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Abstract 

     Anionic living polymerization of four new monomers that serve as intermolecular 

chemical links between polymer chains are described, along with the wide applications of the 

resultant polymer alloys.  Examples of the first monomer include three tertiary 

aminostyrenes.  The corresponding poly(tertiary aminostyrene)s (PtAS) having a desired 

molecular weight and narrow molecular weight distribution were prepared.  Crosslinked 

films of PtAS with p, p'-bis(chloromethyl)azobenzene (CAB) were prepared by 

quaternization.  Photochemical isomerization of CAB incorporated in PtAS was investigated.  

The second monomer discussed is N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine (ISBA).  

ISBA was anionically polymerized and subsequent deprotection of the trimethylsilyl 

protecting group produced poly(N-isopropyl-4-vinylbenzylamine) (PIBA) with a secondary 

amino group.  The non-thrombogenic behavior of the corresponding 

poly(aminostyrene)-graft-oligopeptide graft copolymers was evaluated.  The third monomer, 

(4-vinylphenyl)dimethylvinylsilane (VS), contains a silylvinyl group.  To carry out a 
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chemoselective polymerization of the styryl group of VS, a systematic study on anionic 

polymerization was carried out.  Lithographic characterization shows the resultant polymer 

(PVS) acting as a negative working resist.  Three 

(PVS-graft-polyisoprene)-block-polystyrene block-graft copolymers were prepared by a 

“grafting onto” process.  The fourth monomer discussed is p-butoxystyrene.  The 

deprotection of the tert-butyl protecting group from the corresponding polymer produces 

poly(p-hydroxystyrene) (PHSt).  Two polystyrene-block-[PHSt-graft-poly(ethylene 

oxide)]-block-polystyrene block-graft copolymers were prepared by a “grafting from” process.  

Benzene-cast films formed clear and specific lamellar structures in which poly(ethylene 

oxide) is not crystallized. 
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1.  Introduction 

     Recently, a number of highly functionalized polymers with interesting physical 

properties and high performance polymers have been prepared [1-3].  However, it appears 

that homopolymers and/or simple linear block copolymers may not be useful in the 

fabrication of polymeric devices [4-6] exhibiting more sophisticated physical phenomena 

[7-9].  An example of this is provided by polymer alloys [10, 11] consisting of two or more 

different polymers combined by chemical links [12-14].  Thus, a new type of polymer alloy 

based on block copolymers is required [15, 16].  When preparing such polymer alloys, 

anionic living polymerization [17-19] provides a means to obtain the desired molecular 

weights and narrow molecular weight distributions (MWDs), although cationic and radical 

living techniques have been rapidly advancing [20-23].  Therefore, a key step is the design 

and synthesis of new monomers that contain a vinyl group and another functional group: The 

vinyl group is polymerized by the anionic living mechanism and the functional group remains 

unaltered during the anionic polymerization to subsequently provide intermolecular chemical 

links between two polymers. 

     We propose four new monomers, with vinyl and functional groups, as shown in Fig. 1.  

The first monomers are tertiary aminostyrenes (tAS) that contain a functional tertiary amino 

group.  Poly(tertiary aminostyrene)s can be used as prepolymers of crosslinked polymers by 

quaternization of the tertiary amino groups.  The second monomer is 

N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine (ISBA) that contains a trimethylsilyl 
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protecting group.  The deprotection from the corresponding polymers produces 

poly(secondary aminostyrene) that can be used as the backbone chains of graft copolymers by 

amidation of the secondary amino group.  The third monomer is a 

(4-vinylphenyl)dimethylvinylsilane (VS) that contains a silylvinyl group.  

Poly(4-vinylphenyl)dimethylvinylsilane has a silylvinyl group that can be used as crosslinked 

points and/or grafting points.  The fourth is a p-butoxystyrene (BSt) that contains a 

tert-butyl protecting group.  Furthermore, the deprotection from the corresponding polymer 

produces poly(p-hydroxystyrene).  Poly(p-hydroxystyrene) has a hydroxyl group that can be 

changed to alkoxide ions as initiators by metallation.  The corresponding macromolecular 

initiators are candidates for the synthesis of new graft copolymers.   

     Anionic living polymerization of the four useful monomers is described in this review.  

The description thus provides a general method of performing anionic living polymerization 

of new monomers, having a vinyl group and another functional group.  Wide applications 

and physical properties of the resultant polymer alloys are also described. 

 

 

2.  Polyaminostyrenes, PAS 

     As shown in Fig. 2, poly(aminostyrene)s (PAS) may have amino groups classified as 

primary, secondary, or tertiary amino groups [24, 25].   In this review, the amino group 

substituents of special interest include the phenyl, benzyl, or phenethyl groups.  The 

resultant PAS may show a decrease in the electron density on the nitrogen atom of the amino 

group in the sequence; phenethyl, benzyl, and phenyl amine.  Tertiary aminostyrenes should 

polymerize by the anionic living mechanism without too much difficulty.  For example, 
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using three tertiary aminostyrenes, a general approach to polymerize new monomers by 

anionic living mechanism will be described in chapter 2. 1. 

     By contrast, primary and secondary aminostyrenes can not be polymerized by anionic 

living mechanisms, because the propagating carbanionic species rapidly react with the labile 

protons of the amino groups to terminate the polymerization.  In these cases, the amino 

groups must be protected during anionic polymerization, and the protecting group must be 

rapidly and completely removed after the polymerization [26-28].  The resultant 

poly(primary aminostyrene)s seem unsuitable for backbone chains of graft copolymers and 

for introducing other functions, because the complete utilization of two labile protons on each 

nitrogen atom of the primary aminostyrenes appears impossible.  From a view point of the 

next reactions, poly(secondary aminostyrene) seems suitable for providing intermolecular 

chemical links [29].  As an example, using a secondary aminostyrene, a general approach to 

polymerize new monomers having a labile proton by anionic living mechanism will be 

described in chapter 2. 2. 

 

2. 1.  Poly(tertiary aminostyrene)s, PtAS 

     As shown in Fig. 2, three tertiary aminostyrenes: N, N-dimethyl-4-vinylphenylamine, 

DPA, CH2=CHPhN(CH3)2; N, N-dimethyl-4-vinylbenzylamine, DBA, 

CH2=CHPh(CH2)N(CH3)2; and N, N-dimethyl-4-vinylphenethylamine, DPTA, 

CH2=CHPh(CH2)(CH2)N(CH3)2; may be polymerized by an anionic living mechanism [24, 

25].  Quaternization of three poly(tertiary aminostyrene)s (PtAS) with alkyl halides was 

investigated [30], followed by the preparation of crosslinked films by quaternization of PtAS 

or their block copolymers with p, p-bis(chloromethyl)azobenzene (CAB), 
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ClCH2Ph-N=N-PhCH2Cl [31].  Photochemical isomerization of the crosslinked films was 

investigated to prepare the reversible recording materials [32]. 

 

2. 1. 1. Polymerization of tertiary aminostyrenes, tAS 

     Three monomers of DPA, DBA, and DPTA were prepared according to our previous 

procedures [24].  The polymerization was carried out in a sealed glass apparatus under a 

pressure of 10-6mmHg [33, 34].  The results of the polymerization for DPA are shown in 

Table 1.  When a sec-butyllithium (sec-BuLi)/benzene (Bz) system was used as the 

initiator/solvent, the polymerization solution showed a light red color at room temperature, 

corresponding to a characteristic color of living carbanions.  The solution gradually changed 

from light red to colorless, and then finally remained colorless after 15 h.  This finding 

suggests that the living carbanions might abstract a proton from the methyl groups on the 

amino groups to be deactivated during the chain propagation.  For suppressing the 

abstraction reaction, a lower temperature is preferable to the anionic living polymerization.  

When a n-butyllithium (n-BuLi)/ tetrahydrofuran (THF) system was used at –78°C, the 

polymerization solution showed a yellow color.  The color remained unchanged overnight.  

However, the GPC chromatogram had a broad peak (Mw/Mn = 1.22), as shown in Fig. 3.  

When a cumylcesium (Cumyl Cs)/THF system was used at –78°C, the polymerization 

solution remained red overnight.  In spite of the low polymer conversion (40%-85%), the 

molecular weight observed (Mn) was close to the kinetic molecular weight expected from the 

amounts of monomer and initiator (Mk).  As shown in Fig. 3, the GPC chromatogram had a 

sharp peak (Mw/Mn = 1.09).  When a cumylpotassium (Cumyl K)/THF system was used at 

–78°C, the polymer conversion was 100%.  We succeeded in preparing nearly all 
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monodispersed poly(N, N-dimethyl-4-vinylphenylamine) (PDPA) having Mn = 2.8 x 104 - 2.6 

x 105. 

     The results of the polymerization for DBA are shown in Table 2.   When a 

n-BuLi/THF system was used, the polymerization solution remained yellow overnight.  Also, 

the GPC chromatogram had a broad peak.  However, using Cumyl K or Cumyl Cs as an 

initiator, we prepared poly(N, N-dimethyl-4-vinylbenzylamine) (PDBA) having a narrow 

MWD in 100% polymer conversion. 

     The results of the polymerization for DPTA are also shown in Table 2.   When 

n-BuLi was used, the polymer solution remained yellow overnight.  However, the Mw/Mn 

value was more than 1.22.  When Cumyl K or Cumyl Cs was used as an initiator, poly(N, 

N-dimethyl-4-vinylphenethylamine) (PDPTA) having a narrow MWD was prepared. 

