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ABSTRACT 

   Simplified method to approximately calculate the stress intensity factor of a circumferential crack in 

a thin-walled cylinder with ends subjected to axisymmetric radial and bending loads was developed, based 

on the theory of cylindrical shell and method similar to Rice and Levy’s line spring method.   The effects 

of cylinder length and crack location on the value can be evaluated by the method.   The numerical 

results for the problem with the ends subjected to a pair of axisymmetric bending loads showed the 

necessity to consider the effects of cylinder length and crack location on the stress intensity factor for the 

problem. (100 words) 

KEY WORDS : Fracture Mechanics, Stress Intensity Factor, Thin-Walled Cylinder, Axisymmetric Loads, 

Circumferential Crack, Compliance, Finite Length, Crack Location. 

 

1.   INTRODUCTION 

   The stress intensity factor (SIF) of a circumferential crack in a cylinder is one of the fundamental 

quantities to evaluate the reliability of a cracked pressure vessel.   The SIF for this crack configuration 

under various loading conditions have been obtained by researchers and the SIF under uniform and linear 

stress distributions on the crack surface for a long cylinder have been summarized in handbooks [ 1 ].   
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Furthermore, as to the SIFs for a more general loading condition on the crack surface, there are literatures 

for an arbitrarily distributed stress on the crack surface [ 2 ], [ 3 ], in which the SIFs are given through the 

weight function for a long thin-walled cylinder derived by Labbens et al. [ 2 ] or the analytical method for 

an infinitely long thick-walled cylinder by Nied and Erdogan [ 3 ].   Labbens et al. [ 2 ] pointed out, in 

their paper, that the Mode I SIF of the crack is affected strongly by cylinder length and the assumption of 

long cylinder is satisfied with length H ≥ 5/β (β is a quantity which is used in replacing cylindrical shell by 

a beam on an elastic foundation, and its definition is shown in chapter 2).   So, if we intend to calculate 

the SIF of the crack in a short cylinder with axisymmetrically loaded ends, which is the case for a 

short-length internally pressurized cylindrical vessel with hemispherical ends, the information in these 

handbooks and literatures are not enough, because the SIF for this case may also be affected strongly by its 

length.   In addition, also the location of the circumferential crack may affect the SIF, if the cylinder 

length has an effect on the value.   Numerical methods such as FEM can be a candidate to calculate 

the SIF for such cases, but we felt an alternative method is necessary in systematically examining the 

effect of structural parameters, such as cylinder length, on the SIF. 

   In this paper, we developed a simple method to evaluate the SIF of a circumferential crack in a 

thin-walled cylinder with the ends subjected to axisymmetric bending and radial loads (Figure 1), 

based on the method similar to so-called Rice and Levy’s line-spring method [ 4 ] and theory of 

cylindrical shell [ 5 ].   By applying the method developed, the effects that cylinder length H and 

crack location h1/H have on the SIF can be evaluated systematically, with practically sufficient 

accuracy.   Considering the fact that the actual cracked cylindrical vessels have finite length with a 

crack not necessarily located at the middle point of the cylinder length, this method will be useful in 

the field of design and inspection. 

   In the following, the ideas and basic way of thinking applied in deriving the simplified method 

are described first.   After concrete formulation for a general case, the validity of the method is 

illustrated by comparing the SIF by the method with those by FEM for a problem under a pair of 

axisymmetric bending loads on both ends.   From the numerical examples, the SIF for the problem 
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increased when the cylinder length decreased and when the crack is located near the cylinder end. 

2.   BASIC WAY OF THINKING 

   The way of thinking of the method derived in this paper will be introduced here.   It is 

composed of three fundamental ideas and the last two are similar to the ideas of Rice and Levy’s line 

spring method [ 4 ], although they were proposed independently by Okamura et al. [ 6 ], [ 7 ], [ 8 ] and 

Rice and Levy [ 4 ].   Their standings will be examined in the DISCUSSION.   The concrete 

formulation of our method will be made in the following chapter. 

2. 1   Replacement of an axisymmetric deformation problem of a cylinder by that of a beam on an 

elastic foundation  

   The fact “problems of axisymmetric deformation of cylindrical shells can be treated as those of 

lateral deformation of beams on elastic foundations” was focused at the beginning.   That is, the 

deformation of a cylindrical shell under axisymmetric radial loads P1 and P2 and bending loads M1 

and M2 on the edges (Figure 2, (a)) can be obtained as the deformation of a beam on an elastic 

foundation under the loads P1, P2, M1 and M2 on the ends(Figure 2, (b)), based on the analogy of their 

governing equations [ 5 ].   Here, P1, P2, M1 and M2 are defined as values per unit length in the 

circumferential direction for cylinders, and as values per unit thickness for the beams, respectively.   

