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Abstract 

In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws 

in wall-thinned straight pipes under bending was proposed. A system to rationally classify the 

planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused 

on the fracture mode. The results demonstrate the importance of distinguishing between axial and 

circumferential long flaws in wall-thinned pipes. 
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1.   Introduction 

Pipes in service experience local wall thinning due to corrosion, mechanical damage and other 

causes. Currently, much research is being conducted to establish and improve the safety assessment of 

pipes with local wall thinning (Janelle, 2005; Wilkowski et al., 2000). For pipes with local wall thinning 

that are both under pressure (Ahn et al., 2002; API/ASME, 2007; Kamaya et al., 2008a,b; Kim and Park, 

2003a,b; Hasegawa et al., 2011) as well as a bending moment (Han et al., 1999; Kim and Park, 2003a,b; 

Shen and Zheng, 2004; Shim et al., 2004; Zheng et al., 2004), the fracture behavior (Ahn et al., 2002; 

Miyazaki et al., 1999; Takahashi et al., 2007; Tsuji and Meshii, 2011) and a safety assessment have been 

established and modified by the finite element method and through experiment. 

For the case of evaluating the limit moment of wall-thinned straight pipes for a circumferential crack 

inside a cylinder (Fig. 1, top), a limit moment equation such as Kanninen’s equation (Kanninen et al., 

1982) is widely used (ANSI/ASME B31.G., 1991). This engineering judgment is justified because the 

limit moment of a crack (planar flaw) will likely give a conservative estimate for flaws (non-planar flaws) 

in wall-thinned pipes. However, it should not be overlooked that the following implicit limitations exist 

when applying the equation for a crack to non-planar flaws. 

1) The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 

2) The effect of the axial length z of the non-planar flaw (Fig. 1, middle and bottom) on the limit 

moment Mc, which is not considered for a circumferential crack, is small or negligible. 

*Manuscript
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Regarding the fracture mode in the first limitation, Miyazaki et al. (Miyazaki et al., 1999) pointed 

out in their experimental study that the fracture mode of wall-thinned pipes is not always collapsed 

(ovalization), and cracking can be observed for a specific combination of flaw configurations (Fig. 1, t1 

and ). Note that their study was made for a constant axial flaw length z without an internal pressure. 

Thus, the examination of the effect of the axial length of wall thinning (Fig. 1, z) on the fracture mode is 

not necessarily sufficient. 

The effect of z on Mc in the second limitation has been examined by Han (Han et al., 1999), Zheng 

(Zheng et al., 2004) and Kim et al. (Kim et al., 2006). They created a limit-load analysis and obtained 

similar results showing that a) Mc monotonically decreases with increases in z, and b) Mc converges to a 

flaw with a length of z/(Rm t)
 0.5 

> 1.5 (Rm: radius of the pipe, t: wall thickness). If we accept these two 

findings, Mc for a crack (i.e., z = 0) is larger than that for a non-planar flaw (wall thinning), and as a 

result, using the crack equation for a non-planar flaw would be non-conservative. This curious finding 

might be a result of assuming that the fracture mode is always collapsed. 

Therefore, in this work, attention is focused on the two implicit assumptions listed and examined the 

effects that z has on the fracture mode and the limit bending moment Mc. Using concrete, systematic tests 

of carbon steel pipes were conducted with artificial wall-thinned flaws under a combined pressure and 

bending load to propose an application guideline for applying a limit moment equation for a 

circumferential crack inside a cylinder (Fig. 1 top) to non-planar flaws in wall-thinned pipes (Fig. 1, 
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middle and bottom). Based on the test results, a system to rationally classify planar/non-planar flaws in 

wall-thinned pipes was proposed, and finally, a limit moment equation applicable to both 

planar/non-planar flaws in wall-thinned straight pipes was created. As a first step, flaws with a size of ≤ 

 and subjected to tensile stresses were examined. 

2. Experiment  

It was considered that Han’s curious result (i.e., c monotonously increases as z → 0) occurred 

because they assumed that the fracture mode was always in a collapsed state for all the flaw 

configurations. However, it was not clear from Miyazaki et al.’s experimental result whether the fracture 

mode changed from collapsed to cracking as z → 0 because their experiment was limited to the case of 

a constant z .Thus, in this work, the goal was to experimentally verify that: 

 The fracture mode changes from a collapsed state to cracking for small z. 

 The effect of z on Mc is not negligible. 

 Mc decreases as z → 0, and thus, applying the crack equation to non-planar flaw is conservative. 

