
Textures and NMR Spectra of a Superfluid 3He-A
Phase Confined in Rotating Narrow Cylinders

言語: English

出版者: 

公開日: 2007-11-15

キーワード (Ja): 

キーワード (En): 

作成者: TAKAGI, Takeo

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10098/1170URL



Textures and NMR Spectra of a Superfluid 3He-A Phase Confined in

Rotating Narrow Cylinders

Takeo Takagi
Fukui University, Fukui 910-8507, Japan

Abstract

We confine a superfluid 3He-A phase in narrow cylinders, these radii are 0.05mm and 0.1mm. The system is
rotated around the cylinder axis, and its rotation velocity ranges between -6.28 rad/sec and 6.28rad/sec. The
strong magnetic field (22mT) is applied along cylinder axis. In these systems, we determined l- and d- textures by
minimizing GL-free energies. In the case of the small cylinder (R=0.05mm) a dipole locked and a dipole unlocked
Mermin-Ho textures are obtained as local minimum free energy states. In the case of the large cylinder (R=0.1mm)
a single vortex and a three vortices states are obtained. The stability of each state depends on the rotating velocity.
A vortex charge change of two quanta occurs by a pair of continuous vortices coming in and going out. For each
case, the NMR spectrum of the transverse resonance mode is calculated by using a finite element method (FEM).
Using the FEM the boundary condition of spin wave mode is strictly imposed and the higher resonance mode is
also calculated. The calculated result well agrees with empirical data.
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1. Introduction

Superfluid 3He has a spin triplet P-wave Cooper
pair. It shows various fascinating physical phenom-
ena due to the internal degree of freedom in Cooper
pairs. Especially, the Cooper pair in the A-phase
has an intrinsic angular momentum l in the or-
bital space. Spatial variation of l-vector is coupled
with the Cooper pair phase (gauge-orbital space
coupling) and it makes a superflow. Hence we have
to consider the quantization condition and a spa-
tial change of the l-vector simultaneously in the A-
phase vortex. Various continuous quantum vortices
appear in the A-phase because of this gauge-orbital
space coupling effect.[1][2] The appearing vortex

is determined by the magnetic field strength and
rotation velocity. In the bulk system the modified
Anderson-Toulouse textures are the unit structure
of the continuous vortex which possesses a vortex
charge p = 2 On the other hand another possible
continuous texture, Mermin-Ho texture, has a vor-
tex charge p = 1. But this texture has not been
observed in bulk system. Therefore we plan to re-
alize and observe continuous vortices which have
odd vorticity. On this purpose, we prepare the ro-
tating narrow cylinder system. In this geometry
the odd vorticity vortex is expected to be stabi-
lized due to the boundary condition. We prepare
the trial textures which are the candidates of the
stable structure. Then we determine the optimum
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textures which minimizes free energy by utilizing
local down hill method. Next we determine the
transverse NMR spectra with using finite element
method(FEM) and compare the obtained results
with the empirical data.

2. Model

We confine the superfluid 3He A-phase in the
narrow cylinders. The radius R of the small cylin-
der is 0.05mm and big one is 0.1mm. The charac-
teristic rotation velocity ωc of the cylinder is given
in ωc = ~/(2m3R

2), where m3 stands for 3He par-
ticle mass. Each characteristic velocity of cylinders
is 1.06rad/sec for R = 0.1mm and 4.24rad/sec for
R = 0.05mm. We assume that the wall of the cylin-
der has no magnetic character. Therefore the wall
has no effect on determining the orientation of d-
vectors on the wall. On the other hand the l-vector
is directed to parallel to the surface normal on the
wall. Configuring the coordinate system, we adopt
the z-axis parallel to the cylinder axis. We rotate
the cylinder along the cylinder axis with angular
velocity ωez. In this situation, the normal fluid of
the system is rotated with a container. Then its
velocity becomes vn = ωez×r. We applied a mag-
netic field H along cylinder axis, H = Hez. The
intensity of the magnetic field is 22mT, and it is
strong enough to overcome the dipole free energy.

The order parameter of the superfluid 3He is
specified by the spin space vecotr d and the orbital
space triad vectors {l, m, n}. The 3×3 representa-
tion of the order parameter Aµj is given with using
d, m and n−vectors,

Aµj = ∆ dµ (mj + inj) (1)

The superfluid velocity vs is discribed by phase
gradient of the order parameter as

vs =
~

2m3

mj∇nj , (2)

where repeated indices mean summation of x, y, z-
components. The total free energy density ftot of
the system is ginven:

ftot = fdip + fmag + fkin, (3)

where the terms fdip, fmag, fkin stand for dipole,
magnetization and kinetic free energies, respec-
tively. Each free enegy term is given:

fdip = −gd ∆2(d · l)2, (4)

fmag = gh ∆2(d · H)2, (5)

2fkin = ρ⊥v
2 − (ρ⊥ − ρ‖)(l · v)2 + 2C v · (∇× l)

−2C0 (v · l) (l · ∇ × l) + Ks(∇ · l)2

+Kt(l · ∇ × l)2 + Kb | l × (∇× l) |2

+K5 | (l · ∇) d |2

+K6

∑

i,j

[

(l ×∇)idj

]2
. (6)

The kinetic free energy term is so called Cross
term.[4] We use the Cross coefficients calculator
which is served by R. Hänninen.[5] We can take
into account temperature and pressure dependence
of the Cross coefficients by thanks of this calcula-
tor. Each amplitude of the coefficient is mentioned
in the ref.[6] In the kinetic energy term the nota-
tion v means the difference between the superflow
velocity and that of the normal fluid : v = vs−vn.

