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Single-layered Complex-Valued Neural Network for 
Real-Valued Classification Problems

Abstract

This paper presents two models of complex-valued neurons (CVNs) for real-valued 
classification problems, incorporating two newly-proposed activation functions, and presents 
their abilities as well as differences between them on benchmark problems. In both models, 
each real-valued input is encoded into a phase between 0 and  of a complex number of unity 
magnitude, and multiplied by a complex-valued weight. The weighted sum of inputs is fed to 
an activation function. Activation functions of both models map complex values into real 
values, and their role is to divide the net-input (weighted sum) space into multiple regions
representing the classes of input patterns. The gradient-based learning rule is derived for each 
of the activation functions. Ability of such CVNs are discussed and tested with two-class
problems, such as two and three input Boolean problems, and symmetry detection in binary 
sequences. We exhibit here that both the models can form proper boundaries for these linear 
and nonlinear problems. For solving n-class problems, a complex-valued neural network 
(CVNN) consisting of n CVNs is also considered in this paper. We tested such single-layered 
CVNNs on several real world benchmark problems. The results show that the classification 
and generalization abilities of single-layered CVNNs are comparable to the conventional 
real-valued neural networks (RVNNs) having one hidden layer. Moreover, convergence of 
CVNNs is much faster than that of RVNNs in most of the cases.

Keywords: activation function, classification, complex-valued neural networks, 
generalization, phase-encoding.



1. Introduction

Complex numbers are used to express real-world phenomena like signal’s amplitude and 

phase, and to analyze various mathematical and geometrical relationships. In order to directly 

process complex values by artificial neural networks, the complex-valued neural network 

(CVNN) as well as the complex back-propagation (CBP) algorithm have been developed [3, 

7, 8, 10, 16]. Properties of CVNN and CBP have been studied [5, 11], and CVNN is shown to 

be powerful in applications such as adaptive radar image processing [15], and optical image 

processing [4, 2]. Further extension to multi-dimensional values has been attempted as well 

[13]. Some researchers recently have applied CVNN on real-valued classification problems

too [1, 9].

There have been two approaches for the application of CVNN on real-valued classification 

problems as of our knowledge. In [9], each real-valued input is phase encoded between 0 and 

/2 of unity magnitude complex number, so that the complex-valued neuron (CVN) can

receive complex-valued inputs. The role of CVN is two-fold, aggregation and threshold 

operations. The former role is to aggregate the inputs multiplied by connection weights, and 

the latter is to determine the class label by using activation function. They showed that the 

CVN is successful to classify all two-input Boolean functions, and 245 among 256 three-

input Boolean functions. The learning algorithm, however, includes reciprocal of partial 

derivatives. When the partial derivatives go near zero and the reciprocals become very large,

the learning process may become unstable, especially when real world problems are dealt. In 

a recent work [1], a multilayer feed-forward architecture of multi-valued neuron is proposed.

The model encodes real-valued inputs by phases between 0 and 2 of unity magnitude 

complex numbers, and determines the class label by complex-valued output, based on 



output’s vicinity to the roots of unity. It has been shown that the model was able to solve the 

parity n and two spirals problems, and could perform better in “sonar” benchmark and the 

Mackey–Glass time series prediction problems.

In this paper, we propose two activation functions that map complex values to real-valued

outputs. The role of the activation functions is to divide the net-input (sum of weighted 

inputs) space into multiple regions representing the classes. Both the proposed activation 

functions are differentiable with respect to real and imaginary parts of the net-input. As a 

result, gradient-based learning rule can be derived. To present complex-valued inputs to CVN, 

real-valued inputs are phase encoded between 0 and . We will show in the following 

sections that such a CVN is able to solve linear and nonlinear classification problems such as 

two-input Boolean functions, 253 among 256 three-input Boolean functions, and symmetry 

detection in binary sequences.

To solve n-class problems, we considered a single-layered CVNN (without hidden layer) 

consisting of n CVNs described above, and formulated the learning and classification scheme. 

The single-layered CVNN has been applied and tested on various real world benchmark 

problems. Experimental results showed that generalization ability of the single-layered 

CVNN is comparable to the conventional two-layered (with one hidden layer in addition to 

input and output layer) real-valued neural network (RVNN). It is noteworthy that in the 

proposed single-layered CVNN, the architecture selection problem does not exist. In the 

multilayered RVNNs which are considered as universal approximators [6], in contrast, the 

architecture selection is crucial to achieve better generalization and faster learning abilities.



The remaining of the paper is organized as follows. In section 2, we discuss about the model 

of CVN along with the proposed activation functions. In section 3, we develop gradient-

based learning rules for training the CVNs. Section 4 discusses the ability of the single CVN

on some binary-valued classification problems. In section 5, performances of the single-

layered CVNN consisting of multiple CVNs are compared to those of the conventional two-

layered RVNN on some real world benchmark problems. Finally, section 6 gives the 

discussion and concluding remarks.