 

2. 1. 2. General aspect for preparing monodispersed polymers 

    To obtain polymers having narrow MWDs, three conditions must be fulfilled in 

preparing the polymers by an anionic living mechanism:  

(a) a " living " polymerization proceed, 

(b) the carbanion responsible for anionic polymerization must be stable enough and not 

react with solvent and side chains of the polymers,  

(c) the overall time period required for propagation must be much greater than the time 

period required for all chains to initiate.   

     The polymerization solutions showed characteristic colors of carbanions, and block 

copolymers of tertiary aminostyrenes and styrene were quantitatively obtained in preliminary 

preparations.  These facts suggest that the "living" polymerization of tertiary aminostyrenes 

proceeded.  Except for the sec-BuLi/Bz/PDPA system, the present data fulfilled the 
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condition (a).  

     The experimental proofs fulfilling the condition (b) are: (1) a 100 % polymer 

conversion is attained and (2) the Mn value is in good agreement with the Mk value.  

Excluding a sec-BuLi/Bz/PDPA system and a Cumyl Cs/THF/PDPA system, the present data 

fulfilled the experimental proofs of (1) and (2); namely, condition (b). 

     Particular attention should be directed to the low polymer conversion of a Cumyl 

Cs/THF/PDPA system.  If the rate of initiation is much faster than that of propagation, the 

polymerization rate can be expressed by 

 – ln( 1 – x ) = kap [LE] t (1) 

where kap is an apparent rate constant; [LE] is a molar concentration of the living end, and x is 

the polymer conversion, respectively.  

   The first-order plots of the Cumyl Cs/THF systems and the Cumyl K/THF systems for 

PDPA are shown in Fig. 4.  The kinetic characteristics are shown in Table 3.  From a 

comparison of the kap
K and the kap

Cs values for PDPA with the apparent rate constant of a Na 

ion for styrene [17, 35], the kap
K and kap

Cs values were found to be very small.  Due to a small 

kap
Cs value, the polymer conversion of the cumyl Cs/THF/PDPA system was less than 85%; 

namely, the condition (b) was fulfilled in this system. 

     The experimental proof fulfilling condition (c) is: (3) the MWD is sharp.  It was 

difficult to prepare nearly monodispersed polymers having Mn much more than 106, because 

of the viscous polymerization solutions.  Hence, an additional proof fulfilling the condition 

(c) is: (4) the polymer having a narrow MWD can be prepared in a wide range of molecular 

weight from 104 to 106. 

     When n-BuLi was used as the initiator, the amino group of PtAS may participate in the 

solvation of a Li ion during the propagation because of the high affinity of the amino group 
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for the Li ion.  However, when Cumyl K and Cumyl Cs were used as initiators, the 

experimental proof (3) was fulfilled.  Because of the low kap
K and kap

Cs values, we succeeded 

in preparing PDPA samples having Mn = 2.7 x 104 - 2.6 x 105, and their Mw/Mn values were 

less than 1.05.  In conclusion, three conditions of (a), (b) and (c) were fulfilled in the present 

data, except for the sec-BuLi/Bz/PDPA system and the n-BuLi/THF/three PtAS systems.  

Therefore, the three PtAS having narrow MWDs were prepared by an anionic living 

mechanism using Cumyl K and Cumyl Cs as initiators. 

 

2. 1. 3. Quaternization of PtAS 

      Tertiary amino groups react with n-butyl bromide to produce quaternary ammonium 

salts by the Menschutkin reaction [36].  The Mn and Mw/Mn

 

values of the quaternized PtAS 

are found the same as those of the corresponding PtAS.  These results suggest that neither 

intermolecular crosslinkage nor degradation of PtAS occurred during quaternization.  The 

quaternized PtAS were a new type of cationic polyelectrolytes [37].  As an example, Fig 5 

shows the resultant neutralization curve of the quaternized PDBA (QPDBA) treated with an 

anion-exchange resin (Amberlite IRA-400). 

 

2. 1. 4. The degree of quaternization 

     Three poly(tertiary aminostyrene)s were quaternized with n-butyl bromide at 60°C for 

1 h - 6 h.  The molar ratio of n-butyl bromide to the tertiary amino group was five.  Fig. 6 

shows the reaction time dependence of the degree of quaternization (DQ).  The DQ value of 

PDPA was much smaller than those of PDBA and PDPTA over the entire reaction time.   

     The quaternization of PDPA, PDBA, and PDPTA was carried out for 6 h at a constant 

temperature varied from 0°C to 120°C.  As shown in Fig. 7, quaternization reactivity 
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increases in the order of PDPA, PDBA, and PDPTA.  The DQ values of the three PtAS 

could be controlled from 0% to nearly 100% by choosing the appropriate reaction time and 

temperature.  The resultant quaternized PtAS that had DQ values of more than 60% were 

found easily soluble in water. 

     Since the Menschutkin reaction is regarded to be a bimolecular reaction [36] of an 

amino group and an alkyl halide, its rate of reaction can be represented by the following 

equation: 

 ln [ C0
h ( C0

a – Ct
q ) / C0

a ( C0
h – Ct

q ) ] / ( C0
a – C0

h ) = ka t (2) 

where C0
a and C0

h represent the initial concentrations of amine and halide, respectively, Ct
q 

represents the concentration of the resultant quaternary ammonium salts at a given reaction 

time, and ka is an apparent reaction rate constant.  Further, from Eq. (2), the ka value was 

estimated.  Several ka values were also estimated at temperatures at which quaternization 

was carried out.  As shown in Fig. 8, temperature dependence of the ka values of PDPA, 

PDBA, and PDPTA can be determined by an Arrhenius' equation: 

 ln ka = ln A* – ( ΔEa* / RT )  (3) 

where A*and ΔEa* represent a frequency factor and an activation energy, respectively.  The 

resultant kinetic characteristics of A* and ΔEa* are listed in Table 4. 

     As shown in Table 4, the Ea* values of PDPTA and PDBA were identical, and the A* 

value of PDPTA was three times as large as that of PDBA.  This phenomenon is probably 

caused by steric hindrance in the vicinity of nitrogen of the N, N-dimethylamino group, and is 

consistent with the distance between the nitrogen and aromatic ring of PDPTA that is longer 

than that of PDBA.  In contrast, the ΔEa* and the A* values of PDPA were much smaller 

than those of PDBA and PDPTA.  The low reactivity of quaternization of PDPA with 

n-butyl bromide is caused by two factors: One is a drop in electron density on the nitrogen 
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atom of the N, N-dimethylamino group due to the resonance effect between the phenyl group 

and nitrogen, the other is a steric hindrance in the vicinity of the nitrogen atom which is 

directly attached to the aromatic ring.  The quaternization of the three PtAS with alkyl 

dibromides or alkyl dichlorides should permit preparation of cross-linked polymers such as a 

model network. 

 

2. 1. 5. Preparation of cross-linked films of PtAS with p, p’-bis(chloromethyl) azobenzene, 

CAB 

     We could control the degree of quaternization of the three PtAS from 0% to 100% by 

using the appropriate reaction time and temperature [30].  Hence, on mercury or on cover 

glasses floated on mercury, cross-linked films (10 - 40 µm thickness) were prepared by 

evaporation of the solvent from a mixed solution of PtAS and p, 

p’-bis(chloromethyl)azobenzene (CAB) for 2 days at 25°C [31].  After drying the films in a 

vacuum, they were annealed at 90°C for more than 10 h.  Fig. 9 schematically shows a 

structural formula of the crosslinked films.  The cross-linked films are designated as 

PDPA(CAB)Y, PDBA(CAB)Y, and PDPTA(CAB)Y, respectively, where Y is a molar % of 

chloromethyl groups for CAB to N, N-dimethylamino groups of PtAS. 

     In order to confirm the formation of the cross linkage, we carried out a swelling 

equilibrium test of the films.  The films were submerged in methanol or THF as a swelling 

solvent for 6 h at 25°C.  The films were actualized in an equilibrium state before at least 6 h, 

because the swollen gels did not increase in weight until 36 h.  The result of the swelling 

tests is shown in Table 5.  The degree of swelling (Qr) decreased by increasing the amount 

of CAB.   An apparent effective-network-concentration (ν'e) could be calculated from the 

amount of CAB and the polymer.   The ν'e values are also described in Table 5. 
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     Next, an effective network concentration νe was estimated from the swelling of the 

crosslinked films.  A crosslinked polymer is insoluble in methanol but swells with methanol 

by the suppression of elasticity due to network structures.  In the swelling equilibrium state, 

the following modified Flory-Rehner's equation is valid [38, 39], 

              –2[v + µv2 + ln (1 – v)] 
 νe = ––––––––––––––––––––– (4) 
               Vs ( 2v1/3 – v )  
 
where Vs is a molar volume of solvent, µ is a polymer-solvent interaction parameter, and v is 

a volume fraction of polymer in a gel, which is the reciprocal of Qr (= 1/v) [36].  When v1/3 

>> v/2 (Qr is large), Eq. (4) can be rewritten as 

 
               1 
 νe = –––––– (1/2 – µ) (5) 
             Qr

5/3 Vs  
 
The µ is expressed as [40, 41] 

 µ = µz + (Vs/RT) (δs – δp) (6) 

where δs and δp are solubility parameters of solvent and polymer, respectively; and µz is a 

small constant (empirically 0.2) assumed in the entropy calculation.  The solubility 

parameter of THF, δs is 9.1.  Thus, the µ value was estimated at 0.34 (δp = 9.7 by Small) 

[41] or 0.32 (δp = 9.8 by Hoy) [41].  When the µ value is known, νe can be calculated from 

Eq. (5) and the results are listed in Table 5.  As shown in Fig. 10, both values of νe 

determined from a Small's number and a Hoy's number for the same film seem somewhat 

larger than that of νe'.  This discrepancy probably comes from a difference in µ estimated by 

a Small's method or a Hoy's method.  It is concluded that all of the CAB added to PDBA 

form the cross linkage between the amino groups of PDBA.  Differential scanning 

calorimetric (DSC) thermograms of the three PtAS and the resultant crosslinked films also 

present clear evidence supporting the formation of crosslinked films. 
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2. 1. 6. Photochemical isomerization of crosslinked films of PtAS with CAB   

    Photochromism is a reversible photochemical exchange in molecular structure that 

results in remarkable changes in the absorption spectra [42, 43].  Much attention has been 

devoted to investigating this phenomenon for its usage as reversible recording materials.  

