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Abstract. An improvement is made to an automatic quadrature due to Ninomiya
(1980) of adaptive type based on the Newton-Cotes rule by incorporating a doubly-
adaptive algorithm due to Favati, Lotti and Romani (1991). We compare the present
method in performance with some others by using various test problems including
Kahaner’s ones (1971).
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1. Introduction

Given a function f(x) and an error tolerance ε, an automatic quadra-
ture algorithm computes an approximation to the definite integral

I(f) =

∫ b

a
f(x) dx, (1)

of the form

Q(f) =

N∑

k=0

wkf(xk), (2)

where wk are weights and xk are sample points, satisfying the condition

|I(f) − Q(f)| ≤ ε. (3)

Generally, the algorithm generates the sequence of approximations with
their error estimates until an estimated error is not greater than ε.
The algorithm is classified into order adaptive and partition adaptive
(Venter and Laurie, 2002).

A partition adaptive method splits the integration interval into subin-
tervals to which a fixed integration rule is applied to approximate each
integral until a local error estimate is not greater than the partitioned
tolerance on the subinterval. Ninomiya’s routine AQNN9 (1980), (Davis
and Rabinowitz, 1984, p.341) based on the Newton-Cotes (abbreviated
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2 Hasegawa, Hibino, Hosoda and Ninomiya

to N-C) rules and the routine QAG (QAGS) in QUADPACK (Piessens,
de Doncker-Kapenga, Überhuber and Kahaner) are partition adaptive.
The partition adaptive method copes with non-regular integrands. See
also Plaskota and Wasilkowski (2005).

An order adaptive method is suitable for smooth functions. This
method consists of the sequence of integration rules with their order
increasing by distributing and increasing sample points uniformly in the
integration interval according to the corresponding integration rules.

A doubly-adaptive method (Favati, Lotti, Di Marco and Romani,
1994; Oliver, 1971; Oliver, 1972) is both order and partition adaptive
(Venter and Laurie). This scheme chooses either to apply the order
adaptive method to the current subinterval or to further split the subin-
terval, by detecting the local regularity of the integrand. An improved
version QXG (QXGS) due to Favati, Lotti and Romani (1991) (we call
FLR henceforth) of QAG (QAGS) is a doubly-adaptive algorithm based
on recursive monotone stable (RMS) formulas (1991; 1994). Ninomiya’s
method is less effective for oscillatory integrands than the FLR method.

The purpose of this paper is to construct an improved automatic
quadrature by the proper combination of Ninomiya’s method and the
FLR one. By using Kahaner’s twenty one problems (1971) we compare
in performance the present method with Ninomiya’s method, the FLR
method and an adaptive Lobatto procedure with Kronrod extension
due to Gander and Gautschi (2000). We also give the comparison results
with Venter-Laurie’s method (2002) for 32 test problems.

This paper is organized as follows. In section 2 we outline Ninomiya’s
algorithm. In section 3 the sequence of RMS formulas is reviewed.
In section 4 we show how to incorporate the FLR method into the
Ninomiya scheme to construct an improved scheme. In section 5 the
present algorithm is outlined. Section 6 demonstrates the performance
of the present routine by using various test problems.

2. Ninomiya’s method

We outline Ninomiya’s partition adaptive (9-point) N-C method. The
N-C rules suit partition adaptive schemes, where computed function
values are stored and reused after the subdivision of the interval. In
his algorithm Ninomiya makes effective use of the stack and three
improvements: refining the error estimation, relaxing the convergence
criterion and detecting extraordinary points.

hasegawaDWCAA06-rev.tex; 29/03/2007; 16:11; p.2



Adaptive Quadrature Method 3

2.1. Refinement of error estimation

Let S[a,b] be an n + 1-point N-C rule to an integral on an interval
[a, b]. Let c = (a + b)/2. A way to get an estimate |ẽn+1| of the error
en+1 for S[a,b] might be |S[a,b] − (S[a,c] + S[c,b])| with new n function
evaluations. Ninomiya observes that the error estimation requires only
two additional sample points, which can be reused after the interval is
bisected. In fact, let n ≥ 2 be an even integer, then en+1 ∝ hn+3f (n+2),
where h = (b − a)/2. Noting that f (n+2) can be estimated by using
n+3 function evaluations (the divided difference (Berntsen and Espelid,
1991)), we see that two additional function evaluations suffice since n+1
function values have been evaluated in constructing the n+1-point N-C
rule S[a,b].

