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                            ABSTRACT 

    In this paper, the stress intensity factor for a inner circumferential surface crack in a hollow 

cylindrical shell under axisymmetric bending loads is studied. The closed form equations of stress 

intensity factor and inclination angles at the cylinder edges were derived. These equations can 

appropriately evaluate the effects of cylinder length and crack location on the stress intensity factor. 

The validity of these equations were illustrated by comparing solutions with numerical ones. The 

results showed that the stress intensity factor increases as the cylinder length decreases, and as the crack 

gets near the cylinder edge. 

  KEY WORDS : Fracture Mechanics, Stress Intensity Factor, Cylindrical Shell, Axisymmetric Loads, 

              Circumferential Crack, Compliance, Finite Length, Crack Location. 

                          1. INTRODUCTION 

    The stress intensity factor (SIF) for a cylindrical structure such as a pressure vessel or a pipe which 

contains a part-through crack seems to be difficult to solve analytically, even for a fundamental one such 

as a circumferential crack. In the past, SIF for this crack configuration in a finite-sized cylinder were 

evaluated numerically by using the technique of the finite elements[  1  ], or, analytically under restricted 

condition of a long cylinder[ 2, 3 ]. These methods will provide useful results for confined cases, but 
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are not suitable to study the effects of cylinder configuration on the SIF parametrically. To meet this 

need, the authors recently developed a simplified but an analytical method to evaluate the SIF for a inner 

surface circumferential crack in a hollow cylindrical shell subjected to axisymmetric loads[ 4 ], which can 

take account of the effects that the cylinder length and the crack location have on the SIF. The 

numerical examples of the method showed that the SIF of this configuration subjected to axisymmetric 

bending loads increases as the cylinder length decreases, and as the crack gets near the cylinder edge. 

As these facts cannot be read from the well known handbooks[ 5 ], the authors were encouraged to derive 

more direct equations to evaluate the SIF under typical loading conditions to meet the practical need in the 

field of design and inspection. In addition, formulation of the inclination angles at the edge of a cylinder 

was felt necessary for our further study, in which the edge constraint will have to be taken into 

consideration in the problem of thermal stress. 

    In the following chapters, closed form equations of SIF and of inclination angle at the cylinder 

edge will be derived by applying the method proposed in our previous paper  [  4  ]. Two cases, that 

is, the case where the bending loads of the same value are applied on the both ends of the cylinder, 

and the case for a given crack face traction equal to the normal stress acting on the crack plane when 

the body is uncracked, will be considered. 

    After formulation, the validity of the closed form equation of SIF will be illustrated by 

comparing solutions with those by FEM. At the same time, the effects that the cylinder length and 

the crack location have on these SIF will be demonstrated. 

       2. DERIVATION OF CLOSED FORM SIF AND INCLINATION ANGLE 

    In this chapter, the method developed by the authors  [  4  ] will be introduced first, as a minimum 

information to derive the closed form equations of SIF and of inclination angle at the cylinder edge. 

After that, closed form equations of SIF and inclination angle at the edge of a cylinder are derived 

concretely for two most fundamental circumferential crack problems by applying the method. 

 2. 1 The SIF for a circumferential crack in a cylinder under axisymmetric loads 
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    In our previous paper, a simplified method to evaluate the SIF for a case shown in Figure 1(a) 

was developed by modeling the cylinder with spring-connected beams on an elastic foundation shown 

in Figure 1(b) [ 4 ]. Here, P1, P2, M1 and M2 are defined as values per unit length in the 

circumferential direction for cylinders, and as values per unit thickness for the beams, respectively. 

    In this case, the flexural rigidity of the prismatic beam was D =  EW3  /1  2(1-), and the spring 

constant of the elastic foundation k was given by the following equation, 

                            EW = 4184 D ; 16,4 = WE      k =   (1) 
                  R.2 41?,,,2D 

where,  Rm : mean radius, W: thickness, E  : Young' s Modulus,  v  : Poisson's Ratio.  P1 and P2 were 

supposed to be loaded in the direction coinciding with one of the principal axes of the prismatic bar. 

In the same manner, the direction of the vectors M1 and M2 was assumed to coincide with the other 

principal axis. Note that  1/f has a dimension of length. 

    The required SIF  KM was evaluated as the SIF of a single edge cracked strip under pure bending 

moment Mc, as 

                  Km = M
zcAbra - Fm ( = a I W)  (  2  ) 

where Z =  W2/6 is the section modulus,  FM is the correction factor for finite width under pure bending, and 

Mc is the moment at the rotary spring in Figure 1(b), obtained as is shown next. 