Moreover, formally regarding D = EW3/12(1-ν2) as the flexural rigidity of the prismatic beam, the 

value of k given by the following equation is employed as the spring constant of the elastic 

foundation. 

k D EW
R Dm

= =4
4

4 4
2β β;  

where, Rm : mean radius, W: thickness, E : Young’ s Modulus, ν : Poisson’s Ratio.   P1 and P2 were 

supposed to be loaded in the direction coinciding with one of the principal axes of the prismatic bar.   

In the same manner, the direction of the vectors M1 and M2 was assumed to coincide with the other 

principal axis.   Note that 1/β has a dimension of length. 

2.2   Replacement of the cracked section 

( 1 )
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   The knowledge that “the deformation of a cracked beam under lateral and bending loads, in which 

bending moment distributes in the longitudinal direction (Figure 3(a)), can be approximately evaluated by 

modeling the beam as two beams connected with a rotary spring of appropriate compliance (Figure 

3(b))”[ 6 ], [ 7 ], [ 8 ] was focused next.   Note that these beams do not necessarily have to be supported 

by an elastic foundation in general. 

   The above can be explained in the following way.   Let us consider the deformation of a single 

edge cracked beam under pure bending (Figure 4).   The thickness of the beam is unity.   The 

inclination angle at the cross section, which is located l/2 away from the crack, θ can be formulated by 

moment M and compliance λ as, 

θ λ λ λ θ θ= ⋅ = + ⋅ = +M M( )0 0Δ Δ  

θ λ θ λ0 0= ⋅ = ⋅M M, Δ Δ  

where suffix 0 and symbol Δ indicate the value without crack and the increment with crack, 

respectively. 

     Let us think about Δθ at a cross section far away from the crack.   As the part far away from the 

crack rotates like a rigid body, it can be said that Δθ is almost caused by the increase in rotation of the 

section near the crack.   When we take into account the fact θ0 = 0 at the cracked section (l = 0), the 

effect on the deformation due to the presence of the crack can be approximately treated by replacing the 

cracked section with a rotary spring of which the compliance is given by the increment of compliance due 

to the presence of the crack, Δλ, of an infinitely long beam under pure bending.   Note that Δλ is affected 

by ξ = a/W and W, but not by l.   By acceptance of these approximations, the presence of a single edge 

crack in a beam under arbitrarily distributed bending moment can also be treated as a rotary spring with 

the compliance Δλ, as far as the moment does not change its sign across the cracked section and the 

difference of moment across the cracked section is small [ 6 ], [ 7 ], [ 8 ]. 

2. 3   The procedure to evaluate the required SIF 

   The SIF of a single edge cracked beam under arbitrarily distributed bending moment can be treated 

in a way similar to its deformation, which was described just before.   That is, the moment on the spring 

( 2 )

( 3 )
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MC can be derived, once the cracked section of a beam is replaced by a spring (Figure 3).   And almost 

the same moment as MC is supposed to work on the section not so far from the crack (with small l/2 in 

Figure 4), as far as the replacement by a spring above can be accepted.   So “the SIF of a single edge 

cracked strip under distributed moment (Figure 3(a)) can be evaluated approximately as the SIF of a single 

edge cracked strip under pure bending moment MC.” 

   The goal of this paper is to develop a simplified method to evaluate the SIF of a circumferential 

crack in a cylinder subjected to axisymmetric lateral and bending loads, as shown in Figure 1.   This goal 

can be reached now by combining the three ideas that were discussed.   That is, replace the cylinder with 

a beam on an elastic foundation (Figure 2), derive the moment MC of the cracked section by replacing this 

section with a spring (Figure 3), and finally derive the SIF as the SIF of a single edge cracked strip under 

pure bending moment MC. 

3.   FORMULATION 

   In this chapter, the problem of a circumferential crack in a thin-walled cylinder with the ends 

subjected to axisymmetric radial and bending loads shown in Figure 1 will be formulated as a problem of 

two beams on an elastic foundation connected with a spring shown in Figure 3 (b).   Then a method to 

evaluate the SIF in a simplified way will be derived, according to the way of thinking in the previous 

section. 