2. Complex-valued neuron (CVN) model

Since the complex-valued neuron (CVN) processes complex-valued information, it is 

necessary to map real input values to complex values for solving real-valued classification 

problems. After such mapping, the neuron processes information in a way similar to the 

conventional neuron model except that all the parameters and variables are complex-valued,

and computations are performed according to the complex algebra. As illustrated in Fig. 1, 

the neuron, therefore, first sums up the weighted complex-valued inputs and the threshold 

value to represent its internal state for the given input pattern, and then the weighted sum is 

fed to an activation function which maps the internal state (complex-valued weighted sum) to 

a real value. Here, the activation function combines the real and imaginary parts of the 

weighted sum.

2.1. Phase encoding of the inputs

This section explains how the real-valued information is presented to a CVN. Consider 

),( cX be an input example, where mRX  represents the vector for m attributes of the 

example, and  1,0c  denotes the class of the input pattern. We need a mapping mm CR  to 



process the information by CVN. One such mapping for each element of the vector X can be 

done by the following transformation.

  Rbabax  , where,,Let , then

)/()( abax  , and (1)

 sincos iez i  (2)

Here 1i . Eq. (1) is a linear transformation which maps ],[ bax to ],0[  . Then by the 

Euler’s formula, as given by Eq. (2), a complex value z is obtained. When a real variable 

moves in the interval of [a, b], the above transformation will move the complex variable z

over the upper half of a unit circle. As shown in Fig. 2, the variation on a real line is thus now 

in the variation of phase  over the unit circle.

Some facts about the transformation are mentionable. Firstly, the transformation retains 

relational property. For example, when two real values x1 and x2 hold a relation 21 xx  , the 

corresponding complex values have the same property in their phases as such,

)()( 21 zphasezphase  . Secondly, the spatial relationship between real values is also 

retained. For example, two real values x1 and x2 are farthest from each other 

when ax 1 and bx 2 . The transformed complex values 1z and 2z are also farthest from 

each other as shown in Fig. 2. Thirdly, the interval [0, ] is better than the interval [0, 2] as 

we loose the spatial relationship among the variables in the latter. For example, 

ax 1 and bx 2 will be mapped to same complex value, since 20 ii ee  . It is mentionable 

that interval [0, /2] can also be used for phase encoding. However, experiments presented in 

the section 5 and Table 9 exhibit that learning convergence is faster in case of the interval [0, 



]. Finally, the transformation can be regarded as a preprocessing step. The preprocessing is 

commonly used even in real-valued neural networks in order for mapping input values into a 

specified range, and so on. The transformation in the proposed CVN, therefore, does not 

increase any additional stage for the process with neural networks. In fact, the above 

transformation does not loose any information from the real values, rather lets a CVN to 

process the information in a more powerful way.

2.2. Activation function

When a CVN sums up inputs multiplied by the synaptic weights, the weighted sum is fed to 

an activation function to make the output bounded. In the real-valued case, activation 

functions are generally differentiable and bounded in the entire real domain, which makes it 

possible to derive gradient-based backpropagation (BP) algorithm. But from Liouville’s 

theorem, there is no complex-valued function except constant which is differentiable and 

bounded at the same time. However, this is not as frustrating as it seems. For solving real-

valued classification problems, we can combine real and imaginary parts of the weighted sum 

in some useful ways.

In this paper we propose two activation functions that map complex values to real values for 

classification problems. Their role is to divide the neuron’s net-input (sum of weighted 

inputs) space into multiple regions for identifying the classes, as is the role of the real-valued 

neuron in classification problems.

Let the net-input of a complex neuron be ivuz  , then we define two activation functions

1 and 2 by the following Eq. (3) and Eq. (4), respectively.



22 ))(())(()( vfufzf RRRC  (3)

 2)()()( vfufzf RRRC  (4)

where ))exp(1/(1)( xxfR  and Rvux ,, . Both the activation functions combine the real and 

imaginary parts, but in different ways. The real and imaginary parts are first passed through 

the same sigmoid function individually. Thus each part becomes bounded within the interval 

(0, 1). The activation function 1 in Eq. (3) gives the magnitude of the resulted complex value,

while the activation function 2 in Eq. (4) gives the square of the difference between real and 

imaginary parts. Fig. 3 illustrates the output value y of both the activation functions in the 

domain of real and imaginary parts of net-input, u and v, respectively. It is noteworthy that 

defining activation functions as above, makes it possible to compute the partial 

derivatives
u

f




 and
v

f




, which in turn makes it possible to derive gradient-based learning 

rules.

As seen in Fig. 3, both the CVNs with the proposed activation functions saturate in four 

regions. On the contrary, the real-valued sigmoid function saturates only in two regions. Thus 

a real valued neuron can solve only linearly separable problem. We show in the later sections 

that saturation in four regions of the proposed CVNs significantly improves their

classification ability.

3. Learning rule

Here we derive a gradient-descent learning rule for a CVNN consisted of multiple CVNs

described in the previous section. We deal with the CVNN without any hidden units.



Consider an m-n CVNN, where m and n are the numbers of inputs and outputs, respectively. 

Let T
mxxX ][ 1 be an m dimensional complex-valued input vector, T

kmkk wwW ][ 1 the 

complex-valued weight vector of neuron k, and θk the complex-valued bias for the kth neuron. 