Ninomiya chooses two mid-points of outermost subintervals (squares
in Fig. 1 for 5-point and 9-point rules (circles)). He actually gives ẽn+1

and new rules Qn+3 = S[a,b] − ẽn+1 for n = 4, 6 and 8. Although the
9-point N-C rule is known to be numerically unstable, the 11-point rule
Q11 = {

∑4
k=0 vk(fk + f10−k) + v5f5}h/u is stable in that all weights

hvk/u are positive, v0 = 18447429, v1 = 77594624, v2 = 63216384,
v3 = 150355296, v4 = 81233152, v5 = 154791780, u = 468242775 =∑4

k=0 vk + v5/2. In the present method we use Q11.

h h
5-point rule

h h
9-point rule

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 10

Figure 1. Arrangement of sample points (circles) for Newton-Cotes rules. Squares
denote additional sample points used for error estimates.

2.2. Relaxation of convergence criterion

In a partition adaptive method a convergence test must be performed
locally and separately for every subinterval. Recall that ε is the required
accuracy (overall criterion) in (3) for the whole interval of the width
2h0 = (b−a). Let εi be the local error criterion for the i-th subinterval
of the width 2hi. Then the proportional allocation εi = εhi/h0 is safe
but extremely conservative. In his paper (1980) Ninomiya proposed a
rather cautious scheme, εi = εhi/h0 log(h0/hi) to positively relax the
error criterion for small subintervals.
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4 Hasegawa, Hibino, Hosoda and Ninomiya

After the publication of his paper Ninomiya made further numerical
experiments to get a rather ambitious but efficient criterion

εi = εhi/h0

√
h0/hi, (4)

with enhanced relaxation since
√

h0/hi > log(h0/hi).

2.3. Treatment of extraordinary points

Suppose that a partition adaptive method is applied to an integral
having singular points in the integration interval. Then the process of
bisection goes on extremely until the method might fail. Let m be a
positive integer. If a singular point is at one of 2m equally divided
points in a given interval, then the singular point is at the end of some
subinterval after the bisection process proceeds. From the asymptotic
behavior of the error estimates of the approximations on the intervals
having endpoint singularity, Ninomiya detects and treats analytically
three types of singularities, discontinuity, algebraic singularity, and
logarithmic singularity without any additional function evaluations.

Remark: In the FLR scheme an extrapolation method (ε-algorithm)
is used to eliminate the effects of integrand singularities. Although Ni-
nomiya’s method is an improved N-C automatic quadrature by virtue
of three devices above, his method might be less effective, say for
oscillatory functions or when the tolerance ε is very small.

3. RMS sequence of quadrature rules

Recursive monotone stable (RMS) formulas due to FLR (1991) con-
stitutes a nice family of quadrature rules with increasing precision,
I1, . . . , In, which are symmetric interpolatory rules. This sequence of
rules is successively constructed without wasting function values pre-
viously computed since the set of the sample points of Ik−1 is a subset
of that of Ik (embedded rules). In addition the family of rules has the
following properties,

− the degree of precision of Ik is sufficiently larger than the one of
Ik−1,

− the distance between sample points is shorter near the ends of the
interval,

− all the formulas in the family are numerically stable, namely all
the weights are positive.
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11-POINT
    RULE

13-POINT
    RULE

19-POINT
    RULE

27-POINT
    RULE

41-POINT
    RULE

I1

I0

I2

I3

I4

Figure 2. Arrangement of sample points in the right-half interval

The case KEY= 2 in the routine QXG in FLR (1991) uses a family
of four formulas in the RMS formulas, namely, 13-point (I1), 19-point
(I2), 27-point (I3), 41-point (I4) rules. Including Ninomiya’s stable 11-
point rule (I0) yields a sequence of rules, I0, I1, . . . , I4, with increasing
accuracy, see Fig. 2 for the arrangement of sample points in the right-
half interval with the sample points symmetrically arranged in the left-
half interval. From Fig 2 we find that the sample points for Ik are all
reused in Ik+1, 0 ≤ k ≤ 3. Further, they can be also reused after the
bisection of the interval. See also Sugiura and Sakurai (1989).