3.1   Deformation of a beam on an elastic foundation under lateral and bending loads 

   As a first step, deformation of a beam on an elastic foundation of length h under lateral load P1 and 

bending load M1 on its left end will be discussed (P2 = 0 and M2 = 0 in Figure 5).   Let the left and right 

ends of the beam be named points A and B, respectively.   Here we focus our attention on point X, whose 

distances to points A and B are x and x’, respectively ( x + x’ = h ).   The deflection y and inclination 

angle θ of point X can be expressed, by introducing compliance λ and compliance matrix Λ(x, x’), as 

y x x
x x

x x x x
x x x x

P
M

x x
P
M

yP yM

P M

( , ' )
( , ' )

( , ' ) ( , ' )
( , ' ) ( , ' )

( , ' )
θ

λ λ
λ λθ θ

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ ⋅
⎡

⎣
⎢

⎤

⎦
⎥ ≡ ⋅

⎡

⎣
⎢

⎤

⎦
⎥

1

1

1

1

Λ  

where λyP, for instance, means the compliance that relates P to y caused by P. 

( 4 )



 

T. Meshii, et al., Engineering Fracture Mechanics, Vol. 62, No. 4-5, pp. 371-382 (1999.3). 

 

6

   Each component of the matrix is as shown in Eqs. ( 5 ) to ( 8 ).   These were originally derived by 

Hetényi[ 9 ], and rewritten here in a format of a cylindrical shell. 

λ
β

β β β β β β
β βyP x x

D
h x x h x x

h h
( , ' ) sinh cos cosh ' sin cosh cos '

sinh sin
= ×

−
−

1
2 3 2 2  

λ
β β β

β β β β β β β β β β

θP x x
D h h

h x x x x h x x x x

( , ' )
sinh sin

[sinh (sin cosh ' cos sinh ' ) sin (sinh cos ' cosh sin ' )]

=− ×
−

×

+ + +

1
2

1
2 2 2  

λ
β β β

β β β β β β β β β β

yM x x
D h h

h x x x x h x x x x

( , ' )
sinh sin

[sinh (sin cosh ' cos sinh ' ) sin ( sinh cos ' cosh sin ' )]

= ×
−

×

− + −

1
2

1
2 2 2  

λ
β

β β β β β β
β βθM x x

D
h x x h x x

h h
( , ' ) sinh cos cosh ' sin cosh cos '

sinh sin
= ×

+
−

1
2 2  

   By virtue of superposition principle and the symmetry of the beam and sustaining conditions, the 

deflection and inclination angle at point X under the loading condition shown in Figure 5 can be expressed 

in the following way. 

y x x
x x

x x
P
M

x x
P
M

( , ' )
( , ' )

( , ' ) ( , ' )*θ
⎡

⎣
⎢

⎤

⎦
⎥ = ⋅

⎡

⎣
⎢

⎤

⎦
⎥ + ⋅

⎡

⎣
⎢

⎤

⎦
⎥Λ Λ1

1

2

2

 

where the matrix Λ*(x, x’) is defined as follows. 

Λ*

* *

* *( , ' )
( , ' ) ( , ' )
( , ' ) ( , ' )

( ' , ) ( ' , )
( ' , ) ( ' , )

x x
x x x x
x x x x

x x x x
x x x x

yP yM

P M

yP yM

P M

≡
⎡

⎣
⎢

⎤

⎦
⎥ = − −

⎡

⎣
⎢

⎤

⎦
⎥

λ λ
λ λ

λ λ
λ λθ θ θ θ

 

   Next, we will forward to the problem of “two beams on an elastic foundation connected by a spring 

with an appropriate compliance in Figure 3(b).”   In this case, although the deflection should be 

continuous across the spring position, its derivative, that is, the inclination angle is discontinuous there 

because of the existence of rotary spring.   Here, let us denote the shearing force and bending moment at 

the spring position by FC and MC, respectively, as shown in Figure 6 and apply Eq. ( 9 ) to two beams in 

the figure.   The deflection and inclination angle at point C, considering h = h1, x = h1 and x’ = 0 for beam 

AC and h = h2, x = 0 and x’ = h2 for beam CB, are given by 

( 5 )

( 6 )

( 7 )

( 8 )

( 9 )

( 10 )
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y
h

P
M

h
F
M

C

C

C

Cθ 1
1

1

1
10 0

⎡

⎣
⎢

⎤

⎦
⎥ = ⋅

⎡

⎣
⎢

⎤

⎦
⎥ + ⋅

⎡

⎣
⎢

⎤

⎦
⎥Λ Λ( , ) ( , )*  

y
h

F
M

h
P
M

C

C

C

Cθ 2
2 2

2

2

0 0
⎡

⎣
⎢

⎤

⎦
⎥ = ⋅

−⎡

⎣
⎢

⎤

⎦
⎥ + ⋅

⎡

⎣
⎢

⎤

⎦
⎥Λ Λ( , ) ( , )*  

by applying Eq. ( 9 ) to beams AC and CB, respectively.   Here, as there exists the discrepancy between 

the inclination angles at point C for two beams, θC1 for beam AC is discriminated from θC2 for beam CB.   

The discrepancy, by introducing the compliance Δλ of the spring, is related to bending moment MC as 

shown in the following equation. 

θ θ λC C CM2 1 2− = − ⋅Δ  

   These equations from Eq. ( 11 ) to Eq. ( 13 ) set up a set of simultaneous equations which have five 

equations and unknown variables FC, MC, yC, θC1 and θC2.   Therefore, these variables are obtained and 

given by 

F C B PCg g g ABg= × ×−1
 

The matrixes in Eq. ( 14 ) are as follows. 

[ ]FCg C C C C C
tF M y= θ θ1 2  

Cg

yP yM

P M

yP yM

P M

h h
h h

h h
h h

=

−
−

− −
− −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

λ λ
λ λ
λ λ
λ λ

λ

θ θ

θ θ

* *

* *

( , ) ( , )
( , ) ( , )
( , ) ( , )
( , ) ( , )

1 1

1 1

2 2

2 2

0 0 1 0 0
0 0 0 1 0

0 0 1 0 0
0 0 0 0 1

0 2 0 1 1Δ

 

Bg

yP yM

P M

yP yM

P M

h h
h h

h h
h h

=

− −
− −

− −
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

λ λ
λ λ

λ λ
λ λ

θ θ

θ θ

( , ) ( , )
( , ) ( , )

( , ) ( , )
( , ) ( , )

* *

* *

1 1

1 1

2 2

2 2

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 

[ ]PABg
tP M P M= 1 1 2 2  

( 11 )

( 12 )

( 13 )

( 14 )

( 15 )

( 16 )

( 17 )

( 18 )
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 3. 2   The SIF of a cracked beam on an elastic foundation 

    Once the moment on spring MC is obtained from Eq. ( 14 ), the SIF of the problem can be 

calculated as the SIF of a single edge cracked strip under pure bending MC, 

K M
Z

a FM
C

M= ⋅π ξ( )  

where Z = W2/6 and FM(ξ) is a correction factor for finite width under pure bending. 

   As the compliance of the beams defined in Eqs. ( 5 ) to ( 8 ) were formulated in a form applicable to 

a cylindrical shell, we have reached our goal.   That is, the method described here to evaluate the SIF can 

be directly used to evaluate the SIF of a circumferentially cracked thin-walled cylinder with ends subjected 

to axisymmetric loads shown in Figure 1. 

 3. 3   The deflection and the inclination angle at the end of a cracked beam on an elastic foundation 

    Here, the deflections and the inclination angles at the end points A and B of the cracked beam on an 

elastic foundation will be derived (Figure 6) .   We will start on the basis that the loads on the point C, FC 

and MC, are known, by solving Eq. ( 14 ).   By applying Eq. ( 9 ) on beams AC and CB, the deformation 

at the ends are directly derived. 

y
h

P
M

h
F
M

A

A

C

Cθ
⎡

⎣
⎢

⎤

⎦
⎥ = ⋅

⎡

⎣
⎢

⎤

⎦
⎥ + ⋅

⎡

⎣
⎢

⎤

⎦
⎥Λ Λ( , ) ( , )*0 01

1

1
1  

y
h

F
M

h
P
M

B

B

C

Cθ
⎡

⎣
⎢

⎤

⎦
⎥ = ⋅

−⎡

⎣
⎢

⎤

⎦
⎥ + ⋅

⎡

⎣
⎢

⎤

⎦
⎥Λ Λ( , ) ( , )*2 2

2

2

0 0  

Suffix A and B show the location. 

4.   NUMERICAL ILLUSTRATION 

   To illustrate the validity of Eq. ( 19 ), the SIF calculated by this equation KM was compared with the 

SIF KFEM by FEM for the case of equal axisymmetric bending loads at both ends of the cylinder.   In this 

case, the required MC in Eq. ( 19 ) can be calculated by adding the conditions P1 = P2 = 0, M1 = M2 = 

M to the Eqs. ( 14 ) to ( 18 ), and by solving Eq. ( 14 ).  

