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Abstract 

An error index for the stress intensity factor (SIF) obtained from the finite element analysis (FEA) results using singular elements 

is proposed. The index was developed by considering the facts that the analytical function shape of the crack tip displacement is 

known and that the SIF can be evaluated from the displacements only. The advantage of the error index is that it has the 

dimension of the SIF and converges to zero when the actual error of the SIF by displacement correlation technique converges to 

zero. Numerical examples for some typical crack problems, including a mixed mode crack, whose analytical solutions are known, 

indicated the validity of the index. The degree of actual SIF error seems to be approximated by the value of the proposed index. 
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1. Introduction 

     It is popular to evaluate the integrity of a cracked structure under arbitrary loads by comparing the stress intensity factor (SIF) 

for the crack with the critical value peculiar to the material. The SIF is often evaluated from finite element analysis (FEA) results 

and is effective particularly when the SIF solution for the crack under specific load condition is not known, while the error 

estimation of the obtained SIF is very important. 

     In the past, many techniques have been proposed for FEA of a cracked structure in order to express and evaluate the stress 

singularity of the stress at the crack tip. Among these, one of the most popular techniques is to apply singular elements, which 

Barsoum [1] and Henshell and Shaw [2] proposed independently, to realize the crack tip stress singularity. In this case, the SIF is 

usually evaluated by Tracey’s formula [3] (Displacement Correlation Technique, hereafter referred to as DCT). The feature of this 
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technique is that a SIF of practical accuracy can be obtained by comparatively coarse mesh division. So, many researchers have 

been trying to answer the question “how coarse the singular element can be to secure the SIF accuracy?” However, it has become 

known that the load conditions as well as the singular element size affect the SIF accuracy. Thus, it is generally accepted that an 

optimum singular element size that satisfies arbitrary conditions does not exist [4]. 

     Generally the accuracy of the SIF solution by FEA is improved by increasing the number of elements. However, since it is an 

engineering problem (and especially to take advantages of singular elements), it is desirable to obtain sufficiently accurate SIF by a 

mesh division as coarse as possible. This will be possible if we can estimate the error of the SIF obtained from one trial analysis. 

We can make corrections or judge whether the obtained SIF solution is applicable from a practical viewpoint. Fuenmayor et al. 

[5] applied the error index (expressed through the energy norm) which Zienkiewicz and Zhu [6] proposed for estimating errors in 

FEA results. However, since the error index is not expressed in terms of the SIF, one can only expect that the SIF error will be 

small when the index becomes small. We cannot know the degree of the actual SIF error. So we developed a new SIF error index 

that has the dimension of the SIF, based on the following three facts: (i) The analytical function form of the crack tip 

displacements is known. (ii) Though incomplete, displacements on a singular element represent a part of the analytical 

displacement distribution. (iii) The SIF can be evaluated from the displacements of crack tip elements. 

     In the following, we will first explain the concept of the error index which we have developed, and then demonstrate its validity 

by comparing our error index with the actual error for three typical crack problems whose analytical solutions are known. 

2. Proposal of DCE (Displacement Correlation Error) index 

     Consider a polar-coordinate system (r, θ) as shown in Fig. 1 where the crack tip is chosen as the origin and the crack surfaces as 

θ = ±π. The asymptotic solutions of displacement around the crack tip are generally given by 
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where u0 and v0 are the rigid body displacements in x and y directions, respectively, u and v are the displacements in x and y 

directions, respectively, G is the shearing modulus and  
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Here, suffixes I and II indicate the quantities corresponding to mode I and mode II deformations, respectively, and suffixes u and v 

represent the quantities corresponding to the displacements u and v, respectively. Letting ν  be the Poisson's ratio, κ is (3-4ν) for 

plane strain or (3-ν)/(1+ν) for plane stress.  Accordingly, when we think of the relative displacements u*(r, θ) and v*(r, θ) in x and 

y directions, respectively, between two symmetric points across the x axis, they can be obtained as [7] , and 
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Note that, since fI v n and fII u n are odd functions and fI u n and fII v n are even functions, u*(r, θ) and v*(r, θ) are related to only mode  II 

and mode I deformations, respectively, and the SIFs are defined as KI = π2  AI 1 and KII = - π2  AII 1. 

