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We investigate a state discrimination problem which interpolates minimum error and unambiguous discrimi-
nation by introducing a margin for the probability of error. We closely analyze discrimination of two pure states
with general occurrence probabilities. The optimal measurements are classified into three types. One of the
three types of measurement is optimal depending on parameters �occurrence probabilities and error margin�.
We determine the three domains in the parameter space and the optimal discrimination success probability in
each domain in a fully analytic form. It is also shown that when the states to be discriminated are multipartite,
the optimal success probability can be attained by local operations and classical communication. For discrimi-
nation of two mixed states, an upper bound of the optimal success probability is obtained.
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I. INTRODUCTION

Distinguishing quantum states in various situations is a
fundamental and highly nontrivial problem in quantum infor-
mation theory. This is because quantum measurement is sta-
tistical in nature and it generally destroys the state of the
system to be measured.

Quantum state discrimination �1� is one of such problems.
In this problem, we are given an unknown quantum state �,
which is chosen from a set of known states ��a� with some
known occurrence probabilities. The task is to find the opti-
mal measurement scheme to identify the given state � with
one in the set ��a�. Two settings have been commonly inves-
tigated. In minimum-error discrimination, the discrimination
success probability is maximized without any constraint on
the probability of erroneous results �2�. In unambiguous dis-
crimination, however, the success probability is maximized
under the condition that measurement should not produce
erroneous results, which is possible by allowing an inconclu-
sive result “I don’t know” �3–6�. Other interesting alternative
approaches include a maximum-confidence measurement
analyzed in Ref. �7� and the scheme considered in Refs.
�8–11�, in which the probability of correct discrimination is
maximized while the rate of inconclusive results is fixed.

We consider a problem of maximizing the success prob-
ability under the condition that the probability of error
should not exceed a certain error margin m �12,13�. It is clear
that unambiguous discrimination is formulated as the case of
m=0, while minimum-error discrimination corresponds to
the case of m=1. By controlling the error margin, this
scheme continuously interpolates the minimum-error and un-
ambiguous discrimination problems. Touzel, Adamson, and
Steinberg �12� compared the numerical results of projective
and positive operator-valued measure �POVM� measure-
ments in this scheme. In our previous paper �13�, we ana-
lyzed discrimination with error margin between two pure
states with equal occurrence probabilities and obtained the
optimal success probability in a closed analytic form.

In this paper, we extend the analysis of our previous paper
�13� to the case of general occurrence probabilities. A new
feature is that the two-dimensional parameter space consist-
ing of occurrence probabilities and the error margin is di-

vided into three domains. The types of optimal measurement
differ depending on the domain. Suppose the error margin is
so large that the constraint on the probability of error is in-
active. Then, the optimal measurement is expected to be that
of minimum-error discrimination. Hereafter, the domain
where this is the case is called minimum-error domain. To
see what happens when the error margin is small, let us recall
the results of unambiguous discrimination �m=0�. If the oc-
currence probability of one of the states is sufficiently small,
the optimal measurement produces only two outcomes omit-
ting this state. For general error margin, this is expected to
happen in a domain of the parameter space, which we call
single-state domain. Intermediate domain is the one where
probabilities of three measurement outcomes are nonzero.

The main purpose of this paper is to determine these three
domains and the optimal success probability in each domain
in a fully analytic form. The problem is formulated and the
main results are presented in Sec. II. Derivation of the results
is detailed in Secs. III and IV.

We can consider two types of error margin for the prob-
ability of error. One is the constraint on the mean probability
of error, which will be discussed first. The other is the con-
straint on conditional error probabilities. In Sec. V, we estab-
lish a relation between the optimal success probabilities of
the two types of constraint. We also discuss discrimination of
two mixed states. In Sec. VI, we show that an upper bound
of the success probability for two mixed states can easily be
obtained in terms of the optimal success probability of two
pure states.

II. PROBLEM AND SOLUTION

We consider the discrimination problem between two pure
states �1= ��1�	�1� and �2= ��2�	�2� with occurrence prob-
abilities �1 and �2, respectively. To avoid trivial exceptional
cases, we assume that �1�0 and �2�0. We also assume that
the two states are linearly independent and we work in the
two-dimensional subspace V spanned by these two states.
The measurement is described by a positive operator-valued
measure on V, which consists of three elements �E���=1

3 .
Measurement outcome labeled by �=1 or 2 means that the
given input state is identified with state ��. Element E3 pro-
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duces the inconclusive result. Let us denote by P�a,E�
the

joint probability that the given state is �a�a=1,2� and the
measurement outcome is �. The probability P�a,E�

is given
by

P�a,E�
= �a tr E��a.