   The case that was investigated is as follows.   The cylinder has mean radius Rm = 105 mm and 

thickness W = 10 mm for all cases, and, as to material constants, Young’s Modulus E = 206 GPa, Poisson’s 

( 19 )

( 20 )

( 21 )
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Ratio ν = 0.3 are commonly used.   Two cases were investigated for the total length of the cylinder, that 

is H = 40 and 100 mm.   For each H, crack location was varied for h1/H = 0.5, 0.625 and 0.75.   The 

calculated results are normalized by KMbeam , which is the SIF of a single edge cracked strip under pure 

bending moment M, and are compared in Figure 7. 

   From this figure, the following can be read. 

1. These two solutions show good agreement in a practical sense even when H/W = 4 and h1/H = 0.75, 

therefore, h2 = W.   

2. The SIF in interest, KM becomes small for long cylinders.   

3. KM becomes large when the crack is located near the edge of a cylinder. 

4. It is necessary to consider the effects of the cylinder length and the crack location, in evaluating the 

SIF of a circumferentially cracked cylinder under axisymmetric bending. 

    The correction factor for finite width FM [ 1 ] and spring compliance Δλ [ 10 ], which were used in 

the numerical examples are as follows. 

[ ]FM ( ) tan
. . sin( / )

cos( / )
ξ

πξ
πξ πξ

πξ
= ⋅

+ −2
2

0 923 0199 1 2
2

4

 

[ ]Δλ ξ π ξ
ξ ξ

ξ ξ ξ( ) ( . )
( ) ( )

( )( . . )= ⋅
− +

× + − + ⎛
⎝⎜

⎞
⎠⎟

11215
2 1 1 2

1 1 0 44 0 25 62 2

2 2

2

E W
 

5.   DISCUSSION 

   The idea of replacing the cracked cross section by an elastic spring, which is referred as “Rice and 

Levy’s line spring method” nowadays, was first proposed by Okamura et al. [ 6 ] and was developed 

independently by their group [ 7 ], [ 8 ] and Rice and Levy [ 4 ].   As Rice and Levy [ 4 ] pointed out, 

Okamura et al. [ 6 ] did not consider rotation due to axial load, but was thought enough for the problem 

considered.   Recently, Valiente et al. [ 6 ] formulated the statically indeterminate cracked beam problem 

(without elastic foundation) including the shear deformation of the spring, while this effect was not 

considered in this paper.   However, the numerical results indicate the validity of neglecting these terms 

in our formulation for the problem treated in this paper. 

( 22 )

( 23 )
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   Furthermore, as the method developed here is based on the beam theory, accurate solution is 

expected in general for long beams.   However, it seems that the method can be applied even to the case 

where h1 or h2 becomes comparable to W and the beam theory no longer holds. 

   As to the characteristics of the SIF for the circumferential crack in a thin-walled cylinder with ends 

subjected to bending load pair, the cylinder length and the crack location affected the SIF strongly.   This 

indicates the necessity to consider the effects of cylinder length and crack location on the SIF 

appropriately, while the well-known handbooks do not point out this fact explicitly. 

6.   CONCLUSIONS 

   In this paper, a simplified method to evaluate the SIF of a circumferential crack in a thin-walled 

cylinder with ends subjected to axisymmetric radial and bending loads was derived theoretically.   The 

effects that the cylinder length and the crack location have on the SIF, can be evaluated by the method.   

The validity of the method was illustrated by comparing the solutions with the numerical ones, for a 

problem under a pair of axisymmetric bending loads on both ends.   These two solutions showed 

good agreement in a practical sense.   In addition, the results showed that the SIF increased when 

the cylinder length decreased and when the crack is located near the cylinder edge.   These warn us 

to take into account the effects of the cylinder length and the crack location appropriately, in 

evaluating the SIF of a circumferentially cracked thin-walled cylinder with ends subjected to 

axisymmetric bending loads. 
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Figure 1   A circumferentially cracked cylinder under axisymmetric loads 
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Figure 2   Replacement of axisymmetric deformation problem of a thin-walled cylinder  
by that of a beam on an elastic foundation 
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Figure 3   Replacement of the cracked section by a spring 
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Figure 4   A cracked beam under pure bending 
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Figure 5   A beam on an elastic foundation under lateral and bending loads on both ends 
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Figure 6   Shearing force and bending moment at the spring position 
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Figure 7  Comparison of the SIF by the simplified method with that from FEM 

 