    Let's denote the shearing force, bending moment, deflection and inclination angles of upper and 

lower ends at the rotary spring as Fc, Mc, yc and  9c1,  9C2, respectively. Then, 

              Fcg  =[Fc Mc  Y  c  Oct9c2]t  (3  ) 

is derived by the following equation, which gives Mc in Eq.  ( 2  ). 

                           F=C-1 xBgx PABg      Cg (  4  ) 

                        - 
.                       Ayp (h1, 0)  gm  (h1  , 0)  —1 0 0 - 

 ( 5  ) 
 iiop(hi,  0)  tem(ho  0) 0 —1 0 

 Cg  =  —  Ayp(0,h2)  ziym  (0,  h2)  —1 0 0 

 —2  (  0,  h2  )  2684-  (  0,  h2  ) 0 0  —1 
                      —2A2011      0—— 
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                 —A
yp(hi3O) —iiym(h1,0) 0 0  (6) 

 —4(h 00)  —2,9m(h00) o o 
              Bg= 0 0 —2y(o,h2) —/1AI(0,h2) 

      P 

                       0  0  -  /1::9P  (°  ,  h2)  —2M(O,h2) 
 0  0  0  0 

 PABg  =[P1 M1  P2  M2]  t 
                                                   (7) 

The various 2 and 2* in Eqs.  ( 5 ) and (  6) are compliances whose respective definition can be referred in 

APPENDIX. The compliance of the spring is evaluated by  dil,; the infinite beam's increment in 

compliance due to the presence of a crack. In the following sections, closed form equations of SIF and 

of inclination angle at the cylinder edge will be derived for specific problems, based on the method 

described here. 

 2. 2 Formulation of the SIF and the inclination angles for the case of axisymmetric bending load pair 

on both ends 

    In this section, the case where a pair of axisymmetric bending load is applied on both ends (Figure 2) 

will be focused. 

    This case can be treated as a case in which the loads in Figure 1 are  Pi = P2 = 0 and M1 = M2 = 

M. By substituting these loads in Eq.  ( 7 ), and by calculating the various compliances in Eqs.  ( 5 ) and 

 ( 6 ) by referring APPENDIX 1, the shearing force  Fc and moment  Mc at the spring are obtained from Eq. 

 ( 4  ). They can be written in a closed form as follows. 

  F 

 =—  4fi(sin  phi sinh  /3h2 — sin  P112 sinh  Pk  )  (  8) 

 M 

       x  {sin  JOH  —  sinh  16H 

 +  J6D  •  AA,  [cos  fiH  —  cosh  fiH  —  cos  fl (hi  —  h2)  +  cosh  )6(111—  h2)]} 

 /  [2  —  cos  216H  —  cosh  2,6H 

       +  /3D  •  AA,{sin  2flH — sinh  2fiH + 2(sinh  2fih1 — sin  2/3h1) + 2(sinh  2/3h2 — sin  2,6h2) 

          + sin  2fi11, cosh  2,6112 — cos  2,6h, sinh  2/3h2 + sin  2,6h2 cosh  2fih, — cos  2fih2 sinh  21611,1]
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   c  = 
M                                                       ( 9 ) 

 {2(cos  fihi  cosh  IA +  cos  f3h2  cosh ,3h2 
 +  sin  AH  +  hi)  sinh  f3h2  –  sin  J3h2  sinh  fi(1/  +  1/1)  +  sin  AH  +  h2)sinh  fih,  –  sin  AI  sinh  16(H  +  h2 

 –  cos  AH +  )  cosh  flh2 –  cos ,3h2  cosh  AH +  h1)  –  cos  f(1/ +  h2)  cosh  AI –  cos  fih,  cosh  AH  +  h2)} 
 /  [2  –  cos  2,6H  –  cosh  2,61/  + 

 /3D  •  Ail  {sin  2/3H – sinh  2/3H + 2(sinh  2fil/1 – sin  2fik  ) + 2(sinh  2,61/2 – sin  2flh2  ) 
          + sin  2,61/1 cosh  2,61/2 – cos  2161/1 sinh  2,6h2 + sin  2,61/2 cosh  2,6h1 – cos  2,6h2 sinh  2,61/1  1  ] 

    By using the moment  Mc, the required SIF  KM can be calculated as the SIF of a single edge cracked 

strip under pure bending moment  Mc, 

 K  =   Mc Alm  •  Fm()=1   11/1c  •[—Mza•F  m  ()]  (10) 
 Z  /  Z 

                      m 

                                        c   

 Mv 
                                                                        Mbeam 

where  Km  beam represents the SIF of a single edge cracked strip under pure bending moment M. Note that 

 Fc/M and  Mc/M are values that are completely determined just by the various compliances of the two 

beams and that of the spring. 