The discrimination success probability p� and the mean prob-
ability of error p� are given by

p� 
 P�1,E1
+ P�2,E2

= �1 tr E1�1 + �2 tr E2�2, �1�

p� 
 P�1,E2
+ P�2,E1

= �1 tr E2�1 + �2 tr E1�2. �2�

We require that the mean probability of error p� must not
exceed a certain error margin m�0�m�1�. Then, the task is
to maximize the success probability p� under the conditions:

E1 � 0, E2 � 0, E3 � 0, �3a�

E1 + E2 + E3 = 1, �3b�

p� � m , �3c�

where Eqs. �3a� and �3b� are the usual conditions for a
POVM.

This problem can be formulated as one of semidefinite
programming �SDP�. See Ref. �14� for a general review and
Refs. �15,16� for applications of SDP to quantum-state dis-
crimination. According to the general theory of SDP, we can
write the necessary and sufficient conditions for the optimal
POVM. For our purpose, it suffices to see that they are
sufficient conditions.

Suppose a Hermitian operator Y acting on V and a real
number y satisfy conditions

Y � 0, �4a�

Y � �1�1 − y�2�2, �4b�

Y � �2�2 − y�1�1, �4c�

y � 0. �4d�

It is easy to show that

d 
 tr Y + my , �5�

gives an upper bound for the success probability p�, because

p� = �1 tr E1�1 + �2 tr E2�2

� tr E1�Y + y�2�2� + tr E2�Y + y�1�1�

= tr�E1 + E2�Y + yp�

� tr Y + ym = d .

It is clear that this upper bound is attained if and only if the
following relations hold:

E1�Y − ��1�1 − y�2�2�� = 0, �6a�

E2�Y − ��2�2 − y�1�1�� = 0, �6b�

E3Y = 0, �6c�

y�m − p�� = 0. �6d�

Thus, the set of equations given by Eqs. �3�, �4�, and �6� is a
sufficient condition for an optimal solution. As we will see,
we can construct a solution satisfying this condition for any
parameters: �a ,m and 	�1 ��2�. The general theory SDP
shows it is also a necessary condition �14–16�. Minimizing d
under conditions Eqs. �4� is called dual problem, whereas the
original problem of maximizing p� under conditions Eqs. �3�
is referred to as primal problem.

Let us begin by looking at ranks of optimal POVM ele-
ments, which are operators on the two-dimensional space V.
We note that they are of rank 1 at most. This can be seen in
the following way. Suppose that E3 is of rank 2. Condition
Eq. �6c� requires that Y =0. Then, from Eqs. �4b� and �4c�,
we find y�2�2��1�1 and y�1�1��2�2. It is easy to see that
these inequalities contradict the assumption that the two
states are linearly independent. Next, suppose that E1 is of
rank 2. From Eq. �6a�, we have Y =�1�1−y�2�2. Then, Eqs.
�4a� and �4c� require that �1�1�y�2�2 and �1�1��2�2,
which are again inconsistent with the linear independence of
the two states and the assumption that �2�0. It is clear that
the rank of E2 is also 1 at most.

As stated in Sec. I, there are three types of measurements,
one of which becomes optimal depending on domains of the
parameter space of occurrence probabilities and error mar-
gin. This classification can be done according to the ranks of
POVM. In the minimum-error domain, the optimal POVM is
that of minimum-error discrimination, which implies that
ranks of E1 and E2 is 1 while E3=0. In the single-state do-
main, optimal measurement produces only two outcomes
omitting one of the two states. In this case, either E1 or E2 is
0 and the remaining two POVM elements are of rank 1. The
intermediate domain is where all POVM elements are of
rank 1 and probabilities of obtaining the three outcomes are
nonzero.