When a photochromic compound is used as the reversible recording material, thermal 

stability is an important problem to overcome because the reverse thermal reactions occur in 

most organic photochromic compounds [44, 45]. 

     Fig. 11 shows the UV spectra of CAB in methanol.  When the solution was irradiated 

with a UV light (300 nm < λ1 < 380 nm), the absorbances at 330 nm and 220nm decreased, 

but increased with an increase of irradiation time, respectively.  This is attributed to the 

photochemical isomerization of trans to cis form of CAB.  When a visible light (420 nm < 

λ2) was used or the solution was allowed to stand in darkness, the UV spectrum was restored 

to the original spectrum.  This behavior arises from the photochemical isomerization of cis 

to trans form of CAB.  Moreover, isosbestic points were observed at 385nm and 280nm.  

Observation of isosbectic points indicates that there is no side reaction. 

     A similar behavior was observed in the crosslinked films of PDBA(CAB)1.5, as shown 

in Fig. 12.  Hence, a change in absorbance of PDBA(CAB)1.5 at 320 nm was measured to 

determine the fraction of trans to cis form of CAB.  Fig. 13 shows a change in 

photochemical isomerization of trans to cis form with time.  The degree of isomerization 

was detected as the ratio of At/A0, where A0 and At are the initial absorbance and absorbance at 

time t, respectively.  In the case of CAB dispersed in polystyrene (PSt), PSt(CAB)1.5 [31, 46].  

CAB was isomerized in a 65% conversion (cis form) after the irradiation of λ1 for 30 min.  

When CAB was incorporated in the films of PDPTA(CAB)1.3, CAB was isomerized in a 15% 



-17- 

conversion (cis form).  These facts indicate that the thermal freedom of CAB was 

suppressed by cross-linked polymers in a glassy state. 

     At temperatures above Tg, the cross-linked films are in a rubbery state.  Therefore, it is 

expected that CAB in a rubbery state can be isomerized more than in a glassy state [46].  

However, as shown in Fig. 13, the trans fractions of PDPTA(CAB)1.3 did not decrease with an 

increasing irradiation time at 60°C.  Furthermore, an unexpected behavior was observed: 

The trans fractions of CAB appeared to increase with UV irradiation.  This behavior may be 

attributed to the deformation of the films due to conformational changes in the crosslinked 

polymer chain.  The process should also be utilized to induce photostimulated mechanical 

motions such as bending, twisting [47, 48], and expansion.  In order to suppress the 

deformation of the films above the Tg of PDPTA (Tg
PPTA), the block copolymer was prepared. 

 

2. 1. 7. Photochemical isomerization of crosslinked films of poly(N, 

N-dimethyl-4-vinylphenethylamine)-block-polystyrene with CAB 

     Table 6 shows the experimental conditions and results of the preparation of the poly(N, 

N-dimethyl-4-vinylphenethylamine)-block-polystyrene block copolymer (PDPTA-b-PSt) by 

anionic living copolymerization.  From the common morphological results of the block 

copolymers [1, 7], the phases of PSt (53 wt%) and PDPTA were expected to form the 

lamellar structure.  Crosslinked films of PDPTA-b-PSt with CAB were prepared according 

to the same procedure [31].  As shown in Figure 13, CAB of the (PDPTA-b-PSt)(CAB)2.5 

film was isomerized in a 27% conversion (cis form) at 60°C for 30 min.  We succeeded in 

measuring the photochemical isomerization of CAB in the block copolymer at 60°C, which is 

a higher temperature than Tg
PDPTA [31]. 
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(a)Kinetics 

     As shown in Fig. 14, a plot of –ln[(Ct – Ce)/(C0

 

– Ce)] versus t for each film of 

(PDPTA-b-PSt)(CAB)Y was not linear within most of the range of t, where C0, Ct, and Ce are 

trans fractions at the initial state (t = 0), time t, and equilibrium state (t = ∞), respectively.  

Such deviation from the first-order plots has been qualitatively discussed on the basis of a 

distribution of a free volume [49-51].  The departures from the first-order kinetics in 

polymer matrices have been analyzed quantitatively by Saito et al. [52] and Tomioka et al. 

[53] using a phenomenological procedure based on the Kohlraush-Williams-Watts (KWW) 

equation [54].  A time-dependent reaction rate constant, kt, can be defined as 

 – d ln [ (Ct – Ce

 

) / (C0 – Ce ) ] / dt = kt (7) 

By using a KWW equation, kt can be expressed as 

 kt = κ tα–1  (8) 

Substituting the above expression for kt in Eq. (7) and the subsequent integration of Eq. (7) 

yields, 

 – ln [ (Ct – Ce

 

) / (C0 – Ce ) ] = (κ/α) tα  (9)  

When a parameter α takes unity, kt

 

becomes κ corresponding to an inherent reaction rate 

constant and the resultant Eqs. (7) and (9) become an equation of the first-order kinetics.  

Thus, the parameter α concerns itself with the deviation of reaction kinetics from the first 

order reactions.  Fig. 15 showed the relationship between the thus-obtained parameter α and 

temperature, at which the photochemical isomerization from trans to cis form of CAB 

proceeded in the polymer matrices.  The resultant temperature dependence of the α values is 

the same as those of spirooxazine in poly(n-butyl methacrylate) reported by Saito et al. [52]. 

and of spyropyrans in poly(methyl methacrylate) reported by Tomioka et al. [53].  Namely, 
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segmental motions of matrix polymers affect the molecular environment around CAB.  Thus, 

the parameter α increased and progressively reached to unity with increasing temperature. 

    Particular attention should be paid to the half-life period (τ1/2) and a three fourths-life 

period (τ3/4,) of the photochemical isomerization from trans to cis form of CAB.  Both 

values were determined from the times at which the (Ct – Ce ) / (C0 – Ce ) values attained 50% 

and 75%, respectively.  Fig. 16 shows the resultant temperature dependence of τ1/2 and τ3/4 of 

(PDPTA-b-PSt)(CAB)Y.  Photochemical isomerization from trans to cis form of CAB was 

suppressed by the cross-linked films below Tg
PDPTA (~30ºC) and the suppression was 

discontinuously removed from CAB at Tg
PDPTA.  The photochemical isomerization of CAB 

proceeded in a homogeneous molecular environment above Tg
PDPTA. 

 

(b)Reversible optical recording materials 

     When the films are used as reversible optical recording materials, a process of optical 

recording, of retention of the records, and of deletion of the records must be considered 

carefully.  The process of optical recording corresponds to the photochemical isomerization 

from trans to cis form of CAB that was described in the previous paragraph.  The other two 

processes are related to the photochemical isomerization from cis to trans form of CAB.  

     As shown in Fig. 17, a film of (PDPTA-b-PSt)(CAB)1.5 was first irradiated with an UV 

light at 60°C > Tg
PDPTA for 2 h.  After 2 h under the irradiation with an UV light, the trans 

fractions of (PDPTA-b-PSt)(CAB)1.5 became 72% at 60°C.  After 3 h under irradiation with 

visible light (420 nm < λ2) at 20°C, the trans fractions of the film varied to 82%.  Trans 

fraction of the film also varied to 79% after storing the film in darkness at room temperature 

for 180 h.  Hence, approximately 20% of the CAB remained in the cis form.  In conclusion, 
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the retention of the cis form (corresponding to the retention of the records) was achieved 

using PDPTA-b-PSt below Tg
PDPTA. 

     The deletion of the cis form was also studied by the measurement of the photochemical 

isomerization of cis to trans form of CAB in (PDPTA-b-St)(CAB)1.5 after irradiation with a 

visible light at 90°C.  As shown in Fig. 17, when the film was irradiated with a visible light 

at 90°C > Tg
PDPTA for 3 h after irradiation with a UV light at 60°C for 2 h, the trans fraction 

increased from approximately 72% to 100%.  The cis form can be deleted completely by 

irradiation with a visible light at 90°C, although 18% of the cis form remained at 20°C.  

Therefore, the retention and/or deletion of the cis form (the records) was controlled by 

alternation of the thermal motion of PPTA below and above the Tg
PDPTA of the PDPTA-b-PSt 

block copolymer. 

 

2. 2.  Poly(secondary aminostyrene) 

     Secondary aminostyrenes could not be polymerized by anionic living mechanisms 

because the propagating carbanionic species readily react with the labile proton of the 

secondary amino group.  The confliction of the labile proton and anionic polymerization can 

be overcome by using a protective technique.  The amino groups should be protected during 

anionic polymerization, and the protecting group can be promptly and completely removed 

after polymerization to prepare the corresponding polymer. 

 

2. 2. 1. Polymerization of secondary aminostyrene, ISBA  

     N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine (ISBA), 

CH2=CHPhCH2N[Si(CH3)3][CH(CH3)2], was synthesized according to our procedure [29].  