4. Combination of Ninomiya’s method and the FLR method

4.1. Selection criterion

Combining properly the Ninomiya and the FLR schemes requires a
selection criterion to decide at each stage during the integration process
whether the current interval is bisected (Ninomiya’s scheme) or a higher
order rule is applied (the FLR scheme). To this end, usually the ratio of
the error estimates of two quadrature rules is used (Venter and Laurie).

Suppose that there exists a sequence of rules I0, I1, . . . , In with in-
creasing accuracy, namely In is the most accurate rule. If an integrand
has no singularity in the interval, we apply Ik, k = 0, 1, . . ., consecu-
tively until a satisfactory approximation is obtained. Let Ek > 0 be an
error estimate for Ik. Let hint be defined by

hint = Ek/Ek−1, (5)
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then hint< 1. The value of hint indicates the smoothness of inte-
grands. The smaller is hint, the less singular is the integrand in the
interval. We choose to apply the higher order rule if hint is smaller
than a fixed value P , namely

hint < P, (6)

otherwise we choose to bisect the current interval. In this connection
the determination of the parameter P plays an important role in the
efficiency of an automatic quadrature method.

We note that in computing Q11(= I0) and its error estimate ẽ9(=
E0) in Ninomiya’s scheme the error estimate ẽ5(= E−1) for the 5-point
N-C rule Q5(= I−1) is also available without any further computational
costs. By using these ẽ5 and ẽ9 we determine hint by

hint = |ẽ9/ẽ5|. (7)

A comprehensive numerical experiment on integrals of various types
(particularly, twenty one problems of Kahaner, 1971 with varied values
of tolerance ε) with changing P in (6) between 0.01 and 0.5, reveals
that P = 0.2 might be a good choice so as to minimize the numbers of
function evaluations required to approximate the integrals. In the FLR
method (1991) below P = 0.16 is chosen.

In summary, if hint given by (7) is smaller than 0.2, we choose to
apply the higher order rule (the 13-point rule I1 of the RMS family),
see § 4.2 below. Otherwise we choose to bisect the current interval.

4.2. Incorporation of the FLR method

Once the higher order rule is chosen in § 4.1 above we proceed to the
FLR scheme, which is also a doubly-adaptive scheme. Again we begin
by computing the approximations and the error estimates followed by
performing the convergence test before the selection criterion test.

Recall that in the RMS family above Ik (k = 1, . . . , 4) denote the
approximations to I(f) (1), where the integration interval is assumed
to be a current subinterval after bisections. Let Mk (k = 1, . . . , 4)
denote the approximations to I(|f −Ik/(b−a)|) ≈ I(|f −I(f)/(b−a)|).
By noting that the ratios of the numbers Nk of sample points for Ik,
k = 2, 3, 4 are Nk/Nk−1 ≈ 3/2, the errors |I(f) − Ik| is estimated by

Ek := Mk ∗ min(1, 200|Ik − Ik−1|/Mk)
3/2, k = 2, 3, 4, (8)

if Mk 6= 0, otherwise Ek := |Ik − Ik−1|. We use Ninomiya’s 11-point
rule I0 to estimate the error |I(f) − I1| by E1 = |I1 − I0|.
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For each value of k = 1, . . . , 4 we perform the following steps. We
accept the approximation Ik of the current interval if the convergence
criterion (of the FLR, not relaxed)

Ek ≤ ε(hi/h0), (9)

is satisfied. Otherwise, if 1 ≤ k ≤ 3 and the value of hint for the
selection criterion defined by

hint = Ek/Ek−1, (10)

is smaller than 0.16, which is the value determined in the FLR method,
the higher order rule Ik+1 is applied to the current interval. Otherwise
the current interval is bisected to apply Ninomiya’s scheme. Note that
in the original FLR method the selection criterion by hint (10) is
examined only once, namely hint = E3/E2.