    The inclination angle  OA,  OB at the edge A, B can be derived by treating these edges as an end point 

of a beam on an elastic foundation shown in APPENDIX Figure A. 1. The angle  OA is obtained by 

substituting  h=  h1, x = 0, x' =  h1,  Pi = 0,  MI = M, P2 =  Fc, M2 =  Mc in Eq. (A 1), and  OB by setting  h= h2,  x 

 =  h2,  x'  =  0,  =  (-Fc),M1  =  MC,  P2  =  0,  M2  =  M  in  Eq. (A 1). 

  9=9A/ M= q+ Qi[Fc 1 M  (  11  ) 
                 _B I M M I M 

Here the matrixes q and Q are defined as follows to simplify the expression. 

    r 

                em(0,h1).1.(0,h1) 2M(O,hl) ( 12  )                                                    OP 
                    q=                     116M(112,°)Q = 281(h2,°)  ABM(h21°) 

 2. 3 Formulation of the SIF and the inclination angles for the case of a given crack face traction 

    It is often conducted, based on the principle of superposition, to evaluate the SIF for a case subjected 

to external loads, by analyzing the case with a given crack face traction equal to the normal stress 

acting on the crack plane when the body is uncracked. In this section, the case in which the stress 
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distribution is linear, and equal to  Mo in a term of moment as shown in Figure 3, will be focused. 

    Suppose that the uncracked cylinder is subjected to external bending load pair M on both edges, and 

 Mo is a resultant moment acting on the crack plane when the cylinder is uncracked. In this case, by 

rewriting the results which  Hetenyi [ 6 ] derived for a beam on an elastic foundation to those for a 

cylindrical shell,  Mo is formulated as a function of crack location and M. 

 Mo  =  M; 
                                                      ( 13 ) 

          sinh Pk  cos  flh2 + cosh fik sin flh2 +  sinh  flh2 cos Al +  cosh  flh2 sin fik  

 a 

 sinh  JaH  +  sin  flH 

    By applying the principle of superposition, the required SIF for the case shown in Figure 3 can be 

derived by substituting  (Mo/0a) for  Min Eq.  ( 10  ), 

              K= MAbraFm ( )=( M                                                 .F()m  (  14  )             mo
z                                   M}0a _ Z 

                 M1                              cK
MObeam                         M Oa 

where KMObeam represents the SIF of a single edge cracked strip under pure bending moment  Mo. 

    The inclination angles at the edges  49 and  492 can be derived as the increment due to the presence 

of the inner circumferential surface crack in a cylinder, under bending loads  (M0/0,) on both ends. By 

introducing the compliance  ilcyz  o, which is the compliance of a uncracked cylinder subjected to a pair of 

bending load  Mon both ends, and by using Eq.  ( 11  ), the required inclination angles are given as follows. 

 A  /  Mo   1 [ Fr, I M 1} 1 2cy10  (  15  ) 
            A02 M0 _  Oa M IM]  Oa _  Acylo 

 Acyl  o was earned by rewriting the compliance for a beam on an elastic foundation [ 6 ] into a form of a 

cylindrical shell. 

                            1  cosh  fill  —  cos  13H         2
0210 = • ( 16 )                          /3D  sinh  PH  +  sin  PH

                    3. NUMERICAL ILLUSTRATION 

    Some solutions are illustrated in this chapter to show the validity of the closed form equations of SIF 

derived above. At the same time, the characteristics of the SIF will be demonstrated. 
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 3. 1 The SIF for a case in which the crack surface is subjected  to  Mo 

    A case shown in Figure 3 will be illustrated. The SIF,  KMO, calculated by Eq.  ( 14 ) was compared 

with the value  KFEM by FEM.  (Mc/M0) and  Oa in Eq.  ( 14 ) was calculated by Eq. ( 9 ) and  ( 13 ), 

respectively. 

    The case that was investigated is as follows. The cylinder has mean radius  Rri, = 105 mm and 

thickness  W  = 10 mm for all cases, and, as to material constants, Young's Modulus E = 206 GPa, Poisson's 

Ratio v = 0.3 are commonly used. Two cases were investigated for the total length of the cylinder, that 

is H = 40, 100 mm. For each H, crack location was varied as  h1/H = 0.5, 0.625 and 0.75. The 

calculated results are normalized by  KMObeam (Eq.  (  14  )  ), which is the SIF of a single edge cracked strip 

under pure bending moment  Mo, and are compared in Figure 4. 