To express the real and imaginary parts, let I
j

R
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the net-input zk, and the output yk of the kth neuron are given by
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and

)( kRCk zfy  (8)

If the desired output of the kth neuron is dk, then the error function to be minimized during 

the training is given by
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During the training, the biases and the weights are updated according to the following 

equations.
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where is the learning rate and jx is the complex conjugate of the complex number jx .

If the activation function is given by Eq. (3), then
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If the activation function is given by Eq. (4), then
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4. Ability of CVN

A CVN is more powerful than a real-valued neuron (RVN), since it is capable to solve 

linearly non-separable problems too. This ability is explained in this section for two and three 

input Boolean functions, and for the symmetry detection in binary sequences.

4.1. Two-input Boolean Problems

There are 16 possible Boolean functions of two inputs. Some are linearly separable, while 

others are not. A RVN can solve only linearly separable problems since it gives a straight line 

as a decision boundary. To say this equivalently, activation function of such a neuron 

saturates only in two regions. But a CVN with the proposed activation functions saturates in 

four regions and thus can achieve higher classification ability. In fact, a CVN can solve all 

the two-input Boolean functions.

First, we explain it graphically for the XOR problem. Inputs x1 and x2 in Table 1 show the 

input values after phase-encoding discussed in section 2.1. Let the weighted sum or the net-



input of the neuron be ivuxwxwz  2211 , where θ is the bias. After training the 

neuron, the net-input for each input pattern should produce the output near the desired output 

value shown in Table 1 by the mapping of )(zfy RC .

The net-inputs for the four input patterns in XOR problem and the contour diagram of output 

y are shown in Fig. 4. Among the four regions of saturation in the activation function 1 (Fig. 

4(a)), the net-inputs after training were located at three regions; upper left, lower left, and 

lower right regions, since the desired outputs were either zero or one. In case of the activation 

function 2 (Fig. 4(b)), all four regions were used. As apparent in Fig. 4, both CVNs with the 

proposed activation functions were able to solve the XOR problem, while a single RVN

cannot solve such a linearly non-separable problem. 

Parameters obtained after training, for all possible two-input Boolean functions, are given in 

Table 2. Each sequence 4321 yyyyY  denotes a Boolean function, 

where )0,0(1 fy  , )1,0(2 fy  , )0,1(3 fy   and )1,1(4 fy  . For example, the 

sequence 0110 is the XOR problem, 0001is the AND problem, 0111is the OR problem, and 

so on.

4.2. Three-input Boolean Problems

For three inputs, the number of different Boolean functions is 256. Michel et al. [9] have 

reported that their CVN model solves 245 among the 256 functions. Our proposed model of 

CVN with the activation function 2 could solve 253 functions, and 250 functions with the 

activation function 1. These impressive results are suggestive to examine the CVN, with the 

new activation functions, on more complex problems.



4.3. Symmetry detection Problem

The symmetry detection problem is to detect whether or not binary activity levels of a one-

dimensional input array is symmetrical about the center point. An example of input-output 

mapping, for the input length of three bits is shown in Table 3. It is a linearly non-separable 

problem and hence can not be solved by a single RVN. 

4.3.1. Solving with one CVN

We tested CVN on symmetry detection problems of various input lengths ranging from 2 bits 

to 10 bits. A single CVN with the proposed activation functions could solve all of the 

problems. For training the CVN, we set the target values as follows. With the activation 

function 1, the target was set to 0 if the input pattern was symmetric, and 1 if asymmetric. 

With the activation function 2, target was 1 if symmetric, and 0 if asymmetric.

Solutions for four-input problem obtained with the activation function 1 and 2 are shown in 

the contour graphs (a) and (b) in Fig. 5, respectively. Though the activation function 1 

saturates in four regions, we can expect that three regions will be used because the target 

output values are set to 0 and 1. The other region for which output is near 2 will not be used.

As expected, experimental results presented in Fig. 5(a) showed that the net-inputs for sixteen 

different input patterns were distributed in the three regions, according to symmetry and 

asymmetry, after the training. For the activation function 2, on the other hand, all four regions 

of saturation can be used, and the experimental results in Fig. 5(b) shows that the input 

patterns were distributed in four regions according to symmetry and asymmetry.

We then reversed the target output setting for both the activation functions. That is, with the 

activation function 1, the target was set to 1 if the input pattern was symmetric, and 0 if

asymmetric, while with the activation function 2, target was set to 0 if symmetric, and 1 if 



asymmetric. The CVN with the activation function 1 could solve the symmetry detection 

problem up to the length of 3 bits, and with the activation function 2 up to 5 bits. This 

degraded result can be explained by the imbalance in numbers of input patterns assigned to 

each output value. That is, as the length of inputs increases, the percentage of symmetric 

inputs among all possible input patterns decreases. For example, there are 50% symmetric 

patterns for the symmetry detection problem of 3 bits, while only 6.25% and 3.125% for that 

of 9 and 10 bits, respectively. The detailed explanation is given below.