2.1 Specimen 

The test specimen configuration is shown in Fig. 2. Because the current Japanese regulation on the 

wall-thinned pipe is based on the minimum wall thickness, the actual flaw was modeled as a constant 

depth rectangular flaw as shown in Fig. 3, and a limit load equation for this model was proposed. The 

dimensions of the artificial flaw of each specimen and the limit moment Mc obtained from each test are 

summarized in Table 1. The edge of the square flaw was tapered to avoid stress concentration and to 
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secure conservatism in the experimental result. The design values of the nominal and minimum wall 

thicknesses was set to t = 4 mm and tmin = 2 mm for all specimens, so the model often found that tmin/t = 

0.5 for pipes in nuclear power plants. The ligament of the flaw t1 was set equal to the tmin for all of the 

cases. t1Measured, which is defined as the measured ligament wall thickness, is also listed in Table 1. The 

slashed columns for t1Measured indicate that the ligament thickness measurement was difficult for this 

groove type flaw. 

The specimen material was carbon steel JIS (Japanese Industrial Standards) STPT 370. The chemical 

compositions and the tensile strengths of the specimen are shown in Tables 2 and 3, respectively. Here, 

B, YS, f and B are the tensile stress, the yield stress, the flow stress and the elongation, respectively. f 

was defined as an average of B and YS.  

Note that all of the tests were conducted at room temperature. The pressure applied given by p = pmax 

= 6.4 MPa was selected as the maximum rated pressure that corresponds to the tmin calculated based on 

JSME S NC1-2008. 

2.2 Test system 

The four-point bending test system is shown in Fig. 4. In the tests, the internal pressure p was first 

applied to a rated pressure of pmax, and then the load W was applied gradually until a maximum load Wc 

was reached. Here, the limit moment is Mc = Wcb/2 = 0.1525Wc kNm, and the maximum load Wc was 

defined as the two-second average around the observed maximum value measured with 0.01 second 



 5 

intervals. 

3. Test results 

3.1 Fracture mode 

The fracture mode of the wall-thinned pipes of 80A and t1/t = 0.5 is summarized in Fig. 5. It can be 

seen from the figure that although the ligament thickness of the artificial flaw t1 was kept constant for this 

study (different from Miyazaki et al.’s work (Miyazaki et al., 1999)), cracking was generally observed for 

a large circumferential flaw angle  and a small flaw axial length z. It is interesting that cracking was 

observed for the case in which z was as large as 20 mm and could not be considered as a circumferential 

groove in a general sense. In summary, the test results showed that for a case where t1/t = 0.5, the fracture 

mode changed from collapsed to cracking when z/(Rm) ≤ 0.25. 

Note that not only do the planar dimensions of the flaw (z，) affect the fracture mode, but the 

ligament thickness t1 affects the fracture mode as well (Miyazaki et al., 1999). 

It can be concluded from the above examinations of the fracture mode that non-planar flaws such as 

those for the case of 80A,z = 20 mm,  = , and t1/t = 0.5 can experience circumferential cracking, and 

therefore engineers should not assume collapse as a failure criterion for all types of non-planar flaws 

found in wall-thinned pipes. This is especially true for flaws with a relatively small z. 

3.2 Effect of the flaw configuration on the limit moment 

Next, the effect of the axial length of the non-planar flaw z on the limit moment, which is not 
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considered for a circumferential crack, was examined. For this purpose, the limit moment obtained from 

our experiment Mc and that predicted by the following Kanninen’s equation McK (Kanninen et al., 1982) 

was compared in Fig. 6 for a flaw aspect ratio z/(Rm). It is thought that the ratio Mc/McK expresses the 

discrepancy in a model of circumferential crack. 
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Here, the nominal dimensions of the flaw-less cylinder are Rm: the mean radius of pipe and t: the wall 

thickness, and the flaw dimensions are t1: the ligament thickness, : the circumferential angleandzthe 

axial length. P (= pri
2
) is the axial load, p is the internal pressure, ri is the inner radius of pipe and M0 (= 

4fRm
2
t) is the limit moment of the flaw-less cylinder. 

It can be seen from Fig. 6 that the effect of z on the limit bending load Mc is not negligible. It can 

also be observed from the figure that Mc monotonously decreases with the increase in z for a flaw aspect 

of z/(Rm) > 0.25 that corresponds to the fracture mode of collapse. This tendency coincides with that 

predicted by Han’s limit load analysis (Han et al., 1999), which assumed that the fracture mode was 
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collapse. On the other hand, in the case of z/(Rm) ≤  0.25, which corresponds to fracture mode of 

cracking, Mc monotonously increased due to an increase in z. This tendency is inconsistent with what 

Han predicted, but satisfactory based on the point that Mc for a crack (z = 0) is smaller than that of a 

non-planar flaw, and thus applying the crack equation to a non-planar flaw is conservative. However, it 

can also be seen from Fig. 6 that the conservatism of applying the crack equation to a non-planar flaw is 

as small as 20% for a flaw with z/(Rm) > 1.0, i.e., a square or an axially long flaw. 