    From this figure, the following can be deduced. 

1. These two solutions show good agreement in a practical sense even when H/W = 4 and  h1/H = 0.75, 

   therefore, h2 = W. It can be expected in general, in agreement with the beam theory, that the longer 

   the beam is, the more accurate the solution will be. However, it seems that the method can be 

   applied even to the case where  h1 or h2 becomes comparable to W and the beam theory no longer is 

   valid. 

2. The SIF in interest,  KMO becomes smaller for a longer cylinder. In this situation, there may be a risk 

   in evaluating  KMO of a finite length cylinder by using the result for an infinite length. 

3.  KMO becomes large when the crack is located near the edge of a cylinder. 

4. It is necessary to consider the effects of the cylinder length and crack location appropriately, in 

   evaluating the SIF of a circumferentially cracked cylinder under axisymmetric bending. 

    The correction factor for finite width  FM [ 5 ] and compliance  AA, [ 7 ], which were used in the 

numerical example are as follows. 

                Fm()=2tanri-j • 0.923 + 0.199[1– sin(Tt-j /  2)]4   ( 17  ) 
 1  7-1-J 2 cos(7-t- / 2) 

                  j          AA,(j)= 741.1215)2 2  x  [1+  j(1–  j)(0.44 + 0.25j)](-62  ( 18  )           2E (1–a(1 + 2j)2Wi 
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 3. 2 Parametric  study  : Effects of the cylinder length and crack location on the SIF 

 ( A case of an inner circumferential surface crack in a cylinder subjected to a pair of bending 

load on the edge) 

    In this section, the SIF  KM of the case shown in Figure 2 was examined. The effects of the 

cylinder length and the crack location on  KM were investigated by applying Eq.  ( 10  ).  (Mc/M0) in Eq. 

( 14 ) was calculated by Eq. ( 9 ). The cylinder configuration and the material constants in this 

investigation are identical to those in the previous clause. 

  Two cases corresponding to  a/W  = 0.3 and 0.6 are shown in Figure 5 and Figure 6, respectively. The 

calculated results  KM were normalized by  Km  beam (Eq.  ( 10 ) ), which is the SIF of a single edge cracked 

strip under pure bending moment M. Note that  Km/Kmbeam for small  fiH, or for small  hi/H, h2/H are 

given for reference only, considering the fact that Eq.  ( 10 ) was derived on the basis of the beam theory. 

    From these figures, the following can be deduced. 

1. The values of  KM become nearly equal to those of  Km  beam, when the cylinder becomes short, or when 

   the crack location gets near the cylinder edge. 

2. The closer the crack is located near the cylinder edge, the stronger the cylinder length affects the  KM. 

3. The longer the cylinder is, the stronger the crack location affects the  KM. 

                         4. CONCLUSIONS 

    In this paper, closed form equations of SIF and of inclination angle at the cylinder edge for an 

arbitrarily located circumferential crack in a cylinder, subjected to axisymmetric bending loads, were 

derived. Two cases, that is, the first case where bending loads of the same value are applied on the 

both ends of the cylinder, and the second case for a given crack face traction equal to the normal 

stress acting on the crack plane when the body is uncracked, were considered. The effects that the 

cylinder length and the crack location have on the SIF and inclination angle, can be evaluated by the 

equations  ( 10  ),  ( 14  ),  ( 11  ), and  ( 15  ). 

    The validity of the equation was illustrated by comparing the solutions with the numerical ones, 

for a problem under a traction equivalent to an axisymmetric bending moment on the cracked surface. 
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The results showed that the SIF increases as the cylinder length decreases, and as the crack gets near the 

cylinder edge. These results indicate the necessity to take into account the effects of cylinder length 

and crack location appropriately, in evaluating SIF of a inner circumferential surface crack in a 

cylinder under axisymmetric bending. 
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                       APPENDIX 1 

    Deformation of a beam on an elastic foundation of length h under lateral loads Pi, P2 and bending 

loads  Ml, M2 on its ends is considered (Figure A. 1) [ 4 ]. The loads are defined as values per unit 

thickness. Let the left and right ends of the beam be named points A and B, respectively. Here we 

focus our attention on point X, whose distance to points A and B are x and x', respectively  ( x + x' =  h  ). 