The numerical calculation is carried out to min-
imize tota free energy Ftot,

Ftot =

∫

d2r ftot[ d(r), m(r), n(r) ]. (7)

In order to solve this variational problem, we use
a local down hill method.[7] To get the optimum
texture we prepare several initial configurations of
order parameters, and lower the free energy of each
configurations. Then we compare each minimized
free energies and adopt the lowest one.

3. NMR Spectrum

After determining the optimum texture, we cal-
culate a spin wave mode transverse NMR spectra
by using the FEM. In order to calculate transverse
spin wave NMR spectrum, we apply main mag-
netic field along z-axis. The rf-field is applied in
the cross section of the cylinder.

We denote the x, y-coordinate dependent ampli-
tude of spin wave vibration as g(x, y). Two terms
contain the second order of the free energy density
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variation of g(x, y): one is the kinetic term δ2fkin

and the other is the potential term δ2fpot.[3]

δ2fkin = K6( g2
,x + g2

,y)

+(K5 − K6)( l2xg2
,x + l2yg2

,y + 2 lxlyg,xg,y) (8)

δ2fpot =

[

(l · d0)
2 − (l · eθ)

2 + ξ2
D

{

K5 | (l · ∇)d |2 +K6

∑

i,j

[

(l ×∇)idj

]2
}

]

g2. (9)

K5, K6 are the coefficients of the Cross term.
Vector d0 stands for an equilibrium direction of
d−vector. Unit vector eθ is directed to the polar
angle direction which means the vibration direc-
tion of d−vector. The parameter ξD is the dipole
cohearent length (∼ 10µm) It should be noted
that we neglect a dissipation mechanism in this
formulation. The Lagrangean of the spin wave
mode in the cylinder is given

L[g(x, y)] =

∫

d2r
{

δ2fkin[g(x, y)]

+δ2fpot[g(x, y)]
}

. (10)

The eigen values and eigen spin wave functions
are obtained by solving the variational equation,

δL[g(x, y)] = 0. (11)

The equation have to be solved under the con-
straints:
∫

d2r g2(x, y) = 1, (12)

[

nwall · ∇g(x, y)
]

r=R
= 0, (13)

where nwall means a surface normal vector on the
wall. This constraint means that the spin current
does not exist on the wall and gives a quantization
condition against spin wave modes.

This variational problem is solved by utilizing
a standard FEM procedure. The boundary condi-
tion (13) is satisfied spontaneously in using FEM
because this condition is a natural/default condi-
tion of FEM. This point is the largest merit in us-
ing FEM. A generalized eigen equation of a ma-
trix form is solved in the FEM of the spin wave

function. Then the lowest mode and all the higher
mode of the resonance frequencies and wave func-
tions are obtained.

4. Calculation Result and Discussion

We carry out the numerical calculation in the
cases of R = 0.05mm and R = 0.1mm cylinders
in the rotation velocity range −6.28rad/sec< ω <
6.28rad/sec.

4.1. In the case of the R = 0.05µm cylinder

We calculate textures and NMR with using
the parameters: P = 31.5bar, T = 0.75Tc. In all
the angular velocity range, the dipole unlocked
Mermin-Ho texture is stable in this cylinder.[8]
The obtained texture is shown in fig.1 and fig.2.
This configuration has hyperbolic shape of d-
texture lying in xy-plane and a dipole unlocked
region exists considerably. Thus this texture has
the disadvantage in dipole free energy but has an
advantage in the d−field gradient energy. Under
the condition ω = 0, the calculated lowest spin
wave resonance frequency shift R2

t is R2
t = 0.32.

It is well agreed with experimental results.[9] Also
metastable textures ware found in the experi-
ments. This metastable texture should be an axial
symmetric Mermin-Ho texture which has the axial
symmetric d−fields. In the calculation, this tex-
ture becomes metastable against dipole unlocked
texture. Its calculated spin wave frequency shift is
R2

t = 0.59 and also well agreed with the empirical
data.

4.2. In the case of the R = 0.1µm cylinder

Calculation is done under the condition P =
31.5bar, T = 0.82Tc. Under the condition ω = 0,
axial symmetric Mermin-Ho texture becomes sta-
ble. But the free energy difference between this tex-
ture and that of the dipole locked texture is small.
Therefore more precise calculation should be re-
quired especially in the large field gradient regions
in order to determine a ground state configuration.
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Fig. 1. The l−field of dipole unlocked Mermin-Ho texture.

Fig. 2. The d−fields of dipole unlocked Mermin-Ho texture.

The calculated NMR shifts are R2
t = 0.75 for

the axial symmetric Mermin-Ho texture and R2
t =

0.39 for the dipole unlocked Mermin-Ho texture.
Nevertheless these spin wave satellite peaks were
not observed experimentally. The scale of spin
wave resonance region is ξD. Therefore the reso-
nance region of spin wave against the cross section
becomes very small in the case of R = 0.1mm
cylinder. It is the reason of the observation diffi-
culty.

In the rotation velocity region 3.5rad/sec< ω, 3-
vortices states become stable. This 3-vortices state
have a degree of freedom of each vortex position
in the cylinder. Then many metastable configura-
tions appear, and it is difficult to determine the
lowest free energy configuration. One of the 3 vor-
tices configuration is shown in fig.3. The calculated
lowest NMR shift is R2

t = 0.40 and that of the ex-

Fig. 3. The l−field of 3-vortices configuration under the
rotation velocity ω = 5.3rad/sec. A CUV vortex exists in
a ellipse.

perimental data is R2
t = 0.31. More precise vor-

tices formations should be considered.
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