
Temperature-sensitive defects of the GSP1gene,
yeast Ran homologue, activate the
Tel1-dependent pathway

言語: English

出版者: 

公開日: 2008-02-29

キーワード (Ja): 

キーワード (En): 

作成者: HAYASHI, Naoyuki, MURAKAMI, Seishi,

TSURUSAKI, Susumu, NAGAURA, Zen-ichiro, OKI,

Masaya, NISHITANI, Hideo, KOBAYASHI, Masahiko,

SHIMIZU, Hiroko, YAMAMOTO, Kenichi, NISHIMOTO,

Takeharu

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10098/1627URL



Hayashi et al.,

1

Temperature-sensitive defects of the GSP1gene, yeast Ran homologue, activate the Tel1-

dependent pathway

Naoyuki Hayashi1, 2*, Seishi Murakami2, Susumu Tsurusaki3, Zen-ichiro Ngaura3, Masaya

Oki3#, Hideo Nishitani3, Masahiko Kobayashi1, Hiroko Shimizu1, Kenichi Yamamoto1 and

Takeharu Nishimoto3

1:Department of Molecular Pathology, 2: Department of Molecular Oncology, Cancer

Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934

Japan, 3: Department of Molecular Biology, Graduate School of Medical Science, Kyushu

University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 Japan

*: Corresponding author

e-mail: naoyuki@kenroku.kanazawa-u.ac.jp

Present address:

3#, Department of Applied Chemistry & Biotechnology, Faculty of Engineering, University of

Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan



Hayashi et al.,

2

Abstract

Ran GTPase is involved in many cellular processes.  It functioned in nuclear-cytosolic

transport and centrosome formation.  Ran also localizes to chromatin as RCC1 does, its

guanine nucleotide exchange factor, but Ran’s function on chromatin is not known.  We

found that gsp1, a temperature-sensitive mutant of GSP1, a Saccharomyces cerevisiae Ran

homologue, suppressed the hydroxyurea (HU) and ultra violet (UV) sensitivities of the mec1

mutant. In UV-irradiated mec1 gsp1 cells, Rad53 was phospholyrated despite the lack of

Mec1.  This suppression depended on the TEL1 gene, given that the triple mutant, mec1 gsp1

tel1, was unable to grow.  The gsp1 mutations also suppressed the HU sensitivity of the rad9

mutant in a Tel1-dependent manner, but not the HU sensitivity of the rad53 mutant.  These

results indicated that Rad53 was activated by the Tel1 pathway in mec1 gsp1 cells, suggesting

that Gsp1 helps regulate the role switching the ATM family kinases Mec1 and Tel1.

Keywords: Ran; Gsp1; checkpoint; ATM kinase; Mec1; Tel1; Rad53; yeast; replication;

signal transduction
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Introduction

The nuclear small GTPase Ran functions in various cellular spatial processes, as including the

nucleocytoplasmic transport of macromolecules, microtubule formation and nuclear

membrane assembly [1, 2, 3, 4].  Ran is a small G protein that is functionally and structurally

conserved from yeast to mammals [1].  RanGEF (Ran-GDP/GTP exchange factor) and

RanGAP (RanGTPase activating protein) are auxiliary factors of Ran.  RanGEF, called RCC1

in mammalian cells [5], is localized to the chromatin [6], while RanGAP is mainly localized

to the cytoplasm [7].  Therefore, there is a gradient of Ran-GTP concentration from the

nucleus to the cytoplasm that determines the destination of protein transport [4].  Nuclear

proteins synthesized in the cytoplasm are imported into the nucleus depending on their

nuclear localization signal (NLS).  Within the nucleus, however, it is unknown how the

imported proteins are delivered to their functional targets.  One current model suggests that

protein localization within the nucleus occurs by random movement [8].  However, this model

cannot fully explain the rapidity with which ATR or ATM is delivered to damaged

chromosomal DNA sites when the cells are exposed to genotoxic stresses [9].  Therefore,

some other mechanism for regulating the movement of nuclear proteins is most likely at

work.  