   On the other hand, when we employ the singular elements in FEA, the displacements U(r, θ) and V(r, θ) in x and y directions on 

the edges in r direction of a singular element can be expressed, by using the nodal displacements of the quarter and the end points, 

as  
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Here, U0 and V0 are the rigid body displacements in x and y directions, respectively. The relative displacements U*(r, θ)≡U(r, θ)- 

U(r, -θ) and V*(r, θ) ≡V(r, θ)- V(r, -θ) can be obtained as 
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 and they also must be related to only mode II and mode I deformations, respectively. 

    The Tracey’s formula [3] is frequently used to evaluate the SIF from FEA results. That is, the SIF KDCT is evaluated by letting 

Eqn. (5) correspond to the first two terms of Eqn. (3) on the crack surfaces (θ =π) and it is given concretely, considering.  

fI v 1(π) =  fII u 1(π)=κ+1, AI 1 = KI  DCT /(2π)1/2, AII 1 = -KII DCT/(2π)1/2 and setting G' ≡ (2π/L)1/2G/(1+κ), as 
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Note that the KDCT in Eqn. (6) is evaluated for θ =π . It generally differs from the SIF evaluated in a similar way for other θ (≠ π), 

because singular element displacements are not guaranteed to satisfy the angular characteristics of asymptotic solutions. When we 

think of a sufficiently small region around a crack tip, terms higher than O(r 3 / 2) can be neglected in Eqn. (3). The relative 

displacements can be accurately expressed by the first two terms of Eqn. (3). If the true SIFs KⅠ and KⅡ are known, Eqn. (3) can 

be deduced for the crack surfaces, with fⅠ v 2(π) = 0 and fⅡ u 2(π)=0, as follows. 
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On the other hand, the corresponding expressions U*(r, π) and V*(r, π) for the singular elements are deduced by substituting the 

SIFs KⅠ DCT and KⅡ DCT into Eqn. (6), as 
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The nodal displacements in FEA are obtained by determining the unknown coefficients in the adopted displacement function 

through potential energy minimization process and Eqn. (5) does not necessarily coincide with Eqn. (3). Thus, the coefficients of 

r/L in Eqn. (8) are not zero unless the adopted displacement function can express the true displacement solution. However, since 

the singular elements under consideration are conformal elements [1], FEA displacements tend to the exact solutions when the 

size of the elements approaches zero (note that the element size has to be decreased not only in the r direction but also in the θ 

direction). Then, the second term in Eqn. (8) converges to zero and KDCT to the true value. This suggests the possibility of the 

second term in Eqn. (8) to become a SIF error index. We will now multiply the coefficient for r/L in Eqn. (8) with (-G'/2) and 

name the quantity defined by 
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DCE index (Displacement Correlation Error Index) ΔKDCE. 
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     Strong points of the DCE index, the proposed error index, are that (1) it can be directly calculated from the nodal displacements 

on the singular elements, (2) it converges to zero when the size of the singular elements approaches zero and (3) it has the 

dimension of a SIF. Thus, the DCE index differs from conventional error indexes, which generally focus on the convergence 

during iterative mesh refinements. The DCE index may give a SIF error estimate from a single FEA result. This suggests the 

possibility of dramatically reducing efforts and costs in SIF analysis. 

3. Numerical examples 

     In this section, FEA for three typical crack problems, whose analytical SIF solutions Kref are known, were conducted by using 

singular elements. The error defined as the difference between KDCT computed with DCT (Eq. (6)) and Kref,  Kerror= (KDCT – Kref), 

was compared with the corresponding ΔKDCE. In all cases, shearing modulus G of 79 GPa and Poisson’s ratio ν of 0.3 were used. 

In order to investigate the effect of singular element size, analyses were carried out changing the number m and the length L (see 

Fig.1) of singular elements. m was 8 [8], 16, 24 and 30, and L/a was taken at 1/3, 1/6, 1/12 and 1/24 for each m, letting it roughly 

correspond to the guideline proposed in the early days (L/a=0.05～0.2) [8] . 