Nonlinearity comes from the fact that input patterns having numerically far different values, 

and being spatially far different in location belong to the same class. When the same weight 

vector is multiplied with different input vectors of the same class, the weighted sum is 

different. The activation function 1 has two regions of saturation for the target value of 1 and 

only one region for the target value of 0 (Fig. 3(a)). Since most of the input patterns are 

asymmetric for higher dimensional problems having the target output 0, in case of reverse 

target setting, only one region is not enough to accommodate all asymmetric input patterns 

having numerically far different values. With the other target setting, 0 for symmetry and 1 

for asymmetry, activation function 1 could solve higher dimensional problems as there are 

two well spread regions for output values near the value of 1, and most of the input patterns 

are asymmetric having the target value of 1. The same argument can be applied to the CVN 

with the activation function 2. That is, in case of reverse target output settings (0 for 

symmetric and 1 for asymmetric),  though there are two regions of saturation for target output 

of 1, the regions are not as spread as the regions for 0, while most of the input patterns are 

asymmetric.



4.3.2. Solving with two CVNs

To solve the output encoding problem described above, one solution is to use two CVNs, 

each with opposite target output settings. If the target value for one CVN is 1, then that of the 

other CVN is 0. Output class of a given input pattern is decided according to the CVN with 

the larger output. Results of using two CVNs for the symmetry detection problems are 

summarized in Table 4. Here the average of 10 independent runs is shown. Two CVNs with 

activation function 1 could solve the symmetry detection problem up to seven bits, and 

activation function 2 up to six bits. The reason for these degraded results in comparison to 

using a single CVN is that although response from one of the CVN is near its target value, the 

output of the other neuron degrades the result more strongly. This can be seen from table 5, 

where a result of a single run for the seven-bit symmetry detection problem with the 

activation function 2 is given. Underlined outputs denote the misclassification.  Response of 

one of the neuron (neuron 2) degraded the result strongly even though the other neuron 

(neuron 1) gave the correct output.

Nevertheless, though limitations exist, a single CVN is at least more powerful than a single

RVN as it can solve linear as well as nonlinear problems to some considerable extents. Its 

applicability will be justified in the next section where we applied multiple CVNs on real 

world benchmark problems.

5. Single-layered complex-valued neural network (CVNN) on real world classification 

problems

Discussion in the previous sections is suggestive to explore the ability of multiple CVNs, 

which we call the single-layered complex-valued neural network (CVNN), on real world 



classification problems. To compare CVNN’s performance with the conventional two-layered

RVNN, both the neural networks are tested on some real world benchmark problems. We 

used PROBEN1 [14] datasets for the experiments. In this section, first we give a short 

description of the datasets, and then compare learning convergence and generalization ability 

of CVNN and RVNN.

5.1. Description of the datasets

PROBEN1 is a collection of learning problems well suited for supervised learning. Most of the 

problems are classification problems regarding diagnosis. Here we use five of them. Each of 

the problems is available in three datasets, which vary in the ordering of examples. For 

example, cancer problem consists of cancer1, cancer2 and cancer3 datasets. Short 

descriptions of these five problems are given below.

5.1.1. Cancer

This is a problem on diagnosis of breast cancer. The task is to classify a tumor as either 

benign or malignant based on cell descriptions gathered by microscopic examination. Input 

attributes are for instance the clump thickness, the uniformity of cell size and cell shape, the 

amount of marginal adhesion, and the frequency of bare nuclei. The data comprise of 9 inputs, 

2 outputs, 699 examples, of which 65.5% are benign example. This data is originally obtained 

from University of Wisconsin Hospitals, Madison, from Dr. William H. Wolberg [17].

5.1.2. Card

The task is to predict the approval or non-approval of a credit card to a customer. Each 

example represents a card application and the output describes whether the bank (or similar 

institution) granted the card or not. There are 51 inputs, 2 outputs, and 690 examples.

5.1.3. Diabetes 

This is on diagnosis of diabetes of Pima Indians. The task is to decide whether a Pima Indian 

individual is diabetes positive or not, based on personal data (age, number of times pregnant) 



and the results of medical examination (e.g. blood pressure body mass index, result of 

glucose tolerance test, etc.). It has 8 inputs, 2 outputs, and 768 examples.

5.1.4. Glass

Here the task is to classify glass types. The results of a chemical analysis of glass splinters 

(percent content of 8 different elements) plus the refractive index are used to classify the 

samples to be either float processed or non float processed building windows, vehicle 

windows, containers, tableware, or head lamps. This task is motivated by forensic needs in 

criminal investigation. The data have 9 inputs, 6 outputs, and 214 examples.

5.1.5. Soybean

The task is to recognize 19 different diseases of soybeans. The discrimination is done based 

on a description of bean (e.g. whether its size and color are normal), the plants (e.g. the size 

of spots on the leafs, whether these spots have a halo, whether plant growth is normal, 

whether roots are rotted), and information about the history of the plant’s life (whether 

changes in crop occurred in the last year or last two years, whether seeds were treated, how 

the environment temperature is). There are 35 inputs, 19 outputs, and 683 examples in the 

data.

5.2. Experimental setup

All the datasets discussed above contain real-valued data. The inputs were phase encoded as 

discussed in section 2.1.  Class labels were encoded by 1-of-n encoding for n-class problem 

using output values 0 and 1. To determine the class winner-takes-all method was used, i.e. for 

a given input pattern, the output neuron with the highest activation designated the class.

Regarding the architecture of neural networks, the single-layered CVNN consisted of n

CVNs, while two-layer RVNN architecture was selected in such a way that the number of 

parameters for both the CVNN and RVNN were nearly equal. For CVNNs, each complex-



valued weight was counted as two parameters since it has real and imaginary part. Table 6 

shows the number parameters for CVNNs and RVNNs used in the experiments.

The backpropagation algorithm was used to train the RVNN, while the learning rules

discussed in section 3 were used to train the CVNN. During the training, we kept the learning 

rate at 0.1 for both the networks. Weights and biases (in case of CVNN, real and imaginary 

parts) were initialized with random numbers from uniform distribution in the range of [-0.5, 

0.5].

We used the partitioning of the dataset into training, validation, and test sets as given in 

PROBEN1 [14]. The partitioning is shown in Table 7. We trained both the networks over the 

training set for 1000 epochs, except for the Glass and Soybean problems. During these 1000 

epochs, the weight parameters with the minimum mean squared error (MSE) over validation 

set, was stored and applied on test set. We calculated this validation error by using the same 

formulation as Eq. (16) below, except with the validation set instead of training set. 

Validation error was measured after every five epochs during the training process. For Glass

problem we trained RVNN up to 5000 epochs, and for Soybean 4000 epochs. CVNN was

trained up to 1000 epochs for all the datasets.

5.3. Learning convergence

When a neural network is trained with input patterns, the error on the training set decreases 

gradually with the epochs. We used the following formula to measure the mean squared 

training error over an epoch.


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           (16)



where,  p is the pattern number, P the total number of training patterns, and n is the number 

of output neurons.

Fig. 6 shows how the mean squared training error changed over the epochs for two-layered 

RVNN, and single-layered CVNN with both the proposed activation functions on diabetes 

dataset. For both the activation functions, CVNN converged much faster then the RVNN. 

Especially, CVNN with the activation function 2 converged faster than with the activation 

function 1. In the following section we show it quantitatively for all the datasets used in the

experiments.

5.4. Results

Here we compare the generalization ability of the single-layered CVNN and two-layered 

RVNN on the basis of misclassification on test dataset. We also compare the number of 

epochs during training to reach the minimum MSE over validation set as discussed in section 

5.3. Table 8 summarizes the results. Results were taken over 20 independent runs for each of 

the datasets.

As shown in Table 8, the test set errors obtained with the activation function 1 tended to be 

more or less similar to those with the activation function 2. For six datasets, Cancer3, 

Diabetes2, Glass1, Glass2, Glass3 and Soybean1, the average classification errors of CVNN 

were a little bit less than those of the RVNN, while for the others little a bit more than those 

of the RVNN. Single-layered CVNNs, with both the activation functions, thus exhibit 

comparable generalization ability to that of RVNNs.



Regarding the learning convergence, single-layered CVNNs required far less training cycles

(epochs), in almost all the cases, to reach the minimum validation error than the RVNN

counterpart as can be seen in Table 8. In other words, learning convergence of CVNNs is 

faster than that of the RVNN. CVNNs with the activation function 2 seem to have even faster 

convergence than that of the activation function 1 in most of the cases.

In section 2.1, we mentioned that both the interval [0, ] and [0, /2] may be used for the 

phase encoding of real-valued inputs. Table 9 shows the number epochs to reach the 

minimum validation error in both the encoding schemes, with each of the activation functions. 

As apparent from the table, the learning convergence is faster for the interval [0, ] in most of 

the cases. The difference in generalization ability (test set error) was insignificant and thus 

the results are not shown.

6. Discussion

Two new activation functions for CVNs have been proposed in this study. These are suitable 

for applying single-layered CVNN to real-valued classification problems. It is shown that 

encoding real-valued inputs into phases, and processing information in complex domain,

improves classification ability of a neuron. Capability of the proposed CVNs is illustrated by 

solving two-input Boolean functions, three-input Boolean functions, and symmetry detection 

in binary sequences of various lengths. A single-layered CVNN consisted of multiple CVNs 

with decision making in a winner-takes-all fashion is proposed and tested with real world 

benchmark problems.



We explained graphically the nature of the proposed activation functions. Both the activation 

functions have four regions of saturation. We exploited three regions for activation function 1, 

and all four regions for activation function 2, since target outputs were given either 0 or 1. 

Such saturation regions improve the classification ability of a CVN. Michel et al. [8] have 

reported that their model is able to solve 245 out of 256 three-input Boolean functions, while 

the proposed CVNs could solve 253 functions. Solving symmetry detection problem in 

binary sequences by a CVN up to six bits has been reported by Nitta [12]. We here showed

that the proposed CVN can solve up to 10 bits. However, there is a limitation of output 

encoding for high dimensional symmetry detection problems. Using two CVNs, this problem 

can be solved to a considerable extent.

The single-layered CVNN is much faster in learning than the RVNN in terms of number of 

epochs for reaching minimum validation error. Generalization ability of the single-layered 

CVNN is comparable to two-layer RVNN on real world benchmark problems. One

advantage of using such a single-layered CVNN instead of RVNN for classification problems 

is that the architecture selection problem does not exist in case of the single-layered CVNN.

Though there is no complex-valued activation function having differentiability and 

boundness at the same time in the entire complex domain, one can treat real and imaginary 

parts of net-input of a CVN individually, and then can combine them meaningfully. Also 

making dimensionality high (for example, quaternions) may be a new direction for enhancing 

the ability of neural networks. We think solving real-valued problems by CVNN more 

efficiently deserves further research.
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Table 1

Inputs

1x 2x

Output
y

01 i 01 i 0

01 i 01 i 1

01 i 01 i 1

01 i 01 i 0



Table 2

Activation 1 Activation 2Function

4321 yyyy θ w1 w2 θ w1 w2

0000 -3.61-3.61i 0.00+0.00i 0.00+0.00i -0.15+0.33i -0.19-0.28i -0.33-0.34i

0001 -2.97-2.98i -1.83-1.99i -1.83-1.99i -2.53+0.17i -0.96-2.68i 2.26-1.13i

0010 -2.97-2.98i -1.79-2.03i 1.79+2.03i 1.58-2.03i -2.69-0.74i -0.29-2.64i

0011 -1.68-1.02i -1.93-2.59i 0.00+0.00i -2.27+2.32i 2.41-2.34i 0.05+0.07i

0100 -2.97-2.97i 1.86+1.96i -1.86-1.96i -2.36+1.05i 1.03+2.74i 2.57-0.25i

0101 -1.25-1.47i 0.03-0.03i -2.36-2.14i -2.27+2.32i -0.03-0.03i 2.40-2.35i

0110 -2.83-2.81i -2.83+2.82i 2.83-2.82i -0.08-0.06i 1.72-2.24i -2.38+1.19i

0111 -1.64+0.39i -2.70-0.39i 1.61-2.90i -1.74+1.98i -1.74+1.98i 4.05-4.02i

1000 -2.95-2.96i 2.46+1.37i 2.46+1.37i -2.31+0.96i -2.48+0.33i 0.98+2.67i

1001 -2.83-2.83i -2.83+2.83i -2.83+2.83i -0.06-0.07i -2.13+2.64i -2.54+2.03i

1010 -1.66-1.05i -0.01+0.01i 1.95+2.56i 2.36-2.20i -0.08-0.08i 2.31-2.46i

1011 1.58-1.89i -1.58-2.17i 2.88-1.15i 1.50-2.17i -4.10+3.98i -1.50+2.17i

1100 -1.31-1.42i 2.30+2.19i 0.00+0.00i 2.22-2.50i 2.45-2.17i -0.07-0.03i

1101 1.81-1.91i 2.91-0.93i -1.81-1.95i -4.01+4.07i -1.99+1.74i 1.99-1.74i

1110 -1.05-0.84i 2.82-0.84i -1.05+2.83i -2.25+1.38i 2.25-1.38i -3.95+4.13i

1111 1.11+0.57i 0.08-0.09i -0.19+0.21i -4.66+4.67i 0.02+0.01i -0.01+0.00i



Table 3

Inputs
x1 x2 x3

Output
y

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1



Table 4

Misclassified. 3 / Total patterns
Length Sym. 1 + Asym. 2

Activation 1 Activation 2
2 2 + 2 0/4 0/4
3 4 + 4 0/8 0/8
4 4 + 12 0/16 0/16
5 8 + 24 0/32 0/32
6 8 + 56 0/64 0/64
7 16 + 112 0/128 0.8/128
8 16 + 240 16/256 6.6/256
9 32 + 480 32/512 8.8/512
10 32 + 992 32/1024 32/1024



Table 5

Bit 
patterns

Neuron 1 
Output(target)

Neuron 2 
Output(target)

Bit 
patterns

Neuron 1 
Output(target)

Neuron 2 
Output(target)