One factor that might regulate nuclear protein movement is Ran, since RanGEF,

RCC1, is localized to the chromatin, causing a high concentration of Ran-GTP in the nucleus.

RCC1 may sense the status of the chromosome, for example, DNA damage, replication or

transcription, and transfer these signals to effecter proteins through Ran-GTP [10], thereby

eliciting coupled cellular spatial and temporal events.  The coupling of spatial and temporal

events is thought to be essential for cell proliferation [11]. In agreement with this idea, the

loss of RCC1 causes the premature initiation of mitosis in tsBN2 cells derived from the
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hamster BHK21 cell line, arrested with hydroxyurea (HU) [12].  In this context, we focused

on whether the Ran-mediated processes are related to DNA replication, which is a major

timed event in cell proliferation.

To address this possibility, a series of temperature-sensitive mutants of Gsp1, a

Saccharomyces cerevisiae Ran homologue [13], coupled with a mec1 mutant, which lacks one

of the ATM family kinases, were examined for their sensitivity to HU.  We found that the

mec1 gsp1 mutants showed an HU-resistant phenotype  in an allele-specific manner.  We also

found that the viability and HU-resistant phenotype in mec1 gsp1 cells was dependent on

TEL1, which encodes the other yeast ATM family kinase.  These results indicated that the

yeast Ran homologue, Gsp1, is involved in controlling the ATM family kinases.  
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Materials and methods

Strains and plasmids.

The S. cerevisiae strains and plasmids used in this experiment are listed in Table 1. The gene

disruption was carried out as previously described [13].  

Gene Disruption.

tel1: A DNA fragment between the 6389th and the 6829th bp of the TEL1 ORF and one

containing the 3’-untranslated region of the TEL1 ORF were amplified, respectively, by the

following two sets of primers: 5’-CAT TGT CAA TTG GGC CCT AAA TGT CGA AG-3’

and 5’-CCC AGG GCA AAA GGA TCC AGC TCG GTA TTG-3; and 5’-GCT ATG CGG

ATC CTT TAT ACT TC-3’ and 5’-GAG CCA AAT CCG CGG AGT GAG TC-3’.  The

primers were designed to introduce, respectively, the restriction enzyme sites ApaI, BamHI,

BamHI, and SacI at the ends.  The two fragments were ligated at their BamHI site, and then

inserted into the ApaI-SacI sites of pBluescript II SK(+).  A BamHI fragment containing loxP-

kanMX-loxP derived psh47 [14] was inserted into the BamHI site of the resulting plasmid.  To

disrupt the TEL1 gene, the ApaI-SacI fragment containing tel1::loxP-kanMX-loxP of the

constructed plasmid was introduced into the yeast strains.

rad50: A 1.5-kb PCR fragment containing a part of the RAD50 ORF was amplified using a

primer pair 5’-TGT CAC CAA GAA GAC AGC CT-3’ and 5’-AGT CTT ATA GGA GAG

CTC CG-3’, and then digested with XbaI.  The fragment was then cloned into the XbaI site on

pUC29 [15].  A 2.2-kb BglII fragment containing the ADE2 of pASZ11 [16] was inserted into

the BglII site on the resulting plasmid.  The constructed plasmid was digested with XbaI, and

a fragment containing rad50::ADE2 was introduced into the yeast strain.
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Cell growth and cell cycle assays.

Cells were cultivated until OD660 nm = 1.0 and were sequentially diluted 10-fold.  Five

microliters of the serial dilutions was spotted on synthetic medium containing 1 mg/ml of 5-

fluoro orotic acid (5FOA), 50 mM hydroxyurea (HU), or no additions.  The cells were

incubated at 26oC for 3 days.

To examine cell cycle in yeast mutants, we used FACScan analysis.  Yeast cells were

grown in synthetic medium at 26oC.  HU (final concentration 100 mM) was added into the

culture of exponentially growing cells.  The cells were harvested, washed with water at

various times.  For DNA flow cytometry, the cells were fixed in 70% ethanol and then

moderately sonicated.  Following RNase treatment (1 mg/ml) at 50 oC for 1 h, the cells were

stained with 10 mg/ml propidium iodide in Tris-HCl (pH 7.5), and analyzed on a Becton-

Dickinson FACSCalibur [17].   For each experiment, we analyzed approximately 20000 cells.

