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ABSTRACT 

In this paper we obtain near threshold fatigue crack growth (FCG) data for several carbon steels and 

type 304 stainless steel by the Kmax-constant method. Since the FCG rate obtained by the 

Kmax-constant method is considered to give the upper limit of the FCG data obtained by the stress 

ratio-constant method, this data was compared with the FCG evaluation diagrams given in the 

ASME and JSME pressure vessel post-construction codes to ensure their validity. Though the FCG 

rate for carbon steel S55C was somewhat affected by the Kmax value, the results show that the 

obtained near threshold FCG data is close to the upper bound of the JSME code diagram, which is an 

extrapolation of the ASME FCG diagram to the near threshold region. 

KEY WORDS: Fracture Mechanics, Fatigue Crack Growth, Threshold, Maximum Stress Intensity, Post-Construction 

Codes.  
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1. Introduction 

     Since the pioneering work of Paris and Erdogan (1963), the fatigue crack growth (FCG) rate 

da/dN under small scale yielding conditions has been described by the applied stress intensity range 

ΔK for various materials.  low FCG rates, da/dN - ΔK curves in log-log scale generally become 

steep and appear to approach a vertical asymptote that corresponds to the FCG threshold. Tests near 

this threshold are time consuming in general, and as a result, data in this region are not always easy 

to obtain. So when the near threshold FCG rate data for a specific material is not given, there are 

instances where the medium range FCG rate data for the material is linearly extrapolated to the near 

threshold range on the log-log scale (linear extrapolation). This extrapolation is a natural 

engineering approach because it is generally considered as being safe assuming that the FCG 

threshold exists. One example for this extrapolation is the FCG rate evaluation curve in the Japan 

Society of Mechanical Engineers’ nuclear power plant post construction code (JSME code) (JSME, 

2001). JSME code’s FCG rate evaluation curve which covers da/dN ≥ 1 x 10-7 mm/cycle, is an 

extrapolation of the well-known ASME pressure vessel code Sec. XI (ASME, 1998) applicable for 

da/dN  ≥ 25.4 x 10-7 mm/cycle (1 x 10-7 in/cycle). 

     Recently Marci (1996) reported that the FCG threshold ceases to exist for a 

Ti-6Al-2Sn-4Zr-6Mo alloy under high maximum stress intensity Kmax, though their Kmax–constant 

FCG tests (Döker, 1981) were conducted under a ΔK – a relationship specified in ASTM E-647 
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(1999) (Marci effect).  In this case da/dN was greater than 1 x 10-5 mm/cycle, though the expected 

rate obtained by the linear extrapolation was as small as 1 x 10-8 mm/cycle.  Lang et al.’s report  

(1998) should have encouraged code engineers (who are interested in the linear extrapolation) 

because the Marci effect was assumed as a result of a combination of corrosive environment and the 

specific material.  On the other hand, Newman et al’s (2000) near threshold FCG rate data for 

Al7050-T6 alloy raises some concerns over the linear extrapolation. Their data obtained by the 

Kmax–constant method showed on the one hand the validity of linear extrapolation, and on the other 

hand that the near threshold da/dN was increased by an increase in Kmax without a corrosive 

atmosphere. The mechanism for this phenomenon is not yet clear. 

     Considering the findings above, we decided to obtain near threshold da/dN data for various 

materials (not only those used for nuclear power plants). As a first step, we obtained da/dN data in 

the range of 1 x 10-7 ≤ da/dN ≤ 1 x 10-5 mm/cycle for carbon steels (JIS S55C, HT60 and SS400) 

and type 304 stainless steel in a laboratory air environment. We selected the Kmax–constant method 

for the test, because the upper limit of da/dN data obtained by the stress ratio R-constant tests is said 

to be expected since closure free conditions are realized in this method (Hertzberg, 1992). The 

effects of Kmax on da/dN data were studied at the same time. 

2. Test conditions and results 

2.1 Test conditions 
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     We made tests fundamentally in accordance with the ΔK-decreasing threshold test procedure 

specified in ASTM E647 (ASTM, 1999) in association with a constant maximum stress intensity 

level Kmax (Döker, 1981). The testing system and dimensions of the CT test specimen are shown in 

Figs. 1 and 2, respectively. Chemical compositions and the mechanical properties of the tested 

materials are given in Tables 1 and 2, respectively. 