The deflection y and inclination angle  0 at the point X are expressed by the following equation. 

                [y(x,x)    11                     =A(x, x' ) •P[1+ A*(x,x,P2) • (A  l) 
                                   A11  LO(x,  x')M2 

The matrixes  A  (x, x') and  A  *(x, x') are defined in the following Eqs. (A 2) and (A 3). 

                          A(x,x')=  2YAX,  X'  )  Aym(X,  X'  )                                                       (A 2) 
 26,p(x,xt)  ilem(x,x') 

  -  . - 

 A*(x,  x'  )=  AAT,  x'  )  A  ym  (x  ,  x'  )=Ap(x',x) Aym(x',x)         Y(A 3) 
 itep(x,x')  item(x,xt)  —  26,p(x',x)  —  ilem(xt,x) 

where  Ayp, for instance, denotes the compliance that relates the deflection y at point X caused by  Pi to  Pi, 

                                                                           and  2yp denotes the compliance that relates the deflection y at point X caused by P2 to P2. The other 

compliances are defined in a similar way. 

    Each component of the matrixes are given by Eqs. (A 4)  — (A 7) concretely, by regarding the beam 

in Figure A. 1 as the beam equivalent to a cylinder in Figure 1(b). 

                    1sinh  fih cos fix cosh  fix'— sin  fih cosh  fix cos  fix'     A
yp (x , x)= 3X (A  4)                  2fiDsinh2fih — sin2fih 

   1 1    A(
x,x')= x  x ep(A 5) 

            2fi2D  sinh2  ph  -  sin2  fih 

 [ sinh  fih (sin  fix cosh  fix'+ cos  fix  sinh  fix'  ) +  sin  fih (sinh  fix  cos  fix'  + cosh  fix  sin  fix'  )] 

                    1  A 
ym(x , x')=  12 X  X  (A  6)           2fiDsinh2fih — sin2flh 

 [  sinh  fih (sin  fix cosh  fix'— cos  fix sinh  fix' ) + sin  fih  (  sinh  fix cos  fix'— cosh  fix sin  fix')  ] 

                   1 sinh  fih  cos  fix  cosh  fix'  +  sin  fih  cosh  fix  cos  fix'             2(
x ,  x'  )=fi

D x(A  7)                                 sinh2fih — sin2fah 
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   The compliances in Eqs. ( 5 ) and ( 6 ) were given by applying these Eqs. from (A 4) to (A 7), 

considering an additional information x + x' = h. For example,  /1,p(0, h2) is earned by substituting h = h2, 

x = 0 and x' = h2 in Eq. (A 4).  A,*yp(hi, 0) is earned by applying the relation described in Eq. (A 3), that 

is  2*yp(hl, 0) =  Ayp(0, hi), and by substituting h =  hi, x = 0 and x' =  hi in Eq. (A 4). 

                    APPENDIX 2 Nomenclature

a: crack length (m) 

W: cylinder thickness (m) 

 = a/W 

H, h: cylinder length (m) 

R: radius (m) 

E: Young's Modulus (MPa) 

 v Poisson's Ratio 

 /3: characteristic of the system  (1/m) 

D: equivalent flexural rigidity of cylinder (N  • m2/m) 

K: stress intensity factor  (MN/m312) 

P: axisymmetric load per unit circumferential length (MN/m) 

F: axisymmetric force per unit circumferential length (MN/m) 

 FM: correction factor of finite width for single edge cracked strip under pure bending 

M: axisymmetric bending load or moment per unit circumferential length (MN  •  m/m) 

y: deflection (m) 

 0: inclination angle (rad) 

 Ayp,  2,*yp: compliance that relates deflection y caused by load P (m/(MN/m)) 

 Aym,  2ym: compliance that relates deflection y caused by bending load M (m/(MN  • m/m)) 

 A,  OP,  2*  OP: compliance that relates inclination angle  6' caused by load P  (rad/(MN/m)) 

 28M,  2*  em: compliance that relates inclination angle  6' caused by bending load M (rad/(MN  •  m/m)) 
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Figure 1 Replacement of axisymmetric deformation problem of a cylinder 

  by that of two beams on an elastic foundation connected with a spring

Figure 2 A circumferentially cracked cylinder subjected to axisymmetric bending load pair
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Figure 3 A cylinder with a circumferentially cracked surface subjected to  Mo
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Figure 5 The effects of cylinder length and crack location on the SIF 
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Figure A. 1 A beam on an elastic foundation loaded on its ends
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