In what follows, we present the main results first, leaving
their derivation to subsequent sections. We assume that �1
��2 without loss of generality. To make expressions
simpler, we define

S 
 �	�1��2��2, �7�

T 
 1 − �	�1��2��2. �8�

The parameter space is divided into the following three
domains:

mc � m � 1 �minimum-error domain� ,

mc� � m � mc �intermediate domain� ,

0 � m � mc� �single-state domain� ,

where two critical error margins mc and mc� are defined by

mc 

1

2
�1 − �1 – 4�1�2S� , �9�
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mc� 
 ���1 − ��1�2S�2

1 – 2��1�2S
��1 � �2S� ,

0 ��1 � �2S� .
 �10�

Figure 1 depicts the three domains in the case of �S
= �	�1 ��2��=0.9.

The optimal discrimination success probability in each
domain is found to be

pmax =�
1

2
�1 + �1 – 4�1�2S� �mc � m � 1� ,

��m + �1 – 2��1�2S�2 �mc� � m � mc� ,

�2��m

�1

S +��1 − m

�1

T�2

�0 � m � mc�� . 
�11�

The critical margin mc is actually the mean error probability
of optimal minimum-error discrimination. If mc�m, the con-
straint on the probability of error is inactive. This is the
reason why pmax in the minimum-error domain is given by
that of minimum-error discrimination. In Fig. 2, we plot the
optimal success probability pmax and tr E1 against error mar-
gin m for a fixed �1. The plot of tr E1 clearly shows the
border between the single-state and intermediate domains,
though the curve of pmax is smooth at m=mc�.

In unambiguous discrimination �m=0�, for a sufficiently
small �1, the optimal measurement is always of the single-
state type. Intuitively, this appears reasonable. However, Fig.
1 shows that this is no longer true for a finite error margin.
For example, fix m to be around 0.06 and vary �1 from 0.5 to
0. Then, the type of optimal measurement varies in a non-
trivial way: from the intermediate to single-state, intermedi-
ate, and minimum-error type. Figure 3 displays a three-
dimensional overview of the optimal success probability.

III. INTERMEDIATE DOMAIN

In this section, we construct a solution where all POVM
elements E1, E2, and E3 are nonzero and of rank 1. The

attainability conditions given by Eqs. �6a�–�6c� imply that
positive semidefinite operators

Y1 
 Y − ��1�1 − y�2�2� ,

Y2 
 Y − ��2�2 − y�1�1� ,

and Y are all of rank 1. It is convenient to use the Bloch
vector representation for �a and other operators acting on V.
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FIG. 1. �Color online� The three domains in the parameter space
of occurrence probability �1 and error margin m: minimum-error
domain, intermediate domain, and single-state domain. Fidelity
�	�1 ��2�� is taken to be 0.9.
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FIG. 2. �Color online� The optimal success probability pmax

�upper part� and tr E1 �lower part� vs error margin m. The occur-
rence probability �1 is 0.3 and fidelity �	�1 ��2�� is 0.9.
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FIG. 3. �Color online� Three-dimensional plot of the optimal
success probability pmax vs occurrence probability �1 and error
margin m. Fidelity �	�1 ��2�� is taken to be 0.9.
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�a =
1 + na · �

2
�a = 1,2� ,

where �= ��x ,�y ,�z� are Pauli’s matrices. Writing

Y = 	 + � · � ,

we have

Y1 = 	 −
�1 − y�2

2
+ �� −

a1

2
� · � ,

Y2 = 	 −
�2 − y�1

2
+ �� −

a2

2
� · � ,

where we introduced two vectors a1 and a2 defined to be

a1 = �1n1 − y�2n2, �12�

a2 = �2n2 − y�1n1. �13�

Since the smaller eigenvalues of operators Y1, Y2, and Y are
all zero, we obtain the following three equations for 	 and �:

	 −
�1 − y�2

2
= �� −

a1

2
� , �14a�

	 −
�2 − y�1

2
= �� −

a2

2
� , �14b�

	 = ��� . �14c�

Solving Eqs. �14� requires a rather long calculation. It turns
out that parameter y must satisfy y�1 and vector � is given
by

� =
y

2�y − 1����1 
��1�2

S
�n1 + ��2 
��1�2

S
�n2� ,

�15�

and 	 is given by

	 = ��� =
y

2�y − 1�
�1 
 2��1�2S� . �16�

Now that we have Y and y satisfying Eqs. �4�, we obtain an
upper bound for the success probability by calculating d
=tr Y +ym.

d = tr Y + ym =
y

y − 1
�1 
 2��1�2S� + my . �17�

We determine parameter y so that the upper bound d is mini-
mized, which leads to

d = ��m + �1 
 2��1�2S�2, �18�

y = 1 +
�1 
 2��1�2S

�m
. �19�

As to the double signs in the above equations, we take a
negative one to obtain a smaller upper bound. Correspond-

ingly, a negative sign is taken also in double signs of Eqs.
�15� and �16� hereafter.