0000000 0.942(1) 0.548(0) 1000000 0.000(0) 0.528(1)
0000001 0.000(0) 0.532(1) 1000001 0.942(1) 0.512(0)
0000010 0.000(0) 0.947(1) 1000010 0.000(0) 0.943(1)
0000011 0.000(0) 0.944(1) 1000011 0.000(0) 0.940(1)
0000100 0.033(0) 0.948(1) 1000100 0.000(0) 0.944(1)
0000101 0.000(0) 0.945(1) 1000101 0.033(0) 0.941(1)
0000110 0.038(0) 0.993(1) 1000110 0.000(0) 0.992(1)
0000111 0.000(0) 0.992(1) 1000111 0.038(0) 0.992(1)
0001000 0.942(1) 0.546(0) 1001000 0.000(0) 0.526(1)
0001001 0.000(0) 0.530(1) 1001001 0.942(1) 0.510(0)
0001010 0.000(0) 0.947(1) 1001010 0.000(0) 0.943(1)
0001011 0.000(0) 0.944(1) 1001011 0.000(0) 0.940(1)
0001100 0.033(0) 0.948(1) 1001100 0.000(0) 0.944(1)
0001101 0.000(0) 0.945(1) 1001101 0.033(0) 0.941(1)
0001110 0.038(0) 0.993(1) 1001110 0.000(0) 0.992(1)
0001111 0.000(0) 0.992(1) 1001111 0.038(0) 0.991(1)
0010000 0.033(0) 0.948(1) 1010000 0.000(0) 0.944(1)
0010001 0.000(0) 0.945(1) 1010001 0.033(0) 0.941(1)
0010010 0.000(0) 0.993(1) 1010010 0.000(0) 0.992(1)
0010011 0.000(0) 0.992(1) 1010011 0.000(0) 0.992(1)
0010100 0.942(1) 0.993(0) 1010100 0.000(0) 0.992(1)
0010101 0.000(0) 0.992(1) 1010101 0.942(1) 0.992(0)
0010110 0.000(0) 0.953(1) 1010110 0.000(0) 0.949(1)
0010111 0.000(0) 0.950(1) 1010111 0.000(0) 0.946(1)
0011000 0.033(0) 0.948(1) 1011000 0.000(0) 0.944(1)
0011001 0.000(0) 0.945(1) 1011001 0.033(0) 0.941(1)
0011010 0.000(0) 0.993(1) 1011010 0.000(0) 0.992(1)
0011011 0.000(0) 0.992(1) 1011011 0.000(0) 0.991(1)
0011100 0.942(1) 0.993(0) 1011100 0.000(0) 0.992(1)
0011101 0.000(0) 0.992(1) 1011101 0.942(1) 0.992(0)
0011110 0.000(0) 0.952(1) 1011110 0.000(0) 0.949(1)
0011111 0.000(0) 0.950(1) 1011111 0.000(0) 0.946(1)
0100000 0.000(0) 0.947(1) 1100000 0.000(0) 0.943(1)
0100001 0.000(0) 0.944(1) 1100001 0.000(0) 0.940(1)
0100010 0.942(1) 0.992(0) 1100010 0.000(0) 0.992(1)
0100011 0.000(0) 0.992(1) 1100011 0.942(1) 0.991(0)
0100100 0.000(0) 0.993(1) 1100100 0.000(0) 0.992(1)
0100101 0.000(0) 0.992(1) 1100101 0.000(0) 0.992(1)
0100110 0.033(0) 0.953(1) 1100110 0.000(0) 0.950(1)
0100111 0.000(0) 0.951(1) 1100111 0.033(0) 0.947(1)
0101000 0.000(0) 0.946(1) 1101000 0.000(0) 0.943(1)
0101001 0.000(0) 0.944(1) 1101001 0.000(0) 0.940(1)
0101010 0.942(1) 0.992(0) 1101010 0.000(0) 0.992(1)
0101011 0.000(0) 0.992(1) 1101011 0.942(1) 0.991(0)
0101100 0.000(0) 0.992(1) 1101100 0.000(0) 0.992(1)
0101101 0.000(0) 0.992(1) 1101101 0.000(0) 0.991(1)
0101110 0.033(0) 0.953(1) 1101110 0.000(0) 0.949(1)
0101111 0.000(0) 0.950(1) 1101111 0.033(0) 0.947(1)
0110000 0.038(0) 0.993(1) 1110000 0.000(0) 0.992(1)
0110001 0.000(0) 0.992(1) 1110001 0.038(0) 0.992(1)
0110010 0.033(0) 0.953(1) 1110010 0.000(0) 0.950(1)
0110011 0.000(0) 0.951(1) 1110011 0.033(0) 0.947(1)
0110100 0.000(0) 0.953(1) 1110100 0.000(0) 0.949(1)
0110101 0.000(0) 0.950(1) 1110101 0.000(0) 0.946(1)
0110110 0.942(1) 0.541(0) 1110110 0.000(0) 0.520(1)
0110111 0.000(0) 0.525(1) 1110111 0.942(1) 0.503(0)
0111000 0.038(0) 0.992(1) 1111000 0.000(0) 0.992(1)
0111001 0.000(0) 0.992(1) 1111001 0.038(0) 0.991(1)
0111010 0.033(0) 0.953(1) 1111010 0.000(0) 0.949(1)
0111011 0.000(0) 0.950(1) 1111011 0.033(0) 0.947(1)
0111100 0.000(0) 0.952(1) 1111100 0.000(0) 0.949(1)
0111101 0.000(0) 0.950(1) 1111101 0.000(0) 0.946(1)
0111110 0.942(1) 0.539(0) 1111110 0.000(0) 0.517(1)
0111111 0.000(0) 0.523(1) 1111111 0.942(1) 0.501(0)