5. Present routine AQN9D

We outline the present automatic quadrature routine AQN9D based on
the combination of Ninomiya’s method and the FLR scheme.
Purpose

Given the integrand f(x), the interval [a, b], the tolerance ε and the
machine epsilon EPMACH, the routine AQN9D computes an approxi-
mation S which hopefully satisfies the condition,

∣∣∣
∫ b

a
f(x)dx − S

∣∣∣ ≤ max(ε,EPMACH).

Outline of the algorithm

Output is the approximation S and the estimated error E.
1. Initialization

• S = 0 ; E = 0 ; N = 0 ; (where N denotes the stack pointer)
• Prepare to treat the current interval [a, b].

2. Treatment of the interval
• k = 0 ;
• Compute ẽ5, E0 = ẽ9, I0 = Q11, hint and the relaxation factor.
• If the convergence criterion is satisfied, do Step 3.

(The FLR method with some modifications)
• While k < 4 and hint< P

(where P = 0.2 if k = 0, otherwise P = 0.16)

◦ k = k + 1 ;
◦ Compute Ik, Ek and hint.
◦ If the convergence criterion is satisfied, do Step 3.
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8 Hasegawa, Hibino, Hosoda and Ninomiya

end

• If k = 0, examine the extraordinary points. If an extraordi-
nary point is detected, do Step 3 after the treatment of the
singularity (replace the value of I0 with the new result and
modify E0).

• N = N + 1;
• Store the data on the current interval into the stack.
• Bisect the current interval.
• Prepare to treat the new left-hand subinterval and repeat

from Step 2.
3. Exit or preparation for the right subinterval

• S = S + Ik ; E = E + Ek ;
• If N = 0, exit with S and E.
• Take the data from the stack to treat the remaining right-

hand subinterval.
• N = N − 1; and repeat from Step 2.

Table I. Kahaner’s Test Problems.

NO A B EXACT INTEGRAND

(1) 0.0 1.0 1.7182818285e+00 exp(x)

(2) 0.0 1.0 7.0000000000e−01 (int) min(x/0.3, 1)

(3) 0.0 1.0 6.6666666666e−01 sqrt(x)

(4) −1.0 1.0 4.7942822669e−01 0.92*cosh(x)−cos(x)

(5) −1.0 1.0 1.5822329637e+00 1/(pow(x, 4)+pow(x, 2)+0.9)

(6) 0.0 1.0 4.0000000000e−01 x∗sqrt(x)

(7) 0.0 1.0 2.0000000000e+00 1/sqrt(x)

(8) 0.0 1.0 8.6697298734e−01 1/(pow(x, 4)+1)

(9) 0.0 1.0 1.1547006690e+00 2/(2+sin(31.4159∗x))

(10) 0.0 1.0 6.9314718056e−01 1/(1+x)

(11) 0.0 1.0 3.7988549304e−01 1/(exp(x)+1)

(12) 0.0 1.0 7.7750463411e−01 x/(exp(x)−1)

(13) 0.1 1.0 9.0986452566e−03 sin(314.159∗x)/(3.14159∗x)

(14) 0.0 10.0 5.0000021117e−01 sqrt(50)∗exp(−50∗3.14159∗pow(x, 2))

(15) 0.0 10.0 1.0000000000e+00 25∗exp(−25∗x)

(16) 0.0 10.0 4.9936380287e−01 50/3.14159/(2500∗pow(x, 2)+1)

(17) 0.01 1.0 1.1213956963e−01 50∗pow(sin(50.0∗3.14159∗x)

/(50.0∗3.14159∗x), 2)

(18) 0.0 π 8.3867632338e−01 cos(cos(x)+3∗sin(x)+2∗cos(2∗x)