3.1 Single edge cracked beam under uniform tension 

    The single edge cracked beam under uniform stress σ = 9.8 MPa in the left of Fig. 2 was considered first. The dimensions of the 

beam were W=10 mm wide, H = 2W = 20 mm high and crack length was a = 1 or 3 mm. KI error was obtained by using the 

following KI ref [9] and was compared with ΔKI DCE.   

{ }
)2/cos(

)2/sin(137.002.2752.0
2

tan2)(
3

ref I πξ
πξξπξ

πξ
πσξ −++

⋅×== a
W
aK ...................................................... (10) 

As is discussed in the next paragraph, the dependence of the results on the value of m in this problem can be regarded 

sufficiently small when we choose m to be 16 or more. Thus, the results for the case of m = 16 are shown in Fig. 2 and Tab. 1. 

The differences between KI error and ΔKI DCE can be read directly from the figure as the vertical distance between a mark and a line 

of unit slope crossing the origin. For example, the maximum difference between KI error and ΔKI DCE in this figure is found to be 

0.0156 (1.56% of KI ref) for the mark corresponding to the result when a/W = 0.1 and L/a = 1/3. This figure shows that ΔKI DCE 



 
T. Meshii, et al., Engineering Fracture Mechanics, Vol. 70, No. 5, pp. 657-669 (2002. 3). 

 6

decreases when L/a becomes small and, at the same time, KI error decreases. The difference between ΔKI DCE and KI error seems to be 

small in the range shown in the figure. 

     The dependence of the relation between ΔK DCE and K error on m is shown in Figs. 3 and 4 for mode I and mode II 

components, respectively, for the case of a/W = 0.1.  The concrete values of data in Figs. 3 and 4 are summarized in Tabs. 2 and 

3, respectively. Here, the analytical SIF for mode II for this problem is zero, so that KII error= KII DCT. Therefore, σ(πa)1/2 was used 

to normalize KII error and ΔKII DCE in Fig. 4. We see from Fig. 4 that the increase of m does not necessarily lead to the decrease 

of KII error. This seems due to the fact that the mode II SIF is zero. It is considered that, when we take also the results in 

section 3.3 into consideration, the tendency expected for conformal elements does not appear for small KII, unless both m 

and L are decreased together smoothly and appropriately. On the other hand, we see from Fig. 3 that, if we choose m to be 

16 or more, the vertical distance between a mark and a straight line of unit slope crossing the origin (the difference between KI error 

and ΔKI DCE) becomes approximately constant. Thus, the effect of m on the mode I SIF can be disregarded. 

3. 2 Circumferential crack in a cylinder under uniform tension 

    A circumferential crack in a cylinder under remote uniform stress σ = 9.8 MPa as in the left of Fig. 5 was considered next. The 

dimensions of the cylinder were Rm = 95 mm in mean radius, W=10 mm thick and H = 16W = 160 mm long. The crack length 

was a = 1 or 3 mm. The solution by Nied was adopted as KI ref to evaluate KI error (a/W, KI ref MPam1/2) = (0.1, 0.636), (0.3, 

1.324) [10] and KI error was compared with ΔKI DCE. The results for the case of m = 16 are shown in the right of Fig. 5 and Tab. 

4 from the same reason as for the right of Fig. 2. The maximum difference between KI error and ΔKI DCE in the figure is seen to 

be 0.67% of KI ref for the mark corresponding to the case where a/W = 0.1 and L/a = 1/3. Also in this case, ΔKI DCE decreases when 

L/a becomes small and, at the same time, KI error decreases. The difference between ΔKI DCE and KI error seems to be small in the 

range shown in the figure. 