The attainability conditions given by Eqs. �6a�–�6c� re-
quire that E1, E2, and E3 take the following form:

E� = ������� − �� · ��, �� = 1,2,3� ,

where we defined

�1 
 � −
1

2
a1, �2 
 � −

1

2
a2, �3 
 � .

The question is whether positive constants �1, �2, and �3 can
be chosen so that the set �E1 ,E2 ,E3� respects the complete-
ness condition of POVM given in Eq. �3b�. This is possible if
and only if a linear relation with positive coefficients exists
for three vectors �1, �2, and �3.

c1�1 + c2�2 + c3�3 = 0, �c1,c2,c3 � 0� .

If such a linear relation exists, coefficients �� can be con-
structed as ��=�c� with an overall positive factor � deter-
mined so that ��������=1.

Since each of the three vectors is expressed by the two
Bloch vectors n1 and n2, a linear relation, which is unique up
to an overall factor, is straightforwardly found, with coeffi-
cients given by

c1 =
y

y + 1��m −
��1�2S − �1

�1 – 2��1�2S
� ,

c2 =
y

y + 1��m −
��1�2S − �2

�1 – 2��1�2S
� ,

c3 =��1�2S

m
− �m − �1 – 2��1�2S .

Signs of c� vary depending on �1, �2, S, and m. Remember
that we assumed �1��2. Then c2 is always positive. We find
that c1 is positive if m�mc� and c3 is positive if m�mc, with
mc and mc� defined in Eqs. �9� and �10�, respectively. Thus,
the set �E1 ,E2 ,E3� is a POVM if the error margin is in the
range mc��m�mc.

Remaining conditions are Eq. �3c� and �6d�, which are
reduced to p�=m since y�1. We can explicitly verify that
the relation p�=m holds after a long calculation by using the
POVM constructed above. This is not a coincidence, but a
consequence of how we determined parameter y. Parameter
y was determined so that the upper bound d given by Eq.
�17� is minimized,

�

�y
d =

�

�y
tr Y + m = 0.

We can show that �
�y tr Y =−p�, which means that minimiza-

tion of d leads to the relation p�=m. This can be seen in the
following way. Suppose two positive semidefinite operators
A�y� and B�y� depend on a variable y and satisfy A�y�B�y�
=0. Then we can show tr A�y�B��y�=0. To prove this, we
define a function f�x� to be
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f�x� 
 tr A�y�B�y + x� .

Note that f�0�=0 while f�x��0 for any x, which implies that
f�x� has a minimum at x=0. From f��0�=0, the desired result
immediately follows. Now, operators Y1, Y2, Y and POVM
elements E� are all positive semidefinite and satisfy E1Y1
=E2Y2=E3Y =0. We therefore obtain

�

�y
tr Y = tr E1

�Y

�y
+ tr E2

�Y

�y
+ tr E3

�Y

�y

= tr E1
�Y1

�y
+ tr E2

�Y2

�y
+ tr E3

�Y

�y
− p�

= − p�.

Thus, if error margin m is in the range mc��m�mc, the
upper bound of Eq. �18� is attained and the maximum suc-
cess probability is given by

pmax = ��m + �1 – 2��1�2S�2. �20�

By using the optimal POVM, we find that the following sym-
metries turn out to hold:

P�2�E1
= P�1�E2

, �21�

P�1�E3
= P�2�E3

, �22�

where we introduced conditional probabilities defined by

P�a�E�



P�a,E�

PE�

, PE�

 P�1,E�

+ P�2,E�
.

This is noteworthy, since in the problem, there is no apparent
symmetry between �1 and �2 with general occurrence prob-
abilities. The symmetry between two conditional error prob-
abilities given by Eq. �21� will be important in Sec. V.

Before concluding the section, we present a simple argu-
ment to clarify how these symmetries emerge. Let us define
two vectors C and X to be

C 
 ��P�1,E1
,�P�2,E2

� ,

X 
 ��P�2,E1
,�P�1,E2

� .