     The cyclic stress intensity range was varied according to the following relationship, as 

specified in ASTM E647 (ASTM, 1999): 

)(
0

0aaCeKK −Δ=Δ ..................................................................................................................... (1) 

where a0 (= initial machine notch length 15 mm+ fatigue pre-cracking 3 mm = 18 mm) and a are 

initial and current values of the crack length respectively. ΔK0 is the initial value of ΔK set to a value 

12 MPam1/2 for all the materials and regardless of Kmax. This value of ΔK0 was chosen to make ΔK = 

3 MPam1/2 at a = 20mm, considering the fact that the threshold ΔK of various ferritic alloys are about 

3 MPam1/2. C is the normalized K-gradient (d(ΔK)/da)/ΔK set to a value of C= -0.7 mm-1, which is a 

deviation from the ASTM E647 specification C > -0.08 mm-1 based on the R-constant test method. 

This deviation is validated in the case of the Kmax–constant test method for a value of C as small as C 

= -1.2 mm-1. This is based on work by Hertzberg et al. (1992), who explain that this is true because 

the crack tip plastic zone size is held constant for Kmax–constant tests. 

     For each material, tests were conducted for several values of Kmax, that were chosen to satisfy 
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the small scale yielding condition required in ASTM E647; Kmax < Kmax 0 ≡ σYS (π (W - a)/4)1/2, 

where σYS is the yield strength of the material. In concrete, S55C: Kmax = 50, 46, 42, 36, 18 

MPam1/2(Kmax /Kmax 0 = 0.87, 0.80, 0.73, 0.63, 0.31), HT60: Kmax = 80, 70, 50, 30 MPam1/2 (Kmax 

/Kmax 0 = 1.00, 0.88, 0.63, 0.38), SS400: Kmax = 42, 32, 18 MPam1/2 (Kmax /Kmax 0 = 0.99, 0.76, 0.43), 

SUS304: Kmax = 31, 25, 18 MPam1/2 (Kmax /Kmax 0 = 0.90, 0.72, 0.52). 

2.2 Test results 

     Comparison of the planned and the measured ΔK –a relationship for the case of SUS 304 

under Kmax = 31 MPam1/2 is shown in Fig. 3. The maximum difference in ΔK for the planned and 

measured was as small as 4.4% in Fig. 3 and was less than 5% for other tests. For all tests, closure 

free is confirmed by measuring back surface strain. The loading frequency was 30 Hz. 

     The da/dN data we obtained for HT60, SS400, SUS304 and S55C are summarized in Figs. 4 

to 7, respectively. We measured the crack length with an optical micrometer with a resolution of 

1/100 mm and evaluated da/dN by the incremental polynomial method given in ASTM E647. Since 

we plan to compare the da/dN data obtained with the FCG evaluation curves in the post-construction 

codes, we fundamentally obtained data in the range of 1 x 10-7 ≤ da/dN ≤ 1 x 10-5 mm/cycle. 

     We see from Figs. 4 ~6 that though tests for HT60, SS400 and SUS304 were conducted for 

several Kmax satisfying W-a ≥ (4/π)(Kmax/σYS)2, the da/dN data within the measured range showed 

little variance and a clear threshold ΔK existed. 
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     On the other hand, we see in Fig. 7 that the trend observed for the S55C was somewhat 

different from the other materials. Though the da/dN data shows little variance for da/dN > 10-6 

mm/cycle, the da/dN seemed to increase according to the increase in Kmax in the range of 1 x 10-7 ≤

da/dN ≤ 1 x 10-6 mm/cycle, which is similar to what Newman et al. (2000) experienced. 

     The data we obtained were compared with the JSME code’s FCG evaluation curve in Figs. 8 

(carbon steel) and 9 (stainless steel). In these figures, there are different symbols for each material, 

but Kmax test values for each material are not distinguished from one another. JSME code’s FCG 

evaluation curve in the range 1 x 10-7 ≤ da/dN ≤ 25.4 x 10-7 mm/cycle is a linear extrapolation of the 

ASME sec. XI’s corresponding curve, which is specified in the range of da/dN ≥ 25.4 x 10-7 

mm/cycle (1 x 10-7 in/cycle). We see from these two figures that our data obtained by the Kmax 

-constant method and in the range of 1 x 10-7 ≤ da/dN ≤ 1 x 10-5 mm/cycle, were in the range of 

JSME code’s two curves for R = 0 and 0.9. This was true also for S55C, which was affected by the 

value of Kmax. Thus we conclude that the linear extrapolation of the ASME sec. XI’s FCG evaluation 

diagram in the range of da/dN ≥ 1 x 10-7 mm/cycle is valid for the tested materials. 

3. Discussion 

     Of the materials we tested, only S55C showed any sign of Marci effect (Marci, 1996) that is 

an effect of Kmax at the FCG threshold, although the effect was small. Since the current 

understanding of the Marci effect is associated with sustained-load cracking (Lang et al., 1998), we 
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compared fractographs from scanning electron microscopy corresponding to da/dN ≈ 1 x 10-5 

mm/cycle (a = 18 mm) and da/dN ≈ 1 x 10-7 mm/cycle at two test conditions of Kmax = 50 and 18 

MPam1/2. No apparent differences in fractography were found for these Kmaxs. Fractographs for Kmax 

= 50 MPam1/2 are shown as Figs. 10 and 11, respectively.  

     We see from Fig. 10 that striation-like spacing in the tested da/dN region (in which Paris’ law 

is applicable) does not necessarily coincide with the da/dN and that the spacing can be 100 times 

larger than the da/dN. These results do not contradict with the Davidson et al.’s overview report 

(1992). In the near threshold region, as shown in Fig.11, we could not find out corrosion pits, though 

the high Kmax affected da/dN. Thus we conclude that the way that the high Kmax affected da/dN for 

S55C is not associated with sustained-load cracking and is different from what Marci et al. reported 

for Ti-6Al-2Sn-4Zr-6Mo alloy.  

     When we think about the fact that the da/dN for S55C in the near threshold region did not 

exceed da/dN obtained by linear extrapolation for all Kmaxs, this observation may be close to what 

Newman et al. (2000) reported for Al7050-T6 alloy by the Kmax test method. They pointed out that 

dimples tended to increase in the near threshold region when they increased Kmax. However, we did 

not observe any dimples as can be seen from Fig. 11. On the other hand, a river pattern was found in 

Fig. 11, though the area ratio for this pattern was small. In addition, this area ratio did not appear to 

change with the changes in the Kmax test conditions. At this time, we cannot completely explain the 
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mechanism for how Kmax affects da/dN and further study seems to be necessary on this point. 

However, in an engineering sense, we conclude that linear extrapolation in a non-corrosive 

atmosphere is valid and on the safe side. 

4. Conclusions 

     In this paper we report on near threshold fatigue crack growth (FCG) data in 1 x 10-7 ≤ da/dN 

≤ 1 x 10-5 mm/cycle for carbon steels S55C, HT60 and SS400 and type 304 stainless steel by the 

Kmax-constant method. Since the FCG rate by the Kmax-constant method is considered to give the 

upper limit of the FCG data obtained by the stress ratio-constant method, the data we obtained were 

compared with the FCG evaluation diagrams given in the ASME and JSME pressure vessel 

post-construction codes to ensure their validity. Though the FCG rate for carbon steel S55C was 

somewhat affected by the Kmax value, our results show that the FCG data obtained near threshold is 

close to the upper bound of the JSME code diagram, which is an extrapolation of the ASME FCG 

diagram to the near threshold region. From this work we conclude that the linear extrapolation of 

da/dN data in the medium range FCG area to the near threshold area is valid. 
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Fig. 1 Testing system 
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Fig.2 Geometry of CT test specimen 
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Fig. 3 Comparison of planned and measured ΔK in the test (SUS304, Kmax = 31 MPam 1/2) 
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Fig. 4 Test results (HT60) 
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Fig. 5 Test results (SS400) 
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Fig. 6 Test results (SUS304) 
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Fig. 7 Test results (S55C) 
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Fig. 8 Comparison of test results with the JSME code (carbon steel) 
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Fig. 9 Comparison of test results with the JSME code (stainless steel) 
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Fig. 11 River pattern found in the near threshold region 

 (S55C, Kmax = 50 MPam1/2, da/dN ≈ 1 x 10-7 mm/cycle) 
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Table 1 Chemical composition of test specimens 

 C Si Mn P S Cu Ni Cr Nb B Fe 

S55C 

HT60 

SS400 

SUS304 

0.53 

0.12 

0.12 

0.05 

0.20 

0.25 

0.22 

0.59 

0.66 

1.45 

0.58 

1.02 

0.007 

0.008 

0.021 

0.028 

0.003 

0.003 

0.017 

0.008 

0.01 

0.01 

- 

- 

0.02 

0.02 

- 

9.11 

0.02 

0.03 

- 

18.35 

- 

0.02 

- 

- 

- 

0.0001

- 

0.0001

Bal.

Bal.

Bal.

Bal.

 

Table 2 Mechanical properties of test specimens 

 Yield Point

MPa 

Tensile Strength 

MPa 

S55C 

HT60 

SS400 

SUS304 

375 

520 

275 

225 

724 

631 

438 

608 

 

 