     The dependence of the relation between ΔK DCE and K error on m is shown in Figs. 6 and 7 for mode I and mode II 

components, respectively, for the case of a/W = 0.1. The concrete values for data in Figs. 6 and 7 are given in Tabs. 5 and 

6, respectively. Here, the analytical SIF for mode II is zero, so that KII error= KII DCT. Therefore σ(πa)1/2 was used again to 
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normalize KII error and ΔKII DCE in Fig. 7. We see from Fig. 7 that the increase of m does not necessarily contribute to the 

decrease of KII error similarly as did not in Fig. 4. This seems due to the fact that the mode II SIF is zero also for this 

problem. It seems that the tendency expected for conformal elements does not appear for small KII, unless both m and L 

are decreased together smoothly and appropriately. On the other hand, we see from Fig. 6 that, if we choose m to be 16 or 

more, the vertical distance between a mark and a line of unit slope crossing the origin (the difference between KI error and ΔKI 

DCE,) becomes approximately constant. Thus, the effect of m on the mode I SIF can be disregarded. 

3. 3 Center slant cracked rectangular plate subjected to uniform tension 

    The problem of a center slant cracked rectangular plate under uniform stress σ = 9.8 MPa in Fig. 8 left was considered. The 

dimensions of the plate were 2W = 30 mm wide and 2H = 60 mm high. Crack length was 2a = 6 or 12 mm and crack inclination 

angle was α=30o. Kerror was obtained by comparing with Kitagawa’s analytical solution ((KI ref , KII ref) = (0.735, 0.415) and 

(1.138, 0.605) MPam1/2 for a/W = 0.2 and 0.4, respectively)[11] and was compared with ΔK DCE in the right of Fig. 8 and 

Tab. 7. The results for m = 24 are shown in Fig.8 and the effects of m on KDCT for the case of a/W = 0.4 are summarized in 

Fig. 9 and Tab. 8. As we see from Fig.9, there is a difference of up to 2.74% between the mode I ΔKDCE/Kref and mode II 

ΔKDCE/Kref for m = 8. This is thought of unfavorable because we estimate each SIF and error from one FEA. Thus, we set a 

guideline for this mode I and II ΔKDCE/Kref difference to be lower than 1.5% and the results for m = 24 are shown in Fig. 8. Note 

that the mode I ΔKDCE/Kref changes slightly as m increases. The maximum difference between Kerror and ΔKDCE in Fig. 8 can be 

read as 3.40% of Kref for mode II. Both ΔKDCE and Kerror shows the tendency to decrease while L/a is made small. 

4. Discussion 

     The DCE Index ΔKDCE, which we proposed in this paper, is intended to give an estimate of the error of the SIF evaluated from 

FEA results by DCT. When we refine the crack tip singular elements in both r and θ directions with proper correlation (that is, 

when we decrease both L/a and 1/m appropriately), the plot (ΔKDCE, K error) is expected to approach the origin in a figure as were 

shown in previous section. That is, K error is expected to approach zero when ΔKDCE approaches zero. This characteristic of 
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ΔKDCE is similar to that of the error index proposed in the past [5], [6] which was based on the energy norm. However, we think 

that ΔKDCE is advantageous because it has the dimension of a SIF and the SIF error can be discussed directly. 

     In order to make full use of the merit of ΔKDCE mentioned above, we had better reduce the element size in both r and 

θ directions properly by correlating two parameters L/a and 1/m. However, because this makes the finite element division quite 

difficult, we first fixed the number of elements in θ direction m and reduced the element size in r direction in the numerical 

examples shown in the previous section. The results showed that KI is relatively insensitive to mesh refinements in θ  direction, 

thus, in the evaluation of KI, we can concentrate on refining the mesh in r direction once we choose m larger than a certain value. 

On the other hand, the situation differs with regard to KII; that is, the convergence of KII by varying m should be confirmed. In any 

case, the validity of m can be judged by how the plots on a figure like Fig. 9 point to the origin with the decrease of L/a in the 

analysis of a problem of which the analytical SIF solutions are known. The value of m used in the numerical examples in this 

paper seems to be valid at least in KI evaluation that is important in many cases. Note that our error index takes the value of the 

same degree as that of the SIF error itself in the region of ⏐ΔKI DCE/KI ref⏐< 0.05. It is in the evaluation of SIF, essentially, for the 

problem whose analytic solution is not known that the error index can play its role. The results here for KI shows, while some 

more study might be necessary, that, when we choose m ≥ 16 and consider the range of ⏐ΔKI DCE/KI DCT⏐< 0.05 instead of  

⏐ΔKI DCE/KI ref⏐< 0.05, there is a possibility to estimate the degree of the error itself by our error index and, by using it, compensate 

the error in KI DCT. Regarding to KII, as shown in Fig. 9, the plot of (K error, ΔKDCE) moves closer to the origin with the increase of m 

when L/a is made small.  From this, we may be able to expect that an error estimation procedure similar to that for KI just 

mentioned can be applied to also KII, if we use large m. However, the employment of large m is not necessarily realistic and it may 

be said in this sense that the singular element is not necessarily suitable for KII evaluation. Even if so, the discrepancy in accuracy 

of KI and KII is not desirable generally in the analysis of a mixed mode crack problem and the magnitude of ⏐ΔKI DCE/KI ref -  

ΔKII DCE/KII ref⏐ can be used as a measure to judge the validity of employed m as was shown in section 3.3. When the analytical 

solution is not known, ⏐ΔKI DCE/KI DCT - ΔKII DCE/KII DCT⏐ can be used instead. 
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     Recently, Rahulkumar et al. [12] proposed an approach to use higher order singular elements for an accurate SIF evaluation 

with a coarse mesh division. However, judging from the results of a mixed mode problem discussed in section 3.3, it still remains 

necessary to try to find a proper mesh refinement in θ direction (selection of m) even though higher order elements are used. Also 

for this case, it will be effective to select m first for Barsoum’s singular element by applying ΔKDCE as proposed in this paper. 

5. Conclusions 

     An error index for SIF obtained from the FEA results using singular elements was developed and was named DCE 

(Displacement Correlation Error) index. The DCE index was developed as a SIF error index that has the dimension of a SIF, 

based on the following three facts: (i) The analytical functional form of the crack tip displacements is known. (ii) Though 

incomplete, displacements on a singular element represent a part of the analytical displacement distribution. (iii) The SIF can be 

evaluated from the displacements of crack tip elements. Although the DCE index is not the SIF error itself, the presented 

numerical results (for the problems whose analytical solutions are known) for appropriate mesh divisions in θ direction showed 

that the DCE index is close to the actual SIF error, especially for mode I SIF evaluation that is important in most practical 

problems, and that error compensation by using it might be possible in an engineering sense. 
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NOMENCLATURE 

a:   crack length 

f I u  n, f I v  n, f II u  n, f II v  n:   angular functions corresponding to modes I and II, displacements u and v, and r n/2  

m:   number of singular elements 

r, θ: polar coordinates 

u, v: displacements in the x and y directions (u0, v0: rigid body displacements in the x and y directions;  u*, v*: relative 

displacements of two symmetric points across the x axis in the x and y directions) 

x, y: Cartesian coordinates 

A I n, A II  n:   coefficients corresponding to modes I and II, and r n/2 in crack tip displacements asymptotic expansion 

G:   shearing modulus 

G':   ≡ (2π/L)1/2G/(1+κ) 

H:   plate height or cylinder length; see Fig. 2, 5 or 8 for details 

KI , KII:  mode I and II stress intensity factors 

KI DCT , KII DCT:  mode I and II stress intensity factors evaluated from FEA results using singular elements 

KI ref , KII ref:  mode I and II analytical stress intensity factor solutions 

KI error , KII error:  mode I and II stress intensity factor errors defined as Kerror = KDCT - Kref 

ΔKI DCE , ΔKII DCE:  mode I and II DCE indexes 

L:   singular element size 

U, V: displacements of singular elements in the x and y directions (U0, V0: rigid body displacements in the x and y directions; U*, 

V*: relative displacements of two symmetric points across the x axis in the x and y directions) 

W:   plate width or cylinder thickness; see Fig. 2, 5 or 8 for details 

Rm:   mean radius 

α:   crack inclination angle 
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κ:  (3-4ν) for plane strain or (3- ν)/(1+ ν) for plane stress 

ν:  Poisson’s ratio 

σ:   applied stress 
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Fig. 1. Singular crack tip elements. 
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Fig. 2. Actual SIF error KI error and DCE Index ΔKI DCE (H/W = 2, m = 16, ν = 0.3). 
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Fig. 3. Effect of singular element number m on actual SIF error KI  error and DCE Index ΔKI  DCE  (for a/W = 0.1 in Fig. 2) 
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Fig. 4 Effect of singular element number m on actual SIF error KII error and DCE Index ΔKII DCE (for a/W = 0.1 in Fig. 2) 
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Fig. 5. Actual SIF error KI  error and DCE Index ΔKI DCE (Rm/W= 9.5, H/W = 16, m = 16, ν = 0.3). 
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Fig. 6. Effect of singular element number m on actual SIF error KI error and DCE Index ΔKI DCE  (for a/W = 0.1 in Fig. 5). 
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Fig. 7. Effect of singular element number m on actual SIF error KII error and DCE Index ΔKII DCE (for  a/W = 0.1 in Fig. 5) 
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Fig. 8. Actual SIF error Kerror and DCE Index ΔKDCE (H/W = 2, m=24, α=30o, ν = 0.3). 
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Fig. 9. Effect of singular element number m on actual SIF error Kerror and DCE Index ΔKDCE (for a/W = 0.4) 

 

Table 1. Concrete values for Fig. 2 (H/W = 2, m = 16, ν = 0.3) 

  

a/W K I ref/{σ(πa)1/2} L/a ΔKI DCE/KI ref KI error/KI ref 

0.1 1.196      1/3 0.0579 0.0423 
       1/6 0.0271 0.0216 
       1/12 0.0125 0.0108 
       1/24 0.0065 0.0068 

0.3 1.655      1/3 0.0083 0.0084 
       1/6 0.0049 0.0072 
       1/12 0.0027 0.0061 
       1/24 0.0018 0.0058 
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Table 2. Concrete values for Fig. 3 (a/W = 0.1, K I ref/σ(πa)1/2 = 1.196,  H/W = 2, ν = 0.3) 

 

m L/a ΔKI DCE/KI ref KI error/KI ref 

8     1/3 0.0548 0.0342 
     1/6 0.0303 0.0234 
     1/12 0.0126 0.0080 
     1/24 0.0071 0.0043 

16     1/3 0.0579 0.0423 
     1/6 0.0271 0.0216 
     1/12 0.0125 0.0108 
     1/24 0.0065 0.0068 

24     1/3 0.0559 0.0412 
     1/6 0.0246 0.0189 
     1/12 0.0115 0.0094 
     1/24 0.0057 0.0056 

 

Table 3. Concrete values for Fig. 4 (a/W = 0.1, H/W = 2, ν = 0.3) 

  

ΔKII DCE/σ(πa)1/2 KII error/σ(πa)1/2 

m L/a  x 103  x 103 

8     1/3 -0.0497 -0.0293 
     1/6 -0.0443 -0.0401 
     1/12 -0.0232 -0.0330 
     1/24 -0.0116 -0.0271 

16     1/3 -0.2359 -0.5152 
     1/6 -0.0441 -0.3185 
     1/12 -0.0065 -0.2829 
     1/24 0.0047 -0.2660 

24     1/3 0.0095 0.1144 
     1/6 -0.0117 0.0878 
     1/12 -0.0061 0.0898 
     1/24 -0.0035 0.0903 
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Table 4. Concrete values for Fig. 5 (Rm/W= 9.5, H/W = 16, m = 16, ν = 0.3) 

  

a/W K I ref/{σ(πa)1/2} L/a ΔKI DCE/KI ref KI error/KI ref 

0.1 1.158     1/3 0.0543 0.0476 
      1/6 0.0257 0.0266 
      1/12 0.0117 0.0148 
      1/24 0.0063 0.0111 