Immunoblotting Analysis.

Yeast cells were cultivated to the early log phase (OD660 nm=1.0) in 20 ml of synthetic medium

at 26 oC, and 10-ml aliquot of these cultures were transferred to 10-cm dishes.  These cultures

were irradiated with Funakoshi-UV-linker (Funakoshi, Tokyo, Japan), and then incubated in a

dark box at 26 oC for 1 h.  These UV-treated cultures and untreated controls were then

disrupted with NaOH and 2-merkaptethanol as described previously [18].  The resulting cell

extracts were subjected to SDS-PAGE (7%) and transferred onto nitrocellulose membranes

(Pall Corporation, FL, USA).  The membranes were stained with antibodies against myc-tag

(Sigma-Aldrich Co, MO, USA).

Sensitivities to DNA damage.  
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Exponentially growing cultures of the yeast cells were diluted and adjusted to OD660 nm = 1.0.

These adjusted cultures were serially diluted 5-fold, and 5 ml of each aliquot was spotted onto

a YPDA plate.  To assess ultraviolet (UV) sensitivity, the cells spotted on the YPDA plates

were irradiated using a Funakoshi-UV-linker (Funakoshi, Tokyo, Japan).  For the UV-

radiation survival curve, aliquots of appropriately diluted yeast cells were plated and

irradiated with various doses of UV.  The plates were then incubated at 26 oC for 2 days.  

For the MMS survival curve, exponentially growing cultures were diluted and

adjusted to OD660 nm = 0.1.  After the addition of MMS to a 0.05% final concentration, the

cultures were incubated and samples were harvested at 10-min intervals.  The harvested cells

were resuspended into the same volume of 10% sodium thiosulfate to inactivate the MMS,

and tested for viability.  Viabilities were estimated by colony counting of aliquots of

appropriately diluted yeast cells on the YPDA plates.  The initial viabilities of the original

culture before exposure of MMS were determined as described above.
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Results and discussion

HU sensitivity in mec1 was suppressed by gsp1 mutations.

A temperature sensitive mutant of RCC1, the guanine nucleotide exchange factor for

Ran GTPase, in a hamster cell line showed G1 arrest in asynchronous culture due to failure of

replication initiation, and in synchronous culture the cells begin mitosis with premature

chromosomal condensation in the S phase at the restricted temperature [6].  Similar

observations of altered cell cycle control in the S phase have been found in budding and

fission yeasts [19, 20, 21].  These findings may suggest that Ran GTPase is involved in

checkpoint control in the S phase.  To study this possibility, we introduced gsp1 mutations

into mec1-deficient budding yeast, which lack one of the ATM kinases, which regulate the

replication checkpoint.  We genetically introduced the mec1 disruption carried by yeast

derived from strain YEF578a (Table 1; kindly provided by Dr. Shirahige) into 6 gsp1 mutants.

HU, which inhibits the biosynthesis of deoxynucleotides, causes replication to stall.  HU-

treated cells showed an arrested cell cycle in the early S phase and activate ribonucleotide

reductases (RNR) to overcome the inhibition by HU.  Surprisingly, the HU-sensitive

phenotype caused by the mec1 mutation was suppressed by the gsp1 mutations, except for the

gsp1-1268 allele (Fig. 1A).   Therefore, gsp1-479 and -1757 single-mutation alleles were

chosen for further study.  From the FACS analysis, we found that the two double mutants,

mec1 gsp1-479 and mec1 gsp1-1757, continuously proliferated without cell-cycle arrest in the

presence of 100 mM HU, although arrest in the early S phase was observed in wild-type cells