+3∗sin(2∗x)+3∗cos(3∗x))

(19) 0.0 1.0 -1.000000000e+00 log(x)

(20) −1.0 1.0 1.5643964441e+00 1/(pow(x, 2)+1.005)

(21) 0.0 1.0 2.1080273550e−01 pow(1/cosh(10∗(x−0.2)), 2)

+pow(1/cosh(100∗(x−0.4)), 4)

+pow(1/cosh(1000∗(x−0.6), 6)

hasegawaDWCAA06-rev.tex; 29/03/2007; 16:11; p.8



Adaptive Quadrature Method 9

6. Numerical examples

Table II. Comparison of Performance of Adaptive Quadrature Routines.

ERROR REQUIREMENT 1.0e−06

quadl DQXG2 AQNN9 AQN9D

NO N error N error N error N error

(1) 18 1.4e−13 19 2.2e−16 11 2.2e−16 11 2.2e−16

(2) 198 2.4e−09 673 1.7e−08 211 2.9e−08 211 2.9e−08

(3) 78 1.3e−06* 387 4.0e−09 91 2.5e−12 91 2.4e−12

(4) 18 3.3e−10 41 2.2e−16 11 3.8e−14 11 3.8e−14

(5) 48 6.8e−11 41 1.3e−15 41 1.0e−11 25 5.0e−10

(6) 48 4.6e−08 67 7.8e−09 41 5.1e−08 41 5.1e−08

(7) 408 2.3e−06* 1547 2.0e−07 91 1.7e−10 91 1.2e−10

(8) 18 1.8e−07 41 2.2e−16 21 3.3e−11 13 1.2e−08

(9) 468 3.9e−09 321 4.0e−14 221 9.3e−09 157 2.6e−08

(10) 18 5.6e−09 41 2.2e−16 11 3.9e−10 11 3.9e−10

(11) 18 1.6e−12 27 2.2e−16 11 2.4e−14 11 2.5e−14

(12) 18 4.0e−15 27 2.2e−16 11 4.4e−16 11 4.4e−16

(13) 1218 8.1e−11 641 2.2e−16 641 1.1e−10 469 3.4e−08

(14) 138 6.3e−09 173 3.5e−14 91 3.4e−10 75 7.5e−10

(15) 168 3.9e−11 147 2.2e−16 81 5.5e−10 69 5.3e−10

(16) 168 1.3e−10 281 4.6e−12 101 1.5e−09 97 3.6e−10

(17) 768 8.7e−06* 641 3.8e−13 481 5.6e−09 365 1.3e−09

(18) 228 2.3e−13 81 1.6e−12 111 1.6e−09 75 4.9e−09

(19) 228 2.4e−07 757 2.9e−08 91 2.8e−10 91 3.4e−11

(20) 48 5.5e−11 41 0.0e+00 21 1.1e−08 21 1.1e−08

(21) 168 1.1e−03* 241 1.1e−03* 111 1.1e−03* 101 1.1e−03*

214 81% 297 95% 119 95% 97 95%

The examples in this section are computed in double precision; the
machine precision is 2.22 . . . × 10−16.

we begin by using Kahaner’s test problems (Table I) to compare
the present routine AQN9D with quadl, a Matlab function which is
based on adaptlob due to Gander and Gautschi, DQXG with KEY= 2
(called DQXG2) due to Favati, Lotti and Romani and AQNN9 due
to Ninomiya. Both DQXG2 and AQNN9 are written in FORTRAN
while AQN9D is in C and quadl is in MATLAB. Tables II and III show
the numbers (N) of function evaluations with actual absolute errors
required to satisfy the tolerances ε = 10−6 and 10−9, respectively. The
numbers with asterisk mean the failure to satisfy the tolerances. At
the bottom of each table, success rates in percentage as well as average
numbers of function evaluations are shown for the compared routines.
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Table III. Comparison of Performance of Adaptive Quadrature Routines.