0.3 1.392     1/3 0.0161 0.0101 
      1/6 0.0091 0.0064 
      1/12 0.0048 0.0034 
      1/24 0.0029 0.0024 

 

Table 5. Concrete values for Fig. 6 (a/W = 0.1, K I ref/σ(πa)1/2 = 1.158,  Rm/W= 9.5, H/W = 16, ν = 0.3) 

 

m L/a ΔKI DCE/KI ref KI error/KI ref 

8     1/3 0.0499 0.0366 
     1/6 0.0294 0.0297 
     1/12 0.0117 0.0120 
     1/24 0.0069 0.0087 

16     1/3 0.0543 0.0476 
     1/6 0.0257 0.0266 
     1/12 0.0117 0.0148 
     1/24 0.0063 0.0111 

24     1/3 0.0526 0.0467 
     1/6 0.0233 0.0235 
     1/12 0.0107 0.0133 
     1/24 0.0056 0.0098 

 

Table 6. Concrete values for Fig. 7 (a/W = 0.1, Rm/W= 9.5, H/W = 16, ν = 0.3) 

  

ΔKII DCE/σ(πa)1/2 KII error/σ(πa)1/2 

m L/a  x 103  x 103 

8     1/3 0.2216 0.8556 
     1/6 -0.0118 0.4615 
     1/12 -0.0658 0.3784 
     1/24 -0.0315 0.3983 

16     1/3 -0.0509 0.1383 
     1/6 -0.0688 0.0918 
     1/12 -0.0523 0.0742 
     1/24 -0.0253 0.0933 

24     1/3 0.0689 0.4244 
     1/6 -0.0647 0.2063 
     1/12 -0.0508 0.1917 
     1/24 -0.0318 0.1926 
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Table 7. Concrete values for Fig. 8 (H/W = 2, m=24, α=30o, ν = 0.3). 

    

a/W K I ref/{σ(πa)1/2} K II ref/{σ(πa)1/2} L/a ΔKI DCE/KI ref KI error/KI ref ΔKII DCE/KII ref KII error/KII ref 

0.2 0.7730 0.4367     1/3 0.0673 0.0491 0.0547 0.0206 
       1/6 0.0322 0.0235 0.0231 -0.0004 
       1/12 0.0158 0.0122 0.0079 -0.0120 
       1/24 0.0079 0.0069 0.0003 -0.0192 

0.4 0.8456 0.4497     1/3 0.0659 0.0482 0.0607 0.0282 
       1/6 0.0313 0.0230 0.0274 0.0082 
       1/12 0.0154 0.0119 0.0115 -0.0021 
       1/24 0.0077 0.0068 0.0033 -0.0079 

 

Table 8. Concrete values for Fig. 9 (a/W = 0.4, H/W = 2, α=30o, ν = 0.3, K I ref/σ(πa)1/2 = 0.8456,  K II ref/σ(πa)1/2 = 0.4497). 

   

m L/a ΔKI DCE/KI ref KI error/KI ref ΔKII DCE/KII ref KII error/KII ref 

8     1/3 0.0648 0.0432 0.0423 -0.0067 
     1/6 0.0342 0.0246 0.0086 -0.0239 
     1/12 0.0167 0.0112 -0.0077 -0.0358 
     1/24 0.0086 0.0053 -0.0164 -0.0425 

16     1/3 0.0662 0.0485 0.0582 0.0236 
     1/6 0.0318 0.0237 0.0249 0.0038 
     1/12 0.0158 0.0125 0.0088 -0.0067 
     1/24 0.0081 0.0074 0.0006 -0.0126 

24     1/3 0.0659 0.0482 0.0607 0.0282 
     1/6 0.0313 0.0230 0.0274 0.0082 
     1/12 0.0154 0.0119 0.0115 -0.0021 
     1/24 0.0077 0.0068 0.0033 -0.0079 

30     1/3 0.0662 0.0484 0.0614 0.0294 
     1/6 0.0313 0.0230 0.0284 0.0095 
     1/12 0.0153 0.0118 0.0122 -0.0009 
     1/24 0.0076 0.0067 0.0041 -0.0067 

 