Table 6
Dataset CVNN RVNN

Name Input Output Parameters Hidden units Parameters
cancer 9 2 40 3 38
card 51 2 208 4 218

diabetes 8 2 36 3 35
glass 9 6 120 7 118

soybean 82 19 3154 31 3181



Table 7

Dataset
Total 

patterns
Training 

set
Validation 

set
Test 
set

cancer 699 350 175 174
card 690 345 173 172

diabetes 768 384 192 192
glass 214 107 54 53

soybean 683 342 171 170



Table 8

Test set error ± S.D. Epoch at min validation error
CVNN CVNNDataset

RVNN
Act. 1 Act. 2

RVNN
Act. 1 Act. 2

cancer1 1.440.29 2.560.29 2.500.28 133.25 30.00 23.25
cancer2 3.710.35 4.370.29 4.480.30 69.00 21.25 16.25
cancer3 4.480.35 4.020.00 4.020.00 69.25 27.25 20.25
card1 14.480.75 14.940.80 14.800.61 30.75 7.25 6.00
card2 17.940.76 17.821.07 17.791.17 16.25 4.50 6.25
card3 19.130.96 18.981.20 19.161.58 33.75 10.25 10.00

diabetes1 23.720.60 25.600.39 25.570.50 630.25 83.75 40.00
diabetes2 26.170.84 23.780.80 24.710.85 313.75 94.50 45.50
diabetes3 21.900.64 21.280.76 21.020.59 416.25 7.00 6.00

glass1 35.285.38 32.641.95 29.723.67 4590.50 194.00 131.25
glass2 53.871.67 46.796.05 44.725.61 217.50 388.75 110.25
glass3 50.387.62 39.065.71 40.755.21 4195.25 311.00 131.50

soybean1 10.621.23 8.290.44 9.321.62 3545.50 220.75 209.75

soybean2 7.441.52 6.880.57 8.472.55 3452.50 299.75 155.00
soybean3 8.651.54 9.681.22 10.182.50 3122.25 140.00 116.25



Table 9

Activation 1 Activation 2
Data set

/2  /2 
cancer1 61.25 30.00 42.00 23.25
cancer2 39.50 21.25 27.75 16.25
cancer3 50.75 27.25 38.25 20.25
card1 12.50 7.25 7.75 6.00
card2 6.00 4.50 6.00 6.25
card3 26.50 10.25 27.50 10.00

diabetes1 900.50 83.75 881.50 40.00
diabetes2 996.00 94.50 567.25 45.50
diabetes3 19.00 7.00 12.50 6.00

glass1 743.75 194.00 688.75 131.25
glass2 310.50 388.75 334.75 110.25
glass3 474.25 311.00 461.25 131.50

soybean1 376.00 220.75 400.50 209.75
soybean2 382.75 299.75 325.00 155.00
soybean3 215.00 140.00 259.50 116.25



Table Caption

Table 1. Input-output mapping for XOR problem after phase encoding of inputs.

Table 2. Learned weights and bias of CVN for two-input Boolean functions.

Table 3. Input-output mapping of a symmetry detection problem with three inputs. Output 1 

means corresponding input pattern is symmetric, and 0 means asymmetric.

Table 4. Average number of misclassifications by two CVNs for symmetry detection problems. 

Averages are taken over 10 independent runs. 1, 2, and 3 refer to the number of symmetric 

patterns, number of asymmetric patterns, and average number of misclassification, respectively.

Table 5. Examples of outputs of two CVNs with the activation function 2 for the seven-input 

symmetry detection problem in a single run.

Table 6. Number of parameters for single-layered CVNNs and two-layered RVNNs. Parameters 

include the connection weights and the biases of the neurons. For CVNN, each weight and bias 

are counted as two parameters, since they have real and imaginary parts.

Table 7. Total number of examples, and partitioning of the datasets into training, validation and 

test sets.



Table 8. Average classification error on the test set, and the average number of epochs required 

to reach the minimum validation error. Averages are taken over 20 independent runs. Act. 1 and 

2 refer to the activation function 1 and activation function 2, respectively.

Table 9. Average number of epochs required to reach the minimum validation error for the phase 

encoding [0, /2] and [0, ]. Averages are taken over 20 independent runs.



Figure Captions

Fig. 1. Model of a complex neuron. The sign sums up the weighted inputs )1( mjxw jj 

and the bias . RCf  is an activation function that maps the complex-valued internal state to a 

real-valued output y.

Fig. 2. Phase encoded inputs. When a real value x moves in the interval [a, b], corresponding 

complex value moves over the upper half of unit circle. x = a, and x = b are mapped by 0ie , 

and ie respectively.

Fig. 3. The proposed activation functions 1 and 2 that map complex-value ivu to real-value y. 

(a) Activation function 1 is the magnitude )()( vfiuf RR   of sigmoided real and imaginary parts, 

(b) Activation function 2 is the square of differences 2))()(( vfuf RR  between sigmoided real 

and imaginary parts.

Fig. 4. Net-inputs of a CVN for XOR problem and contour diagram for the activation function 1 

and 2 in (a) and (b), respectively. Curved lines indicate the points taking the same output values 

as indicated by the numbers. Horizontal and vertical lines are the real and imaginary axes, 

respectively. Cross mark [×] denotes the net-input for the input pattern belonging to class 1

(target output 1), and circle [O] denotes the net-input belonging to class 0 (target output 0).



Fig. 5. Net-inputs of a single CVN for sixteen possible input patterns in the four-input symmetry 

detection problem on the contour diagrams of (a) the activation function 1, and (b) the activation 

function 2.

Fig. 6. Learning processes of the two-layered RVNN, and single-layered CVNNs with the 

activation function 1 (CVNN Act1) and activation function 2 (CVNN Act2).
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