ERROR REQUIREMENT 1.0e−09

quadl DQXG2 AQNN9 AQN9D

NO N error N error N error N error

(1) 18 1.4e−13 19 2.2e−16 11 2.2e−16 11 2.2e−16

(2) 318 3.1e−10 1017 1.7e−11 311 2.8e−11 311 2.8e−11

(3) 228 1.0e−09 667 2.7e−12 131 2.5e−12 131 2.4e−12

(4) 18 3.3e−10 41 2.2e−16 21 5.6e−17 13 8.3e−16

(5) 108 2.7e−11 41 1.3e−15 61 1.8e−11 45 1.8e−11

(6) 108 1.2e−10 227 7.6e−12 91 8.9e−12 73 1.4e−11

(7) 1128 1.8e−09* 2347 2.0e−10 251 1.7e−13 155 1.0e−12

(8) 48 1.5e−13 41 2.2e−16 41 5.0e−15 27 3.3e−16

(9) 1038 4.0e−14 321 4.0e−14 421 5.8e−12 261 2.4e−11

(10) 48 1.4e−15 41 2.2e−16 21 3.9e−13 13 3.8e−12

(11) 18 1.6e−12 27 2.2e−16 11 2.4e−14 11 2.5e−14

(12) 18 4.0e−15 27 2.2e−16 11 4.4e−16 11 4.4e−16

(13) 4068 2.5e−16 641 2.2e−16 1271 6.3e−14 777 1.6e−12

(14) 228 1.8e−14 213 0.0e+00 131 2.8e−12 95 4.2e−10

(15) 288 3.4e−11 147 2.2e−16 121 5.5e−13 95 1.9e−13

(16) 438 8.2e−14 321 2.2e−16 201 4.8e−12 123 1.6e−12

(17) 2208 3.9e−13 641 3.8e−13 981 1.1e−12 651 2.5e−12

(18) 738 1.6e−14 121 1.9e−14 201 1.1e−12 103 8.4e−13

(19) 498 1.4e−09* 1101 1.3e−11 171 1.7e−11 139 3.0e−13

(20) 48 5.5e−11 41 0.0e+00 61 2.3e−13 37 1.9e−14

(21) 738 5.1e−13 241 1.1e−03* 221 1.1e−03* 143 1.1e−03*

588 90% 394 95% 226 95% 154 95%

The examination of Tables II and III reveals the following facts.

1. Integrals of nonsingular functions such as Problems 4, 8, 10, 11 and
12 are easy for adaptive routines to approximate.

2. Integrals of functions with peaks (Problems 14, 15 and 16 as well
as 21) are rather easy except for Problem 21, which is very difficult
to approximate because of the integrand with three sharp peaks
in very small regions. Table III shows that ’quadl’ succeeds in
approximating the Problem 21 with ε = 10−9.

3. Integrals of singular or discontinuous functions (Problems 2, 3, 7
and 19) appear to be rather difficult problems for DQXG2. The
present AQN9D can effectively approximate these problems by the
combination of the Ninomiya and the FLR methods and by virtue
of the detection of extraordinary points in the Ninomiya scheme.
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Table IV. Comparison with the Venter and Laurie method by 32 problems