4. Proposal of a limit moment equation applicable to a planar/non-planar flaw in wall-thinned pipes 

In summary, 

– The effect of z on the limit moment Mc is not negligible and should be properly reflected in the 

limit moment equation. 

– The effect of z on the limit moment Mc is different for the fracture mode, and the fracture mode 

should be properly reflected in the limit moment equation. 

– The fracture mode can be predicted by the flaw aspect ratio z/(Rm). Cracking occurs for z/(Rm) 

≤  0.25, and collapse occurs for z/(Rm) > 0.25. 

Thus, we propose that the limit moment equation is applicable to planar and non-planar flaws of 0 ≤ 

≤  in wall-thinned pipes as follows: 
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The shape function g was defined as follows, and its concrete function coefficients ai and bj are given for 

each flaw aspect ratio z/(Rm) range in Eqs. (7) and (8). This shape function was derived in two steps: 

First, by fitting the experimental data Mc for  = 0.5 and 0.005 (both 80A and t1/t = 0.5). We used least 

squares method and made approximate functions of g = Mc/M1 (M1 = 4fRm
2
t1) about maximum and 

minimum , and then, these two equations were linearly interpolated for . Here,  = 0.005 represents a 

case for an axial crack. The limit moment equation was classified z/(Rm) ≤  0.25 and z/(Rm) > 0.25. 
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Note that the limit moment equation was compiled in the form of the fundamental strength based on the 

ligament wall thickness multiplied by the shape function. This style was chosen because Japanese 

regulations for wall-thinned pipes are based on the minimum required wall thickness tmin determined by 

the construction code. 

5. Discussion 

The test results of the limit moment Mc were compared with those predicted by our equation McFU in 
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Fig. 7 in the form of Mc/McFU. In this figure, the values for Mc/McK were also plotted for reference, where 

McK is Kanninen’s equation defined by Eqs. (1) and (3). The markers with () show that the design 

ligament thickness t1 was used instead of the measured thickness t1Measured for these plots because the 

accurate ligament thickness measurement was difficult for these groove-like flaws. 

It is seen from Fig. 7 that our equation McFU gives an accurate estimate of the experimental results 

regardless of the flaw aspect ratio. On the other hand, the conservatism of Kanninen’s equation, which is 

an equation for a crack and expected to give sufficient conservatism, varied in its flaw aspect ratio. For 

example, Kanninen’s equation was very conservative for the flaw of z/(Rm) ≒ 0.25, but when the flaw 

became square or rectangular (z/(Rm) ≥ 1.0), the conservatism was unexpectedly as small as 20%. 

It may be thought that conservative estimation is most often used to ensure the safety of nuclear 

power plants, and thus, applying a crack equation to a non-planar flaw is satisfactory. As a result, a new 

limit moment equation is not necessary. However, it should not be forgotten that one of the motivations 

behind recent research projects is to reduce the overconservatism in applying a crack equation to 

non-planar flaws found in wall-thinned pipes. Because Mc/McFU was very close to unity regardless of the 

flaw configuration, applying the proposed equation McFU will certainly contribute to reducing 

overconservatism. 

In the introduction, it was noted that the effect of z on Mc has been examined by Han et al. (Han et 

al., 1999), and their limit-load analysis result showed that Mc monotonically decreases with an increase in 
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z, and Mc converges to a flaw with a length of z/(Rm t)
0.5 

> 1.5. To directly compare our experimental 

results with Han’s analytical ones, Fig. 6 was re-compiled in the form of Fig. 8 with Han’s result for the 

case of /2 = 1/2 and t1/t = 0.5. 

We see from Fig. 8 that for the case in which the fracture mode was cracking, Mc monotonously 

increased due to an increase in z. This tendency is inconsistent with what Han predicted, but satisfactory 

in that Mc for a crack (z = 0) is smaller than that of a non-planar flaw, and thus applying crack model to a 

non-planar flaw is conservative. Therefore, we emphasize again the importance of considering the 

fracture mode in evaluating the limit moment of flaws in wall-thinned cylinders. 

It can also be seen from Fig. 8 that Mc did not saturate for a long flaw of z/(Rm t)
0.5 

> 1.5. For 

example, when /2= 1/2, Mc for a flaw of z/(Rmt)
0.5 

> 11.5 was approximately equal to that of z/(Rm 

t)
0.5 ≈ 0.1. This result demonstrates that applying a limit moment equation for a crack to a non-planar 

flaw has very little conservatism for axially long flaws. The discrepancy found between our experimental 

results and Han’s analytical ones for axially long flaws is an issue to be solved in the future because this 

discrepancy cannot be explained by the fracture mode issue. 