4 hours after HU addition (Fig. 1B).  These results indicated that the gsp1 mutations rescued

replication deficiency in the mec1 mutants, but did not rescue the deficiency in cell-cycle

arrest.  
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To confirm the gsp1-mediated suppression of the mec1 phenotypes, we next examined

the sensitivity of the double mutant, mec1 gsp1, to UV-irradiation and treatment with the

genotoxic alkylation agent MMS.  Mid log-phase cultures were spotted on YPDA medium

and then exposed to the indicated dose of UV irradiation.  After UV-irradiation, the cells were

incubated in a dark box at 26°C, the permissive temperature for the gsp1 mutations.  As

previously reported [22], the mec1 cells ewre highly sensitive to UV (Fig. 2 Left).  In contrast,

the mec1 gsp1-479 and mec1 gsp1-1757 strains were resistant to UV, to almost the same as the

wild-type strain. Both gsp1-479 and gsp1-1757 only partially suppressed the sensitivity of the

mec1 cells to MMS (Fig. 2 Right).  This partial suppression of MMS sensitivity may suggest

that gsp1 mutations in mec1 cells overcame the replication defects caused by HU or UV, but

could not overcome severe DNA damage, such as the double strand breakage caused by the

genotoxic alkylation agent.

Tel1-pathway required for the suppression of the mec1 phenotype

  We next examined the phosphorylation of Rad53, which is phosphorylated by Mec1 in

response to UV treatment (Fig. 3).  The mobility of myc-tagged Rad53 on gels was retarded in

mec1 gsp1-479 and mec1 gsp1-1757 cells as in wild-type cells, indicating that Rad53 was

phosphorylated under UV treatment in the absence of Mec1 in the gsp1 mutants. Two

pathways, the Mec1- and the Tel1-dependent pathways, which have some redundancy, are

reported to function in replication and DNA-damage checkpoint control [23, 24, 25].  Two

ATM family kinases, Mec1 and Tel1, are known to be signal transducers in these pathways.

The mec1 cells lose abilities of checkpoint response and replication progression in spite of the

presence of the TEL1 gene, which has the overlapping functions.  Therefore, additional gene

disruptions in mec1 gsp1 were carried out in the presence of a plasmid pRK900, containing
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the MEC1 and URA3 genes, and then pRK900 was removed by 5FOA treatment for

investigation of a possibility that suppression to the mec1 phenotype by the gsp1 mutants

depends on Tel1 function.  None of three triple mutants, rad50 mec1 gsp1-479, tel1 mec1

gsp1-479 or rad50 mec1 gsp1-1757, proliferated in the absence of wild-type MEC1 on pRK900

(Fig. 4A).  One triple mutant, tel1 mec1 gsp1-1757, grew slowly in the absence of pRK900,

but was sensitive to HU.  These observations suggest that Tel1 and probably

Rad50/Mre11/Xrs2 complex are crucial for the suppression of the mec1 phenotype by the gsp1

mutants.  

Rad53 is a common downstream factor of Mec1 and Tel1.  It is phosphorylated by

either Mec1 or Tel1 in response to replication stall and/or DNA damage [23].  As expected,

Rad53 was essential for the mec1 gsp1 strains to survive in the presence of HU, since the

rad53 gsp1-479 and rad53 gsp1-1757 strains were sensitive to it (Fig. 4B).  In the checkpoint

response, an interaction between Rad53 and Rad9 is required for the phosphorylation of

Rad53 by Mec1 [26].  Thus, to show that Rad9 as well as was important in the mec1 gsp1

strains, the double mutants rad9 gsp1-479 and rad9 gsp1-1757 were constructed.  Both double

mutants grew better than rad9 cell in the presence of 50 mM HU (Fig. 4B).  On the other

hands, tel1 rad9 gsp1-1757 cells were quite sensitive to HU, but the mec1 rad9 gsp1-1757 cells

were resistant to it.  These observations indicated that the Tel1 function in gsp1 mutant

rescued the Mec1/Rad9 pathway to Rad53, and suggested that Rad53 has a critical role in the

Tel1 signal pathway in gsp1 mutants.  In conclusion, mec1 cells were sensitive to replication

stall and DNA damage in spite of presence of an intact TEL1 gene, but Tel1 took the place of

Mec1 in mec1 cells when gsp1 was mutated.  Therefore, the nuclear G protein, Ran, may

function to regulate the role of the ATM family kinases.   