ERROR REQUIREMENT 1.0e−07

No Integral Exact Venter-Laurie AQN9D

P O C N error

A1
R 100
1 dx/x 2 log10 153 63 63 77 9.0e−10

A2 Kahaner.5 93 31 31 25 5.0e−10

A3 Kahaner.12 33 15 15 11 4.4e−16

A4
R 4
−4

dx/(1 + x2) 2 tan−1 4 153 127 77 61 1.1e−08

A5 Kahaner.1 33 31 31 19 0.0e+00

A6
R π/2
0 dx/(1 + sin2 x) π

√
2/4 33 31 31 21 5.8e−10

A7 1
120

R 5
0

Q5
k=1(x − k)dx − 47.5

144
33 15 15 11 0.0e+00

A8
R 1
−1

( 23
25

cosh x − cos x)dx (∗1) 33 15 15 11 3.8e−14

B9 Kahaner.3 183 63 63 111 2.5e−12

B10
R 1
−1 dx/

√
1 − x2 π 2193 8895 2205 341 1.1e−09

B11
R 1
0

p

|x2 − 0.25|dx (∗2) 363 381 141 281 1.1e−09

B12 Kahaner.19 483 1065 495 111 3.5e−11

B13
R 1
0 log(sin(πx)) dx − log 2 963 2385 975 201 3.7e−10

B14
R 1
0

√
x log x dx −4/9 243 127 127 201 6.6e−11

B15
R 1
0 |x − 0.4| dx 0.26 213 1207 273 121 1.9e−10

B16
R 1
0

e−2|x−0.4|dx (∗3) 213 1207 273 121 3.8e−10

B17
R 2
1

10−4

(x−1.4)2+10−8
dx (∗4) 603 2733 457 255 2.2e−09

B18
R 1
0

log |x − 0.3| dx (∗5) 603 3843 615 289 6.4e−09

C19
R 1
0

1
(x+0.01)5

dx (∗6) 183 127 123 189 3.7e−09

C20
R 1
0

1√
x+0.0001

dx (∗7) 333 255 213 129 1.8e−10

C21
R 1
0

1
x+0.0001

dx log10001 363 525 307 157 1.1e−09

C22
R 1
0

1
(230x−30)2+1

dx (∗8) 273 953 229 123 2.7e−10

C23
R 1
0

1
x+0.01

dx log101 153 63 63 77 2.7e−10

C24
R 10
0

50
π(1+2500x2)

dx tan−1 500
π

273 255 199 97 3.6e−10

D25 Kahaner.9 603 255 309 181 2.5e−10

D26 Kahaner.13 2793 255 309 567 3.0e−09

D27
R 2π
0 x sin(30x) cos xdx − 60

899
π 2289 255 721 459 9.1e−10

D28
R 1
0

f1(x) dx −20π/99 903 127 233 185 2.2e−11

D29
R 2π
0 e−x sin(10x) dx 1−e−2π

10.1
513 63 185 143 1.0e−10

E30
R 1
0

f2(x) dx 1.95 1113 8197 1173 471 2.8e−09

E31
R 1
0 f3(x) dx (∗9) 543 4035 555 251 5.1e−10

E32 Kahaner.2 603 4447 615 251 1.8e−09

average number of function evaluations → 549 1314 348 173

P, O and C denote PART, ORDER and CHOICE, respectively.

(∗1) 46
25

sinh 1 − 2 sin 1 (∗2) π
16

+
√

3
4

− log(2+
√

3)
8

(∗3) 1 − e−0.8+e−1.2

2

(∗4) tan−1 6000 + tan−1 4000 (∗5) 0.3 log(0.3) + 0.7 log(0.7) − 1

(∗6) {108 − (1.01)−4}/4 (∗7) 2
√

1.0001 − 1
50

(∗8) tan−1 200 +tan−1 30
230

(∗9) 0.4 + e − e0.4
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4. Integrals of oscillatory functions (Problems 9, 13, 17 and 18) are
difficult for adaptive routines. The present AQN9D copes with these
problems better than other routines except for the Problems 13 and
17 with ε = 10−9.

Venter and Laurie (2002) computes 32 problems shown in their paper
with tolerance ε = 10−7. We compare the present method with their re-
sults in Table IV, where the numbers of function evaluations required to
satisfy the given tolerance are shown in the fourth to seventh columns.
In Table IV, f1(x), f2(x) and f3(x) are given, respectively, by

f1(x) = 4π2x sin(20πx) cos(2πx),

f2(x) =





x, x ≤ 0.1
x + 1, 0.1 < x ≤ 0.45
x + 2, x > 0.45,

f3(x) =

{
1, x < 0.4
ex, x ≥ 0.4.

Table IV shows that the present method is effective for four types
of integrands, Group A (smooth), B (singular), C (peak) and E (dis-
continuous) except for A1, B9, B11, B14, C19, C23, and D26 ∼ D29
(oscillatory).
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