0.1 µg L-1 Sb(V) solution, and the detection limit was 2 ng L-1 for a deposition 

time of 30 s. The calibration curve obtained with a shorter deposition time of 10 s was linear over 

the concentration of 1.0─7.0 µg L-1 (Ip = 10.4C - 6.30, R2 = 0.9938), and the 3σ detection limit 

was 0.018 µg L-1.   

 

Interference 

  

The effect of foreign ions on the OSWCSV determination of 1.0 µg L-1 Sb(III)/Sb(V) by the 

proposed method was investigated at a range of concentrations. The tolerance levels to be 

determined within ±10% error were 0.5 µg L-1 for Cu(II) and 1.0 µg L-1 for Fe(III), respectively. 

The following metal ions were tolerable up to 10-fold amounts excess over Sb(III) or Sb(V) for 

Pb(II) and Cd(II), 20-fold amounts for Hg(II) and Sn(II), 50-fold amounts for Mn(II), Se(IV) and 

As(III), and a 70-fold amount for V(V), respectively. No interference was also observed for Na(I), 

Mg(II), Al(III), Ca(II), Zn(II), Co(II), Ni(II), Mo(VI), and W(VI) at 1000-fold amounts. Such 

anions as NO3
- and SO4

2- up to 1.0 mg L-1, H2PO4
- 0.5 mg L-1 and NH4

+ 0.1 mg L-1 had no 

influence. Organic compounds such as L-cysteine, sodium dodecylbenzene sulfonate, 

polyethyleneglycol mono-p-nonylpheny ether, and EDTA were tolerable at 0.1 mg L-1, 0.3 mg L-1, 
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1 mg L-1, and 10 mg L-1, respectively. The presence of most organic compounds should be 

minimized as much as possible for real sample analysis. The determination of Sb(III)/Sb(V) up to 

10.0 µg L-1 showed no interference from each other at any concentration ratios between 10 and 

0.1.  

 

Sample Analysis 

 

At established experimental parameters, the proposed OSWCSV method was adapted for real 

sample analyses by using standard addition and background subtraction method. The accuracy of 

this proposed method was assessed by recovery tests. The spiked river water samples (Kuzuryu, 

Fukui, Japan) were analyzed because antimony was not found in the investigated real samples. 

Good recovery (96─103%) was observed when compared with spiked concentration (see Table 1). 

Fig. 6 shows typical OSWCSV curves obtained for the determination of Sb(V) in a coastal sea 

water sample (Mikuni, Fukui, Japan). Table 1 also summarizes the experimental results for 

speciation analysis of Sb(III) and Sb(V) in the sea water on four replicate analyses, which were 

calculated to be 0.049±0.001 µg L-1 and 0.199±0.003 µg L-1, respectively. The speciation analysis 

of natural water samples was achieved with satisfactory results. 

 

Conclusions 

 

The proposed OSWCSV method enables antimony speciation at the trace levels by utilizing the 

co-deposition of Bi(III) and Sb(III)/Sb(V) onto the edge-plane pyrolytic graphite substrate. The 
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detection limit was estimated to be 2 ng L-1 Sb(III)/Sb(V) based on the 3σ method with 30 s 

deposition time. The coastal seawater and river water samples could be analyzed with good 

results.  
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Table 1 Results for recovery test and speciation analysis of Sb(III) and Sb(V) in real water samples 

 

Samples 
Spiked Sb(III) in samples 

(µg L-1) 

Sb(III) found 

(µg L-1) 

Spiked Sb(V) in samples 

(µg L-1) 

Sb(V) found 

(µg L-1) 

River 

water 

4.000 4.037±0.008b 4.000 4.095±0.004b 

4.000 4.033±0.006b 0.400 0.492±0.005a 

0.400 0.432±0.01a 4.000 4.089±0.004b 

Seawater 

0.400 0.449 ± 0.001a -- -- 

-- -- 0 0.199 ± 0.003a 

-- -- 4.000 4.201 ± 0.02b 
a 30 s deposition time. 
b 10 s deposition time. 
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Figure captions 
 

Fig. 1. Cyclic voltammograms. (1) 0.1 mol L-1 HCl; (2) (1) + 100 µg L-1 Bi(III); (3) (2) +1.0 µg 

L-1 Sb(III); deposition potential: –400 mV; deposition time: 30 s; scan rate: 100 mV s-1.  

 

Fig. 2. OSWCSV curves. (1) 0.1 mol L-1 HCl + 10 g L-1 KCl; (2) (1) + 100 µg L-1 Bi(III); (3) (2) 

+10 ng L-1 Sb(III); (4) (2) +50 ng L-1 Sb(III); (5) (2) +0.1 µg L-1 Sb(III); deposition potential: 

–500 mV; deposition time: 30 s. 

 

Fig. 3. Effect of hydrochloric acid concentration on OSWCSV peak current. Sb(III): 0.1 mol L-1 

HCl + 100 µg L-1 Bi(III) + 1.0 µg L-1 Sb(III); Sb(V): 0.6 mol L-1 HCl + 100 µg L-1 Bi(III) + 1.0 

µg L-1 Sb(V). Deposition potential: –400 mV; deposition time: 30 s. 

 

Fig. 4. Effect of Bi(III) concentration on OSWCSV peak current. Sb(III): 0.1 mol L-1 HCl + 10 g 

L-1 KCl + 1.0 µg L-1 Sb(III); Sb(V): 0.6 mol L-1 HCl + 10 g L-1 KCl + 1.0 µg L-1 Sb(V). 

Deposition potential: -400 mV; deposition time: 30 s. 

 

Fig.5. Effect of deposition potential on OSWCSV peak current. Sb(III): 0.1 mol L-1 HCl + 10 g 

L-1 KCl + 100 µg L-1 Bi(III) + 1.0 µg L-1 Sb(III); Sb(V): 0.6 mol L-1 HCl + 10 g L-1 KCl + 100 µg 

L-1 Bi(III) + 1.0 µg L-1 Sb(V). Deposition time: 30 s.  

 

Fig. 6. OSWCSV curves for the determination of Sb(V) in a sea water sample. (1) 0.6 mol L-1 

HCl + 10 g L-1 KCl; (2) (1) + 100 µg L-1 Bi(III); (3) (2) + seawater; (4-6) (3) + successive 

addition of 40 ng L-1 Sb(V). Deposition potential: –500 mV; deposition time: 30 s. 
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