 The Ran GTPase cycle is candidate for roles in nuclear events related to DNA damage
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and replication.  We can imagine from the current Ran cycle model that a defect in Ran may

reduce the control of protein movement that is important for the control of DNA damage and

of the replication checkpoint.  This idea is also consistent with our recent finding that a defect

in RanGAP causes a centromeric gene-silencing defect in Schizosaccharomyces pombe [27].
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Table 1  Yeast strains and Plasmid

Strain Genotype (Background: len2-3,112 his3 ura3 trp1 ade2 can1-100) Reference & source

N43-6C-GSP1 MATa gsp1::HIS3::GSP1::LEU2 13

N43-6C-gsp1-479 MATa gsp1::HIS3::gsp1-479::LEU2 13

N43-6C-gsp1-1757 MATa gsp1::HIS3::gsp1-1757::LEU2 13

N635-8B MATa gsp1::HIS3::GSP1::LEU2 mec1::TRP1 This study

N655-17B MATa gsp1::HIS3::gsp1-16::LEU2 mec1::TRP1 This study

N656-6A MATa gsp1::HIS3::gsp1-322::LEU2 mec1::TRP1 This study

N627-16B MATa gsp1::HIS3::gsp1-479::LEU2 mec1::TRP1 This study

N628-11A MATa gsp1::HIS3::gsp1-1268::LEU2 mec1::TRP1 This study

N652-14A MATa gsp1::HIS3::gsp1-1547::LEU2 mec1::TRP1 This study

N653-1B MATa gsp1::HIS3::gsp1-1757::LEU2 mec1::TRP1 This study

YEF578a MATa mec1::TRP1 Gift from Shirahige

N275-2B MATa mec1::TRP1 This study

N741-6B MATa gsp1::HIS3::gsp1-479::LEU2 mec1::TRP1 RAD53-myc::kanMX This study

N740-15B MATa gsp1::HIS3::gsp1-1757::LEU2 mec1::TRP1 RAD53-myc::kanMX This study

N739-2D MATa mec1::TRP1 RAD53-myc::kanMX This study

N741-7B MATa RAD53-myc::kanMX This study

TH53 MATa RAD53-myc::kanMX Gift from Hishida

N266-8D MATa rad50::ADE2 This study

N667-1B MATa gsp1::HIS3::gsp1-479::LEU2 mec1::TRP1 rad50::ADE2 This study

N669-4A MATa gsp1::HIS3::gsp1-1757::LEU2 mec1::TRP1 rad50::ADE2 This study

N407-11C MATa tel1::kanMX This study

N668-7B MATa gsp1::HIS3::gsp1-479::LEU2 mec1::TRP1 tel1::kanMX This study

N684-8B MATa gsp1::HIS3::gsp1-1757::LEU2 mec1::TRP1 tel1::kanMX This study

YHY301A MATa  rad53-1::URA3 28

N677-5B MATa gsp1::HIS3::gsp1-479::LEU2 rad53-1::URA3 This study

N526-1D MATa gsp1::HIS3::gsp1-1757::LEU2 rad53-1::URA3 This study

N536-2A MATa rad9::hisG-URA3-hisG This study

N686-4A MATa gsp1::HIS3::gsp1-479::LEU2 rad9::hisG-URA3-hisG This study

N536-2B MATa gsp1::HIS3::gsp1-1757::LEU2 rad9::hisG-URA3-hisG This study

N616-1C MATa gsp1::HIS3::gsp1-1757::LEU2 rad9::hisG-URA3-hisG mec1:: TRP1 This study

N569-7B MATa gsp1::HIS3::gsp1-1757::LEU2 rad9::hisG-URA3-hisG tel1::kanMX This study

Plasmid Genotype Reference & source

pRK900 MEC1, URA3, CEN4, ARS1 29

prad50A rad50::ADE2 on pUC29* This study

*: pUC29 was described by Benes et al. 1993 [15].
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Figure legends