The success probability p� is then given by �C�2. By the tri-
angle inequality we observe

�p� = �C� � �X� + �C − X� . �23�

Note �X�=�p�, which must not exceed �m. An upper bound
of �C−X� can be determined in the following way:

�C − X�2 = C2 + X2 − 2C · X

= 1 − P�1,E3
− P�2,E3

− 2C · X

� 1 – 2��P�1,E3
P�2,E3

+ C · X�

= 1 – 2��1�2�
�=1

3

�q�
�1�q�

�2�,

where we used the inequality of arithmetic and geometric
means

P�1,E3
+ P�2,E3

� 2�P�1,E3
P�2,E3

, �24�

and we defined two probability distributions q�
�1� and q�

�2� by

q�
�a� 
 tr �aE��a = 1,2, � = 1,2,3� .

Expression ��=1
3 �q�

�1�q�
�2� is the fidelity of two classical prob-

ability distributions q�
�1� and q�

�2� of obtaining measurement
outcome � for the two state �1 and �2. This classical fidelity
is known to be lower bounded by the quantum fidelity of the
two states �	�1 ��2��=�S �17�. Thus, we obtain an upper
bound for p� as

p� � ��m + �1 – 2��1�2S�2.

We notice that this is the attainable maximum given by Eq.
�20�. Consequently, equality must holds in all inequalities
used to obtain this upper bound. Among them, equality of the
triangle inequality in Eq. �23� implies vectors C and X are in
the same direction, which immediately leads to the symmetry
of Eq. �21�. Equality of inequality �24� requires the relation
of Eq. �22�.

IV. SINGLE-STATE DOMAIN

In unambiguous discrimination �m=0�, omitting one of
the states to be discriminated is optimal if its occurrence
probability is sufficiently small. In discrimination with gen-
eral error margin, a similar situation occurs in a domain of
parameters ��1 and m�, which we call single-state domain. In
this section, we will determine the optimal success probabil-
ity in the single-state domain.

Assuming �1��2, we search for optimal POVM with
E1=0. Remember that all POVM elements are of rank 1 at
most. We immediately see that E2 and E3 must constitute a
projective measurement with respect to a set of orthonormal
states �f� and �−f�, with f being a unit Bloch vector to be
determined.

E2 = �f�	f� , �25�

E3 = �− f�	− f� . �26�

Now look at the attainability conditions Eq. �6�. Equation
�6a� is trivially satisfied. Equations �6b� and �6c� require that

Y = �+�f�	f� , �27�

Y − ��2�2 − y�1�1� = − �−�− f�	− f� , �28�

where �+ and �− are constants. We see that �+�0 and �−
�0 from upper bound conditions Eqs. �4a� and �4c�. Elimi-
nating Y from Eqs. �27� and �28�, we find

�2�2 − y�1�1 = �+�f�	f� + �−�− f�	− f� ,

which is the spectral decomposition of operator �2�2
−y�1�1. This shows that �+ and �− are the positive and nega-
tive eigenvalues with eigenstates �f� and �−f�, respectively.

DISCRIMINATION WITH ERROR MARGIN BETWEEN TWO… PHYSICAL REVIEW A 80, 052322 �2009�

052322-5



We thus obtain �+, �−, and f in terms of Bloch vectors n1 and
n2.

�
 =
1

2
��2 − y�1� 


1

2
�a2� , �29�

f =
a2

�a2�
, �30�

where a2=�2n2−y�1n1 as defined in Eq. �13�.
Parameter y still remains to be determined. This can be

done by requiring conditions Eqs. �3c�, �4b�, �4d�, and �6d�,
which have not been checked so far.

The positivity of Y − ��1�1−y�2�2� of Eq. �4b� can be
expressed as

�+ − ��1 − y�2� � ��+
a2

�a2�
− a1� ,

where a1=�1n1−y�2n2 and a2=�2n2−y�1n1. After a rather
involved calculation, we find that this condition together
with positivity of y, Eq. �4d�, imply the occurrence probabili-
ties must satisfy an inequality given by

�1 � �2S , �31�

and parameter y an inequality given by

y � 1 +

�1 – 2��1�2S��1 +��2S

�1
�

�2S − �1
. �32�

The remaining conditions Eqs. �3c� and �6d� are simply re-
duced to a single equation p�=m since y�1 by Eq. �32�.
The average probability of error p� is calculated as

p� = �1 tr E2�1 = �1
1 + f · n1

2
,

which should be equated to error margin m. This establishes
a relation between parameter y and error margin m.

y =
�2

�1
�T − S + �ST

�1 − 2m
�m��1 − m�

� . �33�

We can now translate the allowed range of parameter y given
in Eq. �32� to that of error margin m. We find that the al-
lowed range of error margin is given by

0 � m �
��1 − ��1�2S�2

1 – 2��1�2S
. �34�

Combining this with the condition �31�, we see that the
single-state domain is specified by inequality 0�m�mc�,
with mc� defined in Eq. �10�.