It should be noted that the internal pressure was not considered in the proposed limit moment 

equation (5). This is because the equation was intended to be applied to the pipes that were designed 

under the Japanese nuclear power plant construction code (JSME S NC1-2008). In concrete, the 

minimum wall thickness tmin was selected for the rated maximum pressure pmax operating under this rated 
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pressure, and the wall thinning is regulated so that the minimum wall thickness is ensured. This means 

that tmin is basically selected so that the hoop stress by the thin wall cylinder theory becomes lower than 

the yield stress YS. 

             YS
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(10) 

is deduced. From this equation, it can be seen that the effect of the internal pressure p on the limit 

moment McK has disappeared. Thus, it was assumed that the effect of p on the limit moment was 

secondary and p was not considered as a parameter in our limit moment equation. We will consider the 

effect of p by analysis in the future. 

6. Conclusion 

In this paper, the four-point bending test was performed and the effect that z has on the fracture mode 

and the limit bending moment Mc was examined. Regarding the fracture mode, it was confirmed that the 

effect of z on Mc was not negligible, which was not clear in Miyazaki et al.’s research. Regarding the 

effect of z on the limit bending moment Mc, it was confirmed that Mc decreases as z → 0, which was 

different from Han et al.’s research, but satisfactory based on the premise that applying a crack equation 
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to a non-planar flaw was conservative. A system to rationally classify planar/non-planar flaws in 

wall-thinned pipes was also proposed based on the experimental observations witnessed on the fracture 

mode. Finally, a limit moment equation applicable to planar/non-planar flaws with 0 ≤ ≤  found in 

wall-thinned straight pipes was proposed. 
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Table 1 Dimensions of the artificial flaws  

 

Table 2 Chemical compositions of the specimen 

  C Si Mn P S 

STPT370 Specified < 0.25 0.10–0.35 0.30–0.90 < 0.035 < 0.035 

STPT370 Measured 0.21 0.23 0.48 0.008 0.004 

 

Table 3 Tensile strengths of the specimen 

  YS (MPa) B (MPa) f (MPa) B 

STPT370 Specified > 215 > 370 – > 0.30 

STPT370 Measured 301 463 382 0.39 

/2 
t1Measured 

(mm) 
z 

(mm) tRm

z  z/ (Rm) 
Mc

Exp
 

(kNm) 
Specimen no. 

Specimen type 

in Fig. 3 

1/2 2.08 140 11.36 1.173 6.85 10-03 (a) 

1/2 2.18 107 8.68 0.896 7.21 09-04 (a) 

1/2 2.10 37 3.00 0.310 7.67 09-03 (a) 

1/2 1.96 20 1.62 0.168 7.51 10-04 (a) 

1/2 – 1 0.08 0.008 6.86 09-01 (c) 

1/3 2.08 107 8.68 1.344 7.52 10-05 (a) 

1/3 1.95 20 1.62 0.251 8.31 10-07 (a) 

1/3 2.04 10 0.81 0.126 8.46 10-08 (a) 

1/3 1.96 1 0.08 0.013 6.68 10-15 (c) 

1/6 2.09 74 6.00 1.860 8.62 10-11 (a) 

1/6 2.04 40 3.24 1.005 8.75 10-12 (a) 

1/6 2.00 10 0.81 0.251 8.81 10-13 (a) 

1/6 1.97 6 0.49 0.151 8.70 10-14 (a) 

1/6 2.05 1 0.08 0.025 8.10 10-16 (c) 

1/20 2.11 12 0.97 1.005 9.73 10-10 (a) 

1/20 2.08 6 0.49 0.503 9.40 10-19 (b) 

1/200 2.03 20 1.62 16.75 9.56 10-17 (b) 

1/200 2.04 10 0.81 8.377 9.24 10-18 (b) 
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Fig. 1 Circumferential planar flaw and non-planar flaws 

(axially and circumferentially long) in a cylinder
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Fig. 2 Three different specimen types for bending test
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Fig. 3 Idealized flaw modelling for a constant depth rectangular flaw
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Fig. 4 Four-point bending test and bending moment diagram (unit: mm)
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Fig. 5 Fracture mode under bending (80A, t1/t = 0.5)
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Fig. 6 Effect of flaw configuration on the limit moment in Mc/McK (80A, t1/t = 0.5)
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Fig. 7 Validity of the proposed equation (80A, t1/t = 0.5; 0 ≤ z/(Rm) ≤ 2)
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Fig. 8 Effect of flaw configuration on the limit moment in Mc/M0 (80A, t1/t = 0.5)
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