Fig. 1.  gsp1 suppressed HU sensitivity in mec1 mutant. (A) Allele specific suppression by

gsp1 to HU sensitivity in mec1 cells. The indicated mec1 cells, mec1 GSP1 [N635-8B], mec1

gsp1-479 [N627-16B], mec1 gsp1-1268 [N628-11A], mec1 gsp1-1757 [N653-1B], mec1

gsp1-16 [N655-17B], mec1 gsp1-322 [N656-6A] and mec1 gsp1-1547 [N652-14A], were

spotted on synthetic medium without (no drug) or 50 mM HU and then incubated at 26°C for

3 days. [ ] indicates the name of the strain used.  (B) Cell-cycle analysis of wild-type and

mec1 cells.  Cells were cultured in synthetic medium at 26oC until they reached an OD660

nm= 0.1 and they were then incubated in the presence of 100 mM HU.  At the indicated times,

samples were removed and processed for FACS analysis.  

Fig. 2.  gsp1 restored the mec1 cells’ sensitivity to DNA damage.  The indicated cells were

plated onto YPDA medium after appropriate dilution. One plate was not irradiated as a

control.  The plates, irradiated with UV or inoculated with yeasts treated with MMS, were

incubated in a dark book at 27°C for 3 days.  The percentage of the survived colonies

obtained at various UV doses or times after MMS treatment is shown.  Closed triangles: mec1

[N275-2B].  Open triangles: GSP1 [N43-6C-GSP1].  Closed squares: gsp1-479[N43-6C-

gsp1-479].  Open squares: mec1 gsp1-1268 [N627-16B].  Closed circles: gsp1-1757 [N43-6C-

gsp1-1757].  Open circles: mec1 gsp1-1757 [N653-1B].

Fig. 3. Phosphorylation of Rad53-myc protein in wild-type and mec1 cells.  The indicated cells,

which had RAD53-myc fusion gene in their genome genetically derived from strain TH53,

were cultivated at 26°C.  During exponential growth, i.e., OD660nm= 1.0, half of each yeast

culture was treated with 60 J/m2 UV, and the total cellular extracts were prepared as described
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in Materials and Methods.  The cellular extracts were separated by SDS-PAGE and subjected

to immunoblotting analysis with anti-myc antibody.

Fig. 4. The pathway from Tel1 to Rad53 functioned in the mec1 gsp1 cell.  (A) The TEL1

Gene was required for the suppression of the mec1 phenotype by gsp1.  Cells harboring the

plasmid pRK900, containing the MEC1 and URA3 genes, were spotted on synthetic medium

with or without (no drug) 1.0 mg/ml 5FOA, and then incubated at 26°C for 3 days as

described in Materials and Methods. The mec1 gsp1-1757 and tel1 mec1 gsp1-1757 cells,

which survived on the 5FOA plate, were then cultured and spotted on HU plate to examine

the TEL1-dependency of the HU sensitivity of the mec1 gsp1-1757 cells.  The strains were:

mec1 [N275-2B], rad50 [N266-8D], tel1 [N407-11C], mec1 gsp1-479 [N627-16B], rad50 mec1

gsp1-479 [N667-1B], tel1 mec1 gsp1-479 [N668-7B], mec1 gsp1-1757 [N653-1B], rad50 mec1

gsp1-1757 [N669-4A], and  tel1 mec1 gsp1-1757 [N684-8B].   [ ] indicates the name of the

strain used.  (B) The gsp1 mutations could suppress the HU sensitivity in the rad9 cells, but

not in the rad53 cells. The indicated cells, GSP1 [N43-6C-GSP1], rad53 gsp1-479 [N677-5B],

rad53 gsp1-1757 [N526-1D], rad53 [YHY301A] (upper panel), rad9 [N536-2A], rad9 gsp1-

479 [N686-4A], rad9 gsp1-1757 [N536-2B], rad9 gsp1-1757 tel1  [N569-7B], and rad9 gsp1-

1757 mec1  [N616-1C]  (lower panel), were spotted onto synthetic medium with or without

(no drug) 50 mM HU, and then incubated at 26°C for 3 days.  [ ] indicates the name of the

strain used.  
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