The optimal success probability in the single-state domain
is obtained by calculating d=tr Y +ym.

pmax = �2��m

�1
S +��1 − m

�1
T�2

. �35�

Note that, when m=0, this reproduces the well-known result
p�

max=�2�1−S�=�2�1− �	�1 ��2��2� for unambiguous dis-
crimination in the case of �1��2S.

We assumed that �1��2. For the case of �1��2, it is
clear that there is also a similar single-state domain, where
E2 is zero and state �2 is omitted.

V. WEAK AND STRONG ERROR-MARGIN CONDITIONS

Until this point, we considered the discrimination problem
with an error margin imposed on the average probability of
error p�. We can consider a different way of imposing an
error margin. Suppose the measurement outcome is �=1.
The probability of error in this case is the conditional prob-
ability P�2�E1

. In this section, we consider a discrimination
problem with the conditions that the two conditional error
probabilities must not exceed a certain error margin m.

P�2�E1
� m , �36a�

P�1�E2
� m . �36b�

These conditions are stronger than the error-margin condi-
tion, Eq. �3c�, considered in preceding sections in the sense
that Eq. �3c� follows from Eqs. �36�.

p� = P�2,E1
+ P�1,E2

= P�2�E1
PE1

+ P�1�E2
PE2

� m�PE1
+ PE2

� � m .

We call the conditions given by Eqs. �36� and �3c� strong and
weak error-margin conditions, respectively.

For equal occurrence probabilities, optimal solutions have
already been obtained for both the weak and strong error-
margin conditions �13�. In the following, we will establish a
relation between optimal solutions of the two error-margin
conditions for general occurrence probabilities.

In order to distinguish the two schemes, “strong” and
“weak,” we use superscripts S and W, respectively. Let us
start with the optimal POVM E�

S�mS� with strong error-
margin mS. Suppose we calculate average error probability
by using E�

S�mS�, which we denote by p�
S �mS�. Using condi-

tional error probabilities, we observe

p�
S �mS� = P�2,E1

S �mS� + P�1,E2

S �mS�

= P�2�E1

S �mS�PE1

S �mS�

+ P�1�E2

S �mS�PE2

S �mS�

� mS�PE1

S �mS� + PE2

S �mS��

= mS�pmax
S �mS� + p�

S �mS�� ,

from which it follows that

p�
S �mS� �

mS

1 − mS pmax
S �mS� .

This implies that the optimal POVM E�
S�mS� with strong

error-margin mS satisfies the weak error-margin condition
with mW= mS

1−mS pmax
S �mS�. Consequently, we obtain an in-

equality for two optimal success probabilities pmax
S and pmax

W .
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pmax
S �mS� � pmax

W � mS

1 − mS pmax
S �mS�� . �37�

Note that the relation pmax
S �m�� pmax

W �m� holds for a common
value of error margin m, because the strong error-margin
conditions are stronger than the weak error-margin condition.
Here, however, inequality �37� involves error margins of dif-
ferent values, and it will be shown that equality actually
holds in this inequality.

We can derive another inequality for the two optimal suc-
cess probabilities. Let us take the optimal POVM E�

W�mW�
satisfying a weak error margin mW. Remember that the two
conditional probabilities of error are equal in the minimum-
error and intermediate domains; P�2�E1

W = P�1�E2

W . In the single-
state domain, one of the two conditional error probabilities is
not defined. However, the following relations still hold with
a constant :

P�2,E1

W �mW� = PE1

W�mW� ,

P�1,E2

W �mW� = PE2

W�mW� .

Adding these two expressions, we obtain

p�
W�mW� = �PE1

W�mW� + PE2

W�mW�� = �pmax
W �mW� + p�

W�mW�� ,

from which it follows that

 =
p�

W�mW�
pmax

W �mW� + p�
W�mW�

�
mW

pmax
W �mW� + mW .

This shows that conditional error probabilities in the weak
error-margin scheme satisfy the strong error-margin condi-
tions with mS= mW

pmax
W �mW�+mW . We, therefore, obtain another in-

equality given by

pmax
W �mW� � pmax

S � mW

pmax
W �mW� + mW� . �38�

Actually equality holds in inequalities �37� and �38�. This
can be seen by their repeated uses as follows:

pmax
S �mS�

� pmax
W � mS

1 − mS pmax
S �mS��

� pmax
S �

mS

1 − mS pmax
S �mS�

pmax
W � mS

1 − mS pmax
S �mS�� +

mS

1 − mS pmax
S �mS�

� pmax
S �

mS

1 − mS pmax
S �mS�

pmax
S �mS� +

mS

1 − mS pmax
S �mS��

= pmax
S �mS� .

In the above derivation, we used the fact that the success
probability is an increasing function of error margin.

Thus, if two error margins mS and mW are related by

mS =
mW

pmax
W �mW� + mW , �39�

or equivalently by

mW =
mS

1 − mS pmax
S �mS� , �40�

the two optimal success probabilities are equal.

pmax
S �mS� = pmax

W �mW� . �41�

When one of the optimal success probabilities is known, the
other can be determined by these equations. We note that the
optimal POVMs are also related in the same way: E�

S�mS�
=E�

W�mW�.
Using the above relation, we obtain the optimal success

probability with the strong error-margin conditions to be

pmax
S =�

1

2
�1 + �1 – 4�1�2S� �mc � m � 1� ,

Am�1 – 2��1�2S� �mc� � m � mc� ,

�1�2�1 − m��1 − S�
m�2 + �1 − m��1 − 2�m�1 − m��1�2S

�0 � m � mc�� , 
where Am is given by

Am =
1 − m

�1 – 2m�2 �1 + 2�m�1 − m�� .

We assumed �1��2, and mc and mc� are defined by
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mc 

1

2
�1 − �1 – 4�1�2S� ,

mc� 
�
��1 − ��1�2S�2

��2 − ��1�2S�2 + ��1 − ��1�2S�2

��1 � �2S� ,

0��1 � �2S� .


VI. UPPER BOUND FOR MIXED STATE
DISCRIMINATION WITH ERROR MARGIN

Let us consider that two states to be discriminated, �1 and
�2, are mixed. The maximum success probability is known
for minimum-error discrimination �m=1�. For unambiguous
discrimination �m=0� of general two mixed states, however,
no analytic result for the maximum success probability is
known. In Ref. �18�, Rudolph et al. presented an simple up-
per bound for the success probability,

pmax��1,�2� � �1 – 2��1�2F��1,�2� ��1 � �2F��1,�2�2� ,

�2�1 − F��1,�2�2� ��1 � �2F��1,�2�2� .
�

�42�

where F��1 ,�2�=tr���1�2
��1�1/2 is the fidelity of states �1

and �2. Later, the conditions for the two mixed states to reach
the upper bound were analyzed and a new series of upper
bounds was also found �see e.g., Refs. �19–22��. For general
error margin, a closed form of the maximum success prob-
ability is also hard to obtain as in unambiguous discrimina-
tion. However, it is likely that there exists an upper bound
similar to Eq. �42�, since it is expressed in terms of the fi-
delity of the two states and their occurrence probabilities. In
the following, we will show that the method of Rudolph et
al. can be applied to the case of general margin and an upper
bound for success probability can easily be obtained by using
the results of pure-state discrimination.

Suppose states to be discriminated are prepared in system
Q, and purify the states by introducing another system R
�17�.

�1
Q = trR��1

QR�	�1
QR� , �43�

�2
Q = trR��2

QR�	�2
QR� . �44�

We assume that pure states ��1
QR� and ��2

QR� are chosen so
that

�	�1
QR��2

QR�� = F��1,�2� ,

which is always possible by Uhlmann’s theorem �23�.
Consider a hypothetical discrimination problem between

pure states ��1
QR� and ��2

QR� with occurrence probability �1
and �2, respectively. We take the weak error-margin condi-
tion. The task is to maximize the success probability

p� 
 �1 trQR E1
QR��1

QR�	�1
QR� + �2 trQR E2

QR��2
QR�	�2

QR� ,
�45�

under the condition that the average probability of error

p� 
 �1 trQR E2
QR��1

QR�	�1
QR� + �2 trQR E1

QR��2
QR�	�2

QR� ,
�46�

must not exceed error margin m. The maximum success
probability for two pure states ��1� and ��2� is a function of
�	�1 ��2�� and independent of the dimension. We denote it by
pmax

pure��	�1 ��2���. The maximum success probability for the
hypothetical discrimination problem is then given by
pmax

pure�F��1 ,�2��.
Let us impose an extra constraint on POVM E�

QR in this
discrimination problem,

E�
QR = E�

Q
� 1R, � = 1,2,3. �47�

By this additional condition, the success probability �Eq.
�45�� and the average error probability �Eq. �46�� are reduced
to

p� = �1 trQ E1
Q�1

Q + �2 trQ E2
Q�2

Q,

p� = �1 trQ E2
Q�1

Q + �2 trQ E1
Q�2

Q,

and the problem becomes equivalent to discrimination be-
tween the two mixed states �1 and �2 with occurrence prob-
abilities �1 and �2. It is clear that any extra condition on
POVM never increases the maximum success probability.
Thus, we conclude that the success probability for two mixed
states is upper bounded by the maximum pure-state success
probability with �	�1 ��2�� replaced by the fidelity of the two
mixed states.

pmax��1,�2� � pmax
pure�F��1,�2�� .

Using the results of pure-state discrimination given in Eq.
�11�, we obtain

pmax��1,�2� ��
��m + �1 – 2��1�2F��1,�2��

2

�mc� � m � mc� ,

�2��m

n1
F��1,�2� +��1 − m

�1
�1 − F��1,�2�2��2

�0 � m � mc�� ,
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where mc and mc� are given by

mc =
1

2
�1 − �1 – 4�1�2F��1,�2�2�

mc� = � ��1 − ��1�2F��1,�2��2

1 – 2��1�2F��1,�2�
��1 � �2F��1,�2�2� ,

0 ��1 � �2F��1,�2�2� ,


We assumed �1��2 as in the pure-state case.
For unambiguous discrimination �m=0�, the upper bound

is reduced to the one given in Eq. �42�. The maximum suc-
cess probability of minimum-error discrimination is known
and given by

pmax��1,�2� =
1

2
�1 + tr��1�1 − �2�2�� ,

which must not exceed our upper bound. This observation
leads to an inequality

tr��1�1 − �2�2� � �1 – 4�1�2F��1,�2�2,

which is a generalization of the well-known inequality con-
cerning the trace distance and the fidelity �17�,

1

2
tr��1 − �2� � �1 − F��1,�2�2.

VII. CONCLUDING REMARKS

In this paper, we considered a state discrimination prob-
lem which interpolates minimum-error and unambiguous
discriminations by introducing a margin for the probability

of error. In the case of two pure states with general occur-
rence probabilities, we obtained the optimal success prob-
ability in a fully analytic form.

Our final remark is about the possibility of optimal local
discrimination between two multipartite pure states. Suppose
two pure states are multipartite and generally entangled. An
interesting question is whether the parties sharing the states
can achieve the globally optimal success probability by local
operations and classical communication �LOCC�. It is known
that two pure states can be optimally discriminated by LOCC
in both the minimum-error �24,25� and unambiguous �26,27�
discrimination schemes. For general error margin, we
showed that this is also true when the occurrence probabili-
ties are equal �13�. To show this, we proved the following
general theorem �13�:

Theorem. Let V be a two-dimensional subspace of a mul-
tipartite tensor-product space H, and P be the projector onto
the subspace V. Then, for any three-element POVM
�E1 ,E2 ,E3� of V with every element being of rank 0 or 1,
there exists a one-way LOCC POVM �E1

L ,E2
L ,E3

L� of H such
that E�= PE�

LP��=1,2 ,3�.
This implies that a POVM satisfying the conditions of

Theorem can be implemented by a one-way LOCC protocol
as far as measurement for states in subspace V is concerned.
As we have seen in Sec. II, for general occurrence probabili-
ties, the optimal POVM elements are also of rank 1 at most.
Thus, for any error margin and any occurrence probabilities,
two multipartite pure states can be optimally discriminated
by LOCC.
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