ISBA was dried with calcium hydried (CaH2), octylbenzophenone sodium, 
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(C8H17)-Ph-(CO)–-Ph Na+ (C8BP-Na) [19], and sec-butylmagnesium bromide (BuMgBr) as 

purging reagents in the order at 10-6mmHg.  Thus-purified ISBA could not be polymerized 

by n-BuLi.  The anionic initiator was found to be deactivated by 

N-isopropyl-4-vinylbenzylamine (IBA), which was a pre-product of ISBA. 

     In order to purge IBA from ISBA, the THF solution of ISBA was dried over BuMgBr 

at room temperature because of a low solubility of BuMgBr in ISBA.  After the removal of 

THF, ISBA was distilled from the mixture of ISBA and BuMgBr.  When the ISBA was 

added to an initiator solution, the solution showed a yellow color, however the color 

disappeared immediately.  The ISBA was dried twice over BuMgBr/THF and the 

corresponding solution showed a yellow color, which remained unchanged for 3 h.  As 

shown in Table 7, the resultant poly(N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine), 

PISBA was prepared in a 17% conversion.  The ISBA dried 3 times was polymerized for 24 

h to yield PISBA in an 100% conversion.  As shown in Fig. 18, GPC chromatograms 

became sharp with the number of purifications using BuMgBr.  By using thus-purified 

ISBA, well-defined PISBA (0.60 x 104 < Mn < 16 x 104, 1.03 < Mw/Mn < 1.07) was 

successfully prepared. 

     Initiation efficiency of the initiator (f) was calculated as follows; 

 f = Mk /Mn
PISBA

OSM (10) 

where the Mn
PISBA

OSM value was determined by membrane osmometry.  As shown in Table 7, 

the f values were not 1.0 but approximately 0.9; namely, the values did not decrease with an 

increasing Mk.  This result suggests that the deactivation of the initiator should occur not in a 

process of polymerization but during storage in a refrigerator.  This result occurs sometimes 

when carrying out the anionic polymerization, and is not a serious problem but an 

experimental one that should be overcome.  
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     After ISBA was polymerized by n-BuLi in THF at –78°C, St was added to the 

polymerization solution to yield 

poly(N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine)-block-polystyrene (PISBA-b-PSt).  

In contrast, after St was polymerized by n-BuLi in THF at –78°C, ISBA was added to the 

polymerization solution to yield PSt-b-PISBA.  Thus, two block copolymers of PISBA and 

PSt were prepared.  As shown in Table 8, the polymer conversions were 100%, the Mn 

values were close to the Mk values, and the compositions of the block copolymers were nearly 

equal to those fed in the polymerization solutions.  Both block copolymers seemed to be 

prepared precisely.  However, as shown in Fig. 19, PISBA-b-PSt shows a sharp GPC peak 

(Mw/Mn = 1.05) and PSt-b-PISBA shows a broad peak  (Mw/Mn = 1.25).  The sequence of the 

addition of the two monomers is thought to be important for preparing a well-defined block 

copolymer of PSt and PISBA.  The reason will be described in chapter 2. 2. 3. 

 

2. 2. 2. Removal of a trimethylsilyl group 

     The removal of the trimethylsilyl group from PISBA proceeded completely in 

methanol at 30°C during a period of 1 h.  Fig. 20 shows the NMR spectra of PISBA and the 

deprotected product of poly(N-isopropyl-4-vinylbenzylamine) (PIBA), 

–[CH2–CHPhCH2NH{CH(CH3)2}]n [55].  Fig. 21 shows the GPC chromatograms of PISBA 

and the resultant PIBA.  The chromatogram of PIBA shifted to a lower molecular weight on 

the side of the corresponding PISBA.  Molecular heterogeneity of both the polymers were 

approximately the same; specifically, the deprotection did not cause any degradation or 

cross-linkage of the polymer chains of PISBA and PIBA.  Removal of the trimethylsilyl 

group from PISBA-b-PSt and PSt-b-PISBA block copolymers was also fulfilled to produce 

new diblock copolymers having a poly(secondary aminostyrene) as a block. 
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2. 2. 3. Anionic reactivity of aminostyrenes 

     Special attention should be directed to an anionic reactivity of aminostyrenes and basic 

properties of the corresponding polymers.  When a tertiary aminostyrene of DPA was 

anionically polymerized by n-BuLi or Cumyl K in THF at –78°C, the resultant PDPA sample 

had a Mw/Mn value of 1.38 or 1.09.  During the propagation, the tertiary amino group at the 

growing polymer end may participate in the solvation of the Li ion [17, 35, 36].  Structural 

heterogeneity of the living end with the Li ion induced broadening of MWD of the final 

polymer.  In contrast, a weak anionic initiator of Cumyl K may play no role of solvation 

with the amino group, hence the initiator may produce the final polymer with a narrow MWD.  

In the case of ISBA, the amino group has a bulky isopropyl group and a trimethyl group on 

the nitrogen atom.  According to this steric hindrance, the amino group at the growing 

polymer end may not participate in the solvation of the Li ion.  The structural homogeneity 

of the living end with the Li or K ion should produce PISBA with a narrow MWD. 

     A substituent effect of the amino groups on an anionic reactivity of the vinyl group 

should be attributed to not only a steric effect but also an electronic effect.  The electronic 

effect of the vinyl group can be estimated from a 13C chemical shift of a β-carbon in the vinyl 

group [56].  As shown in Table 9, the 13C chemical shifts of the β-carbon in the 

aminostyrenes decreased from that of St due to the electron-releasing ability of the amino 

groups.  A decrease in the 13C chemical shift corresponds to an increase in the electron 

density on the β-carbon of the vinyl group, further corresponding to a lower anionic reactivity 

of aminostyrene, relative to that of St.  Hence, the anionic reactivity of ISBA is expected to 

be lower than that of St.  The aminostyryl living end of PISBA can easily initiate St, 

whereas the sryryl living end of PSt has difficulty initiating ISBA.  Thus, the PISBA-b-PSt 



-24- 

block copolymer has a Mw/Mn value of 1.05, while the PSt-b-PISBA block copolymer has a 

Mw/Mn value of 1.25. 

     In order to investigate the anionic reactivity of N, 

N-bis(trimethylsilyl)-4-vinylphenylamine (SPA) [57, 58], diblock copolymerizations of SPA 

and St were also carried out.  The resultant PSPA-b-PSt block copolymer (Mn = 10 x 104) 

has an Mw/Mn value of 1.09, whereas the PSt-b-PSPA block copolymer (Mn = 4.7 x 104) has an 

Mw/Mn value of 1.26.  These results are well explained by the same electronic effect as 

mentioned above.  

     The removal of the trimethylsilyl group from PISBA proceeded completely in 

methanol at 30°C during a period of 1 h, while the removal of the trimethylsilyl group from 

poly( p-N, N-bis(trimethylsilyl)-4-vinylphenylamine), (PSPA), 

-[CH2-CHPhN{Si(CH3)3}{Si(CH3)3}]- proceeded in the THF-methanol (9:1 v/v) solution at a 

reflux temperature during a period of 3 h.  The nitrogen-silicon bond of PISBA seems to be 

unstable, compared with that of PSPA.  The difference in the removal of the trimethylsilyl 

group can be explained by the difference in basicity; namely, the electron density on the 

nitrogen of the amino group and steric hindrance in the vicinity of the nitrogen atom.  

Therefore, PISBA has high basicity because it has high electron density on the nitrogen atom 

and a small ethylene group (compared to a large phenyl group for PSPA) as a steric hindrance 

in the vicinity of the nitrogen atom. 

 

2. 2. 4. Grafting of oligopeptides 

     The carboxylic acids should react with the amines of PAS to form an amide and/or 

peptide bond.  This coupling reaction is expected to be useful for preparing 

high-performance graft copolymers that have oligopeptides (OP) [59], because the peptide 
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bond is formed by a covalent bond, thereby becoming more stable than the quaternized salts 

[30].  The resultant graft copolymer will be applied to biocompatible materials [60], 

biomedical polymers [61], and polymer catalysts with enzyme-like activities [6]. 

     We carried out the coupling reaction of PAS with N-protected and C-free OP [62].  

Three OP were used: t-butyloxycarbonyl-glycine (Boc-Gly), 

benzyloxycarbonyl-glycyl-proline (Z-Gly-Pro) and 

benzyloxycarbonyl-glycyl-L-prolyl-L-Leucyl-glycyl-L-proline (Z-Gly-Pro-Leu-Gly-Pro), 

where Boc ((CH3)3C-O-CO-) and Z (C6H5-CH2-O-CO-) are the amino-protecting groups of 

OP.  These OPs contain glycine, proline, and glycyl-prolyl forms, which are the main 

components of collagen [63].    Table 10 shows the molecular characteristics of the two 

PASs used in this chapter. 

     Dicyclohexylcarbodiimide (DCC), C6H11-N=C=N-C6H11, is an efficient, nonacidic 

dehydrating agent that was used for a coupling of PAS with OP.  DCC was added to a 

solution of OP in the mixed solvent of DMF and methylene chloride (CH2Cl2) at 0°C [64].  

A solution of PAS was added to the resultant solution in order for it to react with OP. 

     Boc-Gly reacted with PPA to yield poly(4-vinylphenylamine)-graft-(Gly-Boc) 

(PPA-g-(Gly-Boc)) at 0°C for 2 h.  Fig. 22 shows a 13C-NMR spectrum of the resultant 

polymer.  As compared with the 13C-NMR spectra of PPA and Boc-Gly, we discovered a 

peptide bond was found to be forming between the amino group of PPA and the carboxylic 

acid of Boc-Gly, thereby yielding a graft copolymer.  The degree of grafting (DOG) of OP 

on a PAS molecule was defined as follows: 

 DOG / % = ( [OP] / [AS] ) x 100 (11) 
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where [OP] and [AS] are, respectively, the molar concentrations of OP and of the 

aminostyrene monomer unit of PAS.  To determine the DOG of PPA-g-(Gly-Boc), a 

1H-NMR spectrum of PPA-g-(Gly-Boc) was measured. 

     The coupling reaction was carried out at 45°C with the molar ratio of [Boc-Gly] / [AS] 

at 1.0 in the reactant.  As shown in Fig. 23, the coupling reaction using DCC was found to 

be fast even at 0°C and quantitatively proceeded. 

     The coupling reaction was performed at 0°C for 2 h with a change in the molar ratio of 

[Boc-Gly] / [AS] from 0.5 to 4.  As shown in Fig. 24-(A), the DOG value increases in 

proportion to the [Boc-Gly] / [AS] value from 0 to 1, and remained constant at 100%.  

Identical behaviors were observed in the coupling reactions of Z-Gly-Pro (Fig. 24-(B)) and 

Z-Gly-Pro-Leu-Gly-Pro (Fig. 24-(C)).  The coupling reaction quantitatively proceeds; 

namely, PPA-g-(OP) graft copolymers were quantitatively prepared.  The DOG values of 

the resultant graft copolymers could be controlled by changing the molar ratio of [OP] / [AS]. 

     Boc-Gly reacted with PIBA having a secondary amino group to yield 

poly(N-isopropyl-4-vinylbenzylamine)-graft-(Gly-Boc)] (PIBA-g-(Gly-Boc)).  The DOG 

value increased in proportion to the [Boc-Gly] / [AS] value from 0 to 1, and remained 

constant at 100% even when the [Boc-Gly] / [AS] value increased from 1 to 2, which was the 

same as that of Fig. 24. 

     The four graft copolymers having OP acting as the grafts were prepared.  The DOG 

value could be controlled in the range of 0% to 100% by changing the molar ratio of [OP] to 

[AS].  DOG was revealed to be independent from the length of OP (from a monopeptide to a 

pentapeptides) and to be independent of the differences in both polymers (PPA with the 

primary phenylamine and PIBA with the secondary benzylamine) as well. 
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2. 2. 5 Blood compatibility of PAS-graft-oligopeptides 

     Many biomedical applications of polymers have been reported in literature [65, 66].  

From a clinical point of view, blood compatibility appears to be the most important 

characteristic when applying the sample to biomedical applications.  Two tests should be 

conducted as the preliminary experiments for blood compatibility: One is a contact angle 

determination, and the other is a characterization of non-thrombogenicity at surfaces of the 

samples. 

     Hydrophilicity might play an important role to improve the blood compatibility of the 

samples [65].  PPA was insoluble in methanol, however PPA-g-(Gly-Boc) was soluble in 

methanol.  An introduction of Boc-Gly to PPA was found to hydrophilize PPA.  The 

contact angles of the samples were measured (Table 11).  PPA showed an increase in 

hydrophilicity in comparison with PSt.  An introduction of OP to PPA shows an increase in 

hydrophilicity in the sequence of Gly-Boc and Pro-Gly-Leu-Pro-Gly-Z in comparison with 

PPA. 

     PPA-g-(Pro-Gly-Leu-Pro-Gly-Z) exhibited a time dependence of the contact angle, 

which has never been observed for PPA and PPA-g-(Gly-Boc).  After 10 minutes, the 

contact angle approached a constant value of 36 degrees that is a 50% decrease in the initial 

value.  TecoflexTM is a cycloaliphatic poly(ether urethane) derivative, which is already in use 

for a catheter system [65].  The contact angle of TecoflexTM is reported to be 55 degrees [65].  

PPA-g-(Pro-Gly-Leu-Pro-Gly-Z), that was in contact with water for 10 minutes, appears to 

have a good hydrophilic property in comparison with TecoflexTM. 

     A preliminary non-thrombogenic test for the four samples shown in Table 11 was 

conducted.  The inside surface of a ‘Pyrex’ test tube was coated with each film of the 

corresponding graft copolymers.  Fresh human whole blood (HWB) of 1 ml was introduced 
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into the test tube.  After the test tube was left standing at 37°C for 5 minutes, the test tube 

was tipped to observe whether or not HWB flows at intervals of 30 seconds.  When HWB 

was found not to flow by tipping the test tube, the resultant time was evaluated as a 

Lee-White clotting time [67, 68].  The Lee-White clotting time of a ‘Pyrex’ glass was 

measured at 11-12 minutes as a reference.  By dividing the Lee-White clotting time of the 

sample by that of a ‘Pyrex’ glass, the Lee-White relative clotting time (L-WRCT) was 

determined.  The resultant L-WRCT values of the samples are shown in Fig. 25.  PSt and 

poly(vinyl chloride) were also measured to indicate the L-WRCT values of 2.3 and 2.0-2.5, 

respectively [69].  Many block copolymers for biomedical applications have been prepared; 

for example, charge-mosaic membranes [70] which were prepared from pentablock 

copolymers of an ABACA type by selectively introducing an anion or a cation exchange 

group into each phase of the micro-separated phases, and poly(amino acid) 

derivative-block-polystyrene block copolymers.  Even in the case of these block copolymers 

that have the special groups depressing the thrombocyte adhesion, they indicated the 

L-WRCT values of 2.0-3.0 [69-71]. 

     As shown in Fig. 25, PPA and PPA-g-(Pro-Gly-Leu-Pro-Gly-Z) having a DOG value 

of 100% indicate the L-WRCT values of 2.5.  Especially, PPA-g-(Gly-Boc) was found to 

indicate a L-WRCT value of 3.7.  Furthermore, the graft copolymers prepared in this study 

might show the higher qualities of the non-thrombogenecity.  The mechanism of modifying 

the non-thrombogenic property of PPA-g-(Gly-Boc) is not well known at the moment [67, 

72]. 

 

 

3.  Block-graft copolymers 
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     Block copolymers and graft copolymers are thought to be chemically linked pairs of 

homopolymers.  According to chemical bonding between different polymer species, block 

copolymers form a unique structure; namely a microphase-separated structure (MS structure) 

[7, 73, 74].  The relationship between the MS structure and physical properties of block 

copolymers has been systematically studied in detail [7, 11, 75]. 

     In contrast, few studies have investigated the relationship between the MS structure and 

physical properties of graft copolymers, because well-defined graft copolymers have not been 

available [13, 76, 77].  As a result, we created and employed a model graft copolymer; 

specifically one in which the backbone has a narrow MWD, the graft has a narrow MWD, the 

number of grafts per backbone has a narrow distribution, and one where the position and 

spacing of grafts on a backbone are well defined.  This graft copolymer is termed a 

block-graft copolymer because it is formed via a synthetic route of anionic living 

polymerization. 

     Thus, the block-graft copolymers must contain grafts that exist in a desirable position 

of the backbone chain such as the terminal or a central position shown in Fig. 26.  In order 

to prepare this block-graft copolymer, an AB-type block copolymer or an ABA-type block 

copolymer is prepared first; wherein the "A" polymer contains no functional groups that 

provide intermolecular chemical links of grafts; whereas the "B" polymer contains these 

functional groups.  Subsequently, the "C" polymers are attached as grafts to the "B" polymer 

of an AB-type or an ABA-type block copolymer to yield a block-graft copolymer.  

(4-Vinylphenyl)dimethylvinylsilane (VS) and p-butoxystyrene (BSt) were employed as the 

“B” monomers for preparing the block-graft copolymers. 

     In order to prepare such block-graft copolymers via anionic living polymerization, two 

approaches have generally been proposed: The first one is a "grafting onto" process (a 
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backbone coupling) and next is a "grafting from" process (a backbone initiation) [12, 80].  

The two approaches will be described in this chapter.  

 

3. 1.  Poly[(4-vinylphenyl)dimethylvinylsilane], PVS 

     Polymers that contain a vinyl group as a side chain are interesting stable intermediates 

of final polymers, because they can be used as backbone chains of graft copolymers and 

prepolymers of cross-linked polymers.  Thus, VS was designed by the present authors.  As 

shown in Fig. 1, VS contains two vinyl groups, a styryl group and a silylvinyl group.  

Although the silylvinyl group of VS is thought to be much less reactive than the styryl group 

of VS under an anionic condition, both vinyl groups are capable of polymerizing anionically 

in a polar solvent.  To prepare a well-defined poly[(4-vinylphenyl)dimethylvinylsilane] 

(PVS), a chemoselective anionic polymerization should be carried out [78].   

     The polymers themselves form intermolecular cross-linkages, and thus can be used as 

negative working resists.  Ensuing, lithographic evaluation was accomplished [79].  VS 

was used as the B monomer for preparing block-graft copolymers via a "grafting onto" 

process (a backbone coupling) [80]. 

 

3. 1. 1. Polymerization of (4-vinylphenyl)dimethylvinylsilane, VS 

     When VS was polymerized by Cumyl K in THF at –50°C, the polymerization solution 

became viscous and a gel-like product was obtained.  Both vinyl groups were found to be 

simultaneously polymerized. 

     When a new monomer is polymerized by an anionic polymerization technique to yield 

a so-called monodispersed polymer, particular attention should be directed to (a) an initiator, 

(b) a solvent, (c) a polymerization time, (d) a polymerization temperature, (e) a concentration 
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of initiator, and (f) a concentration of monomer.  The first three factors are more influential 

than the latter three.  Although the details of the mechanism is not known, a lower 

temperature is favorable for suppressing side reactions.  Hence, a polymerization 

temperature was set at –78°C, while a concentration of initiator was approximately 10–3mol/l 

and a concentration of monomer was approximately 2x10–1mol/l; that is to say, a kinetic 

molecular weight, Mk, fell within the range of 3 x 104 _ 4 x 104.  On a basis of these 

experimental conditions, the first three factors of (a), (b) and (c) were systematically studied 

to prepare a well-defined PVS having a high molecular weight and a narrow MWD. 

 

(a) Initiators 

     The styryl group of VS was first anionically polymerized using THF as a solvent and 3 

h as a polymerization time.  When n-BuLi was used, the polymer conversion was 60% 

(Table 12) and the corresponding GPC chromatogram showed a single but broad peak (Fig. 

27).  The styryl living end prepared by n-BuLi is deactivated step by step before chain 

propagation completely finishes.  This deactivation is thought to be attributed to abstraction 

of a labile proton from the methyl group on the silicon atom (an abstraction mechanism). 

     When Cumyl K and Cumyl Cs were used as initiators, the polymer conversion was 

nearly 100%.  The corresponding GPC chromatograms show sharp double and/or triple 

peaks.  The molecular weight of each peak from a lower molecular weight side of double 

and/or triple peaks was found to correspond to Mk, 2Mk (a dimer), or 3Mk (a trimer).   After 

chain propagation completely finishes, as a result the styryl living end may become attached 

to the silylvinyl group of the side chain of another polymer chain (an addition mechanism).   

 

(b)Solvents 



-32- 

     VS was polymerized by Cumyl K or Cumyl Cs using 0.5 h–2 h as a polymerization 

time in diethyl ether (Ether), 2-methyltetrahydrofurane (Me-THF), THF, or 4, 4-dimethyl-1, 

3-dioxane (1, 3-DX) as a solvent.  The polymerization results are shown in Table 13.  

When Ether and Me-THF were used, the polymer conversions were approximately 0% and 

30%, respectively.  When THF was used, PVS was prepared at a 90% conversion, and its 

chromatogram showed two peaks.  As shown in Fig. 28, the respective Mn of the lower 

molecular weight peak and higher molecular weight peak corresponds to Mk and 2Mk, 

respectively. 

     When 1, 3-DX was used as a solvent, PVS was prepared in a conversion of 100%, and 

its chromatogram showed two peaks.  The Mn values of the two peaks were found much 

larger than the Mk

 

value and 2Mk value, respectively.  The freezing point of 1, 3-DX is 

–88.5°C, hence, this solvent became viscous at –78°C.  VS could not be polymerized 

homogeneously, however it was polymerized on the interface between the initiator solution 

and monomer solution to yield PVS that had a higher Mn.  To reduce the high viscosity of 1, 

3-DX at –78°C, a mixed solvent of Ether and 1, 3-DX were used.  The polymerization was 

performed homogeneously, and after 30 minutes, the corresponding GPC chromatogram of 

PVS showed a sharp peak containing a small shoulder at the higher molecular weight side 

(Fig. 29).  

 

(c) Polymerization times 

     Cumyl Cs was used as an initiator and a 1:2 or a 1:1 mixture ratio of Ether/1, 3-DX (a 

volume fraction) was used as a solvent.  To suppress the addition mechanism, a dependence 

of polymerization times for VS was studied.  The polymerization results are shown in Table 

14 and Figure 29.  The GPC chromatogram of each PVS shows one sharp peak having a 
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small shoulder at the higher molecular weight side, and the size of the shoulder was found to 

increase with polymerization time.  The addition mechanism was believed to occur after 

chain propagation completely finished.  The Mw/Mn value of each GPC main peak increased 

with polymerization time from 1.03 (30 minutes) to 1.11 (2h).  This is the result of another 

addition of the styryl living end to the silylvinyl group of the same polymer molecule.  

Lastly, ring formation might occur, and its extent increased slightly with time. 

     These results indicate that the propagation of VS can completely finish in 30 minutes, 

and the styryl living end has to be terminated as soon as possible.  Next, four PVS samples 

were prepared under the optimum condition.  As shown in Table 15, the polymer 

conversion of the four PVS samples are 100% and the Mn value for each of the four samples 

is in good agreement with the corresponding Mk value.  The Mn values are in a range of 2.50 

x 104 – 1.36 x 105 and the Mw/Mn values are less than 1.08. 

 

3. 1. 2. Lithographic characterization 

     PVS containing a silylvinyl group as a side chain forms intermolecular cross-linkages, 

and thus can be used as a negative working resist [58, 81, 82].  Silicon-based resists can be 

applied to multi-layer resists and submicron lithography, due to the fabricated substrate 

surface.  From a DSC measurement, PVS is not a semicrystalline polymer but it is an 

amorphous one, and the glass transition temperature, Tg, of PVS was approximately 303K.  

Thus, PVS is easier to handle when carrying out a lithographic evaluation compared to 

ordinary cyclized polyisoprene negative resists [83, 84].   

    The PVS samples used in the lithographic characterization are shown in Table 15.  The 

PVS film was deposited onto a silicon wafer by spin-coating a xylene polymer solution (20 

wt%) at 500 rpm for 30 seconds.  After exposure for 30 seconds to an ultraviolet (UV) light 
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having a wavelength of 405 nm (12.0 mW/cm2), the spin-coated film was developed.  No gel 

was observed in the exposed area.  PVS could not act as a negative resist for a UV light. 

     Following exposure to a deep UV light of intensity from 135 mJ/cm2 to 186 mJ/ cm2, a 

spin-coated film was developed.  Fig. 30 shows the line and space test patterns which have 

2.0 µm lines and 0.75 µm spaces (abbreviated as 2.0 µm in the figure), 1.5 µm lines and 0.75 

µm spaces (1.5 µm), 1.0 µm lines and 0.75 µm spaces (1.0 µm), and 0.50 µm lines and 0.75 

µm spaces (0.50 µm).  Gels were observed in exposed areas but not in unexposed areas.  

Therefore, this film appears to act as a negative working resist.  Following exposure to 135 

mJ/cm2, the lowest intensity, a test pattern of 0.50 µm lines and 0.75 µm spaces showed 

webbing and meandering of the lines.  Other patterns show clear image lines without 

webbing or meandering. 

     Sensitivity of negative working resists is defined as Dg
0.5, which represents the intensity 

of light-forming a normalized half-thickness of a film.  Contrast of a negative working resist 

is defined as follows [82]: 

 γ = [ 2log (Dg
0.5 / Dg

0) ]–1 (12) 

Here, Dg
0 represents the intensity of a light-forming gel that forms a gel point.  From the 

exposure response curve, deep UV evaluation was made.  The resultant lithographic 

characteristics of PVS-4 are shown in Table 16.  Favorable values of lithographic 

characteristics of common negative working resists exposed to a deep UV light have been 

reported as follows [82, 85, 86]: Dg
0.5 (sensitivity) of 30 mJ/cm2, resolution of 0.4 µm, and γ 

(contrast) of 3-5.  The resultant PVS resist thus appears to possess favorable lithographic 

characteristics. 

     After exposure to an electron-beam, PVS films were developed in a mixture of 

xylene/methanol = 8/1.  Fig. 31 shows line and space test patterns of 1.0 µm lines and 1.0 
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µm spaces (abbreviated as 1.0 µm in the figure), 1.5 µm lines and 1.0 µm spaces (1.5 µm), 

2.0 µm lines and 1.0 µm spaces (2.0 µm), and 2.5 µm lines and 1.0 µm spaces (2.5 µm).  

Gels were observed in the exposed areas.  Webbing and meandering of lines were not 

observed in these films.  Thus, these test patterns show PVS to act as a negative working 

resist to an electron beam.  As shown in Fig. 32, exposure response curves of PVS-1 

differed not so significantly, according to the developer used.  In contrast, exposure response 

curves of PVS-4 (Mn = 13.6 x 104) for all developers are located at lower energy levels than 

those of PVS-1 (Mn = 2.50 x 104).  Lithographic characteristics are summarized in Table 16. 

     As with many negative electron resists, an increase in molecular weight results in an 

increase in sensitivity, however gradually decreasing the contrast [85, 87, 88].  On the other 

hand, the contrast of PVS did not decrease with increasing molecular weight, possibly due to 

a narrow MWD of both PVS films.  These contrast values are higher than those of common 

resists prepared radically.  Favorable lithographic characteristics of common negative 

working resists exposed to an electron beam have been reported as follows [85, 88, 89]: Dg
0.5 

(sensitivity) of 1x10-6 C/cm2, resolution of 0.3 µm, and γ (contrast) of 3-6.  The resultant 

PVS-4 thus appears to have favorable lithographic characteristics.  In conclusion, PVS 

containing a silylvinyl group as a side chain was found to act as a negative working resist by 

exposing it to a deep UV light and an electron beam.   

 

3. 1. 3. Preparation of 

[poly(4-vinylphenyl)dimethylvinylsilane-graft-polyisoprene]-block-polystyrene, 

(PVS-g-PIs)-b-PSt 
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     Using VS as the "B" monomer, a model block-graft copolymer of 

[poly(4-vinylphenyl)dimethylvinylsilane-graft-polyisoprene]-block-polystyrene, 

(PVS-g-PIs)-b-PSt, was prepared through the following synthetic route [80]: 

 PVS–Cs+ + St                           PVS-b-PSt (13) 

 Is + Cumyl Cs  or  sec-BuLi             PIs– Cs+  or  PIs– Li+ (14) 

 PVS-b-PSt + PIs–Cs+  or  PIs–Li+         (PVS-g-PIs)-b-PSt  (15) 

     In Eq. (13), PVS-b-PSt block copolymer as a backbone was prepared.  In Eq. (14), 

isoprene (Is) was polymerized for 8 h to yield living polyisoprene carbanions, such as the 

PIs–Cs+ in a THF/Cumyl Cs/–78°C system and PIs–Li+ in a Bz/sec-BuLi/room temperature 

system.  In Eq. (15), a THF solution of PIs–Cs+ was added to a THF solution of PVS-b-PSt, 

or each of the two Bz solutions of PIs–Li+ for the corresponding two grafts was added to a Bz 

solution of PVS-b-PSt.  Experimental details of a “grafting onto” process (a backbone 

coupling) are described in Table 17.  After 24 h, the backbone coupling was terminated by 

pouring a polymerization solution into excess methanol.   PIs that did not react with 

PVS-b-PSt was removed from the products of (PVS-g-PIs)-b-PSt. 

     Fig. 33 shows three GPC chromatograms of (PVS-g-PIs)-b-PSt.  Taking into account 

the results of the GPC examination and the sedimentation patterns (Beckman, Spinco Model 

E), the product of each of the three samples was found to contain (PVS-g-PIs)-b-PSt that had 

a narrow MWD, but no graft and no backbone. 

 

3. 1. 4. Molecular characteristics of (PVS-g-PIs)-b-PSt 

     In the case of a regular star-branched polymer coil, a mean-square radius of gyration 

<S2> can be derived as [90], 

 lim <S2>branch =  (nb2 / 6) (3f – 2) / f 2 (16) 
          n    ∞ 
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 Therefore, 

 g = <S2>branch / <S2>linear = (3f – 2) / f 2 (17) 

where n and b are a degree of polymerization of the polymer and a bond length; <S2>branch and  

<S2>linear 

 

are the mean-square radii of gyration for a branched polymer chain and a linear 

polymer chain; and f is the number of branches, respectively.  The g value estimated from 

Eq. (17) may be considered as a measure of branching.  In the case of comb-shaped 

polymers, g is given by a complex equation [91].  Furthermore, in the case of the block-graft 

copolymer wherein graft chains are different from a backbone chain and the graft points have 

a localized distribution on the backbone chain, g may be derived from a more complex 

equation.  Although the g value has not been derived in the form of an exact equation, the 

mean-square radius of gyration of a block-graft copolymer should depend on the molecular 

weight and the number of graft molecules.  Thus, the molecular weights of the block-graft 

copolymers could not be determined by GPC measurement and a conventional light scattering 

[92-94].  Based on osmometry, classical molecular characterizations must be achieved. 

     By comparison of the NMR signals of (PVS-g-PIs)-b-PSt with those of PVS-b-PSt, the 

molar ratio of the Is unit (a graft content) to the St units ((AIs/ASt)NMR) is estimated.  Thus, the 

number average molecular weight of a block-graft copolymer (Mn
block-graft

NMR) is calculated as 

follows:  

 Mn
block-graft

NMR = Mn
block

OSM + Mn
PSt

OSM

 

(AIs/ASt)NMR (MIs/MSt) (18) 

where Mn
block

OSM and Mn
PSt

OSM

 

are, respectively, the number average molecular weights of 

PVS-b-PSt and PSt in PVS-b-PSt, as determined by osmometry.  MIs

 

and MSt are the 

molecular weights of Is and St.  As shown in Table 18, the Mn
block-graft

NMR value coincided 

with the Mn
block-graft

OSM value determined by osmometry. 

     The number of grafts, Ngraft, per backbone can be defined as,  
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 Ngraft = (Mn
block-graft

OSM – Mn
block

OSM) / Mn
graft

OSM (19) 

When preparing three grafts of PIs, three PIs precursors were obtained.  The Mn
graft

OSM values 

of the three PIs precursors were measured by membrane osmometry and/or vapor pressure 

osmometry.  The thus-estimated Ngraft values of the three block-graft copolymers are shown 

in Table 18. 

     The degree of polymerization of PVS in PVS-b-PSt is equal to the number of possible 

chemical links between the backbone and grafts.  This characteristic number is termed DPVS.  

When a backbone coupling was performed, the molar quantity of PIs– carbanions was set at 

more than 4.4 times larger than that of DPVS.  However, the ratio of N
graft

 to DP
VS did not 

approach 100%, but approximately 30%, as shown in Table 18.  Approximately 30% of the 

silylvinyl groups of PVS react with living carbanions of PIs-, and the remaining silylvinyl 

groups are sterically hindered by grafts.  The Ngraft/DP
VS value was found to increase slightly 

with decreasing molecular weight of PIs as a graft.  On the other hand, since the reaction of 

a silylvinyl group of VS with a PIs– carbanion generates a negative charge in the vicinity of 

the backbone, an electrostatic repulsion between negative charges of the backbone and the 

PIs– carbanions might be produced.  However, the N
graft/DP

VS value of SGI-1 prepared in 

THF is smaller than that of SGI-2 prepared in Bz.  The observed result was contrary to the 

expected result arising from the electrostatic repulsion.  Therefore, the most part of the 

non-quantitative coupling [16, 95] should be due to the steric hindrance and not the 

electrostatic repulsion.  The mutual repulsion between the grafts due to steric hindrance 

should be uniform, because the backbone and grafts have narrow MWDs.  Therefore, the 

spacing and its distribution of graft points on a PVS block of the backbone appear to be 

uniform and narrow, respectively.  In other words, the N
graft/DP

VS
 value is expected to be 

attributable to the spacing of graft points. 
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3. 1. 5. Morphology 

     The three samples of (PVS-g-PIs)-b-PSt cast from the respective benzene solutions 

into thin films.  The resultant films were dried under a vacuum at 40ºC for 3 days.  To 

further promote the formation of equilibrium morphologies, the films should be annealed, 

however the annealing was not carried out at the present study.  Fig. 34 shows electron 

micrographs of the three films.  The black and white regions in electron micrographs 

correspond to the PIs phase (graft chains) and PSt/PVS phase (backbone chains), respectively, 

wherein the PSt/PVS phase is suspected to be a mixed phase of PSt and PVS [96].  The 

three samples formed clear microphase-separated (MS) structures.  The morphology of the 

SGI-2 film dose not comply with a rule proposed by Molau [1, 7]; namely, the film forms 

neither globular domains nor a clear continuous phase, but a curious amoebae-like domain.  

Similar morphology of ABC-type three component block copolymers having a PIs block with 

a high 1, 4 content as a component has been reported by Kotaka et al. [97] and Fujimoto et al. 

[98]. 

     Ensuing, this prompts us to comment on the amoebae-like morphology of SGI-2.  The 

PIs chains of SGI-2 prepared by a sec-BuLi/Bz system have the geometrical microstructures 

with a high cis-1, 4 content [99].  A PIs chain with a high cis-1, 4 content has a dipole 

moment that is aligned in the direction parallel to the chain contour.  The PIs chain exhibits 

a dielectric relaxation due to fluctuation of the end-to-end distance, which is referred to as " a 

dielectric normal mode process" [100-103].  According to the dipole-dipole repulsion 

between the PIs chains, the end-to-end vectors of the PIs chains should be randomly aligned 

in the solid state so as to minimize a potential energy.  A regular molecular alignment such 
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as a spherical structure appears to be an unfavorable choice for PIs with a high cis-1, 4 

content, though a detailed effect has not been clearly understood at present. 

     The SGI-1 film has a PIs content of 47 wt%.  A linear block copolymer that has one 

composition in an amount of 47 wt% is expected to form a lamellar structure.  However, the 

SGI-1 film showed a spherical structure of PSt/PVS, wherein PIs formed a continuous phase.  

The SGI-3 film contains PIs in an amount of 14 wt%.  A linear block copolymer that has 

one composition in an amount of 14 wt% is expected to form a spherical structure of PIs, 

while PSt/PVS forms a continuous phase.  However, the SGI-3 film showed a lamellar 

structure.  From the viewpoint of morphological behavior, the PIs (graft) content 

dependence of the block-graft copolymers was found to shift to the higher PIs content side 

compared to that of the linear block copolymers.  

     Let us consider a process of a solvent’s casting from a dilute polymer solution.  When 

a concentration of the polymer solution attains a critical concentration [73, 104, 105], thereby 

inducing the formation of the MS structure, the morphology should be determined by an 

apparent volume fraction of one component containing the solvent.  The apparent volume 

fraction of PIs (grafts) to PVS-b-PSt (backbones) at the critical concentration should be much 

larger than the corresponding real volume fraction.  One of the causes behind this is thought 

to be that the graft chain extends rather than the corresponding unperturbed polymer chain 

[106-108], due to the graft chains becoming crowded near the PVS chain.  Therefore, the 

block-graft copolymer is believed to form a characteristic MS structure that is distinct from 

that of the linear block copolymer [1, 7].   

     The MS structures of block copolymers with nonlinear architectures have been the 

focus of a considerable amount of recent work.  One of the representative works is a series 

of miktoarm star block copolymers (AmBn) [109, 110] and model graft copolymers [111-113] 
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prepared using anionic polymerization and controlled chlorosilane chemistry.  Gido and 

co-workers have reported that the MS structures shifted to those of higher volume fractions of 

the higher arm number component, as compared with those of linear block copolymers.  

This behavior is qualitatively the same as that of the present study.  Milner has 

quantitatively calculated a shift of the morphological transition lines as a function of the 

volume fraction of component B (φB) and a molecular asymmetry parameter (ε) [114-116].   

 ε = (nA/nB) (lA/lB)1/2 (20) 

Here, nA and nB are the numbers of arms of AmBn, and li = (Vi/Ri
2) = (vi/bi

2).  VI and Ri are the 

volume and radius of gyration of one arm of polymer i, while vi is the segmental volume and 

bi is the statistical segment length of component i.  All shifts of the MS structures 

experimentally observed by Gido et al. from that of linear block copolymers could be 

explained qualitatively by the Milner’s model, but a part of them could not be explained 

quantitatively.  These discrepancies are going to be elucidated.   

     (PVS-g-PIs)-b-PSt can be considered as an asymmetric miktoarm star block copolymer 

of (PIs)n(PSt)1 although the molecular architectures of (PVS-g-PIs)-b-PSt are strictly different 

from that of Milner’s model.    Using vPIs = 0.132nm3 and bPIs= 0.68nm for PIs, and vPSt = 

0.176nm3 and bPSt= 0.69nm for PSt, an (lPIs/lPSt)1/2 of 0.878 is calculated [109].  Hence, 

asymmetry parameters of ε are 8.8 for SGI-1 (nA=10.0, nB=1.0), 9.6 for SGI-2 (nA=10.9, 

nB=1.0) and 11.0 for SGI-3 (nA=12.5, nB=1.0).  Fig. 35 shows the result of mapping the 

morphological results of the three samples onto the theoretical phase diagram calculated by 

Milner.  The shifts of the MS structures from those of the corresponding linear block 

copolymers can be explained qualitatively by the asymmetric factor.  However, a part of 

them could not be explained quantitatively.  One of our desired goals is to understand the 
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morphological behavior of the block-graft copolymers.  It is also desired to know the 

theoretical phase diagram of the block-graft copolymers.   

 

3. 2.  Poly(p-hydroxystyrene), PHSt 

     In order to prepare block-graft copolymers via anionic living polymerization, two 

approaches have been proposed: specifically, a "grafting onto" process (a backbone coupling) 

and a "grafting from" process (a backbone initiation) [16].  The backbone coupling is 

exemplified by a reaction of living PIs– with the PVS-b-PSt backbone that bears the silylvinyl 

functional groups.  This approach allows a precise control of the number and length of grafts.  

However, after the backbone coupling, the remaining PIs that did not react with the backbone 

must be removed from the products by repeated dissolution and precipitation.  Preferably, 

the fractionation should be excluded.  A “grafting from” process (a backbone initiation) will 

be described in the present section.   For carrying out a “grafting from” process, 

p-hydroxystyrene (HSt) was employed as the B monomer that can provide the intermolecular 

chemical links between the backbone and grafts [117].   

 

3. 2. 1. Polymerization of p-tert-butoxystyrene, BSt 

     HSt could not be polymerized by an anionic living mechanism because the propagating 

carbanionic species readily reacts with a labile proton of the hydroxyl group to terminate the 

polymerization.  The hydroxyl group should be protected during anionic polymerization, 

and the protecting group can be readily and completely removed after the polymerization.  A 

tert-butyldimethylsilyl group, -Si(CH3)2(t-C4H9), seems to be an inappropriate protective 

group for anionic polymerization of vinyl phenol  [58, 118].  Therefore, 

p-tert-butoxystyrene (BSt) was prepared according to the previous methods [119].   
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     When an attempt was made to anionically polymerize BSt by n-BuLi in THF at –78°C, 

the polymer conversion was 100%.  The Mn
OSM value was discovered to be the same as the 

Mk value.  Also, the GPC chromatogram showed a single sharp peak and the Mw/Mn value 

was less than 1.05.  Thus, when satisfactorily purified, BSt was found to be polymerized 

without difficulty under a n-BuLi/THF/–78°C system to yield poly(p-tert-butoxystyrene) 

(PBSt) with a desired molecular weight and a narrow MWD. 

     Two approaches for preparing the block copolymers must be studied.   As shown in 

Table 19, BSt was polymerized to yield PBSt and the resultant PBSt living end was allowed 

to initiate a newly added butadiene (Bu).  St was polymerized to yield PSt and the resultant 

PSt living end was allowed to initiate a newly added BSt.  In preparations of both 

PBSt-b-PBu and PSt-b-PBSt block copolymers, the respective Mn values of the two block 

copolymers moderately agreed with the corresponding Mk values.  As shown in Fig. 36, 

each sample showed a single sharp GPC chromatogram.  These results indicate that the 

PBSt living end could be capable of initiating Bu, and that BSt could be initiated by the PSt 

living end.  Therefore, a PSt-b-PBSt-b-PSt triblock copolymer can be prepared by a 

sequential block copolymerization. 

     The tert-butyl group was removed from PBSt in PBSt-b-PBu and PSt-b-PBSt block 

copolymers by hydrogen bromide (HBr) in a mixture of Bz/acetone under reflux for 1 h to 

prepare the corresponding block copolymers of PHSt-b-PBu and PSt-b-PHSt.  Spectroscopic 

evidence supports the preparation of the resultant block copolymers having a PHSt block.  

As shown in Fig. 36, all four samples showed single sharp GPC peaks having the Mw/Mn 

values of less than 1.04. 

 



-44- 

3. 2. 2. Preparation of polystyrene-block-[poly(p-hydroxystyrene)-graft-poly(ethylene 

oxide)]-block-polystyrene, PSt-b-(PHSt-g-PEO)-b-PSt  

     Using BSt as the “B” monomer, a model block-graft copolymer of 

polystyrene-block-[poly(p-hydroxystyrene)-graft-poly(ethylene oxide)]-block-polystyrene, 

PSt-b-(PHSt-g-PEO)-b-PSt was prepared through the following synthetic route [117]: 

 PSt-b-PBSt-b-PSt + HBr                 PSt-b-PHSt-b-PSt (21) 

 PSt-b-PHSt-b-PSt + DPE-K or cumyl K      PSt-b-(PHSt)–K+-b-PSt (22) 

 PSt-b-(PHSt)–K+-b-PSt + EO              St-b-(PHSt-g-PEO)-b-PSt (23) 

     In Eq. (21), a PSt-b-PBSt-b-PSt block copolymer serving as a backbone was prepared.  

The polymerization conditions and results are described in Table 20.  As shown in Fig. 37, 

the GPC chromatogram showed a single sharp peak (Mw/Mn = 1.08).  The tert-butyl group 

was removed from PBSt in PSt-b-PBSt-b-PSt by HBr to yield PSt-b-PHSt-b-PSt.  The 

resultant backbone of PSt-b-PHSt-b-PSt showed a single sharp GPC peak.  In Eq. (22), a 

hydroxyl group of PSt-b-PHSt-b-PSt was allowed to react with Cumyl K in THF or with 

dimeric potassium dianions of 1, 1-diphenylethylene (DPE-K) in THF under the experimental 

conditions described in Table 21.  Both the solutions changed their tone from colorless to 

deep red.  Finally, two macromolecular initiators of PSt-b-(PHSt)–K+-b-PSt were prepared. 

     In Eq. (23), EO was added to each of the PSt-b-(PHSt)–K+-b-PSt solutions.  The newly 

formed potassium alkoxide of PSt-b-(PHSt)–K+-b-PSt and the remaining initiator of DPE K or 

Cumyl K are capable of initiating the additionally introduced EO.  The solutions gradually 

changed their tone from deep red to light brown and then became colorless.  After 60 h, the 

"grafting from" process (a backbone initiation) was stopped.  The product contained a 

mixture of PSt-b-(PHSt-g-PEO)-b-PSt and poly(ethylene oxide) (homo-PEO).  Homo-PEO 

was removed from the mixtures by repeating dissolution and precipitation with hot methanol. 
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3. 2. 3. Molecular characteristics of PSt-b-(PHSt-g-PEO)-b-PSt  

(a) Block-graft copolymers, Mn
block-graft 

     We can expect the kinetic molecular weight of PSt-b-(PHSt-g-PEO)-b-PSt, Mk
block-graft to 

be as follows: 

 Mk
block-graft = Mn

block
OSM [( Wblock + Wgraft ) / Wblock)] (24) 

where Mn
block

OSM is the number average molecular weight of PSt-b-PHSt-b-PSt serving as the 

backbone; Wblock is the weight of the backbone used in the “grafting from” process; and Wgraft 

is the weight of grafts produced from the (PHSt)–K+ initiators.  The molecular weight of 

PSt-b-(PHSt-g-PEO)-b-PSt, Mn
block-graft

CONV, was simply determined from the weight of the 

final product, Wblock-graft, by the following equation. 

 Mn
block-graft

CONV = Mn
block

OSM (Wblock-graft / Wblock) (25) 

In addition, the molecular weight of PSt-b-(PHSt-g-PEO)-b-PSt, Mn
block-graft

OSM was determined 

by osmometry.  

     By comparison of the 1H-NMR signal of PSt-b-(PHSt-g-PEO)-b-PSt with that of 

PSt-b-PHSt-b-PSt, a molar ratio of the EO unit (a graft content) to the St unit for 

PSt-b-(PHSt-g-PEO)-b-PSt, (AEO/ASt)NMR was estimated.  Thus, the number average 

molecular weight of PSt-b-(PHSt-g-PEO)-b-PSt, Mn
block-graft

NMR was calculated as follows. 

 Mn
block-graft

NMR = Mn
block

OSM + Mn
PSt

OSM

 

(AEO/ASt)NMR (MEO/MSt)   (26) 

where Mn
PSt

OSM

 

is the number average molecular weights of a PSt block in the backbone; and 

MEO

 

and MSt are the respective molecular weights of EO and St.  As shown in Table 22, the 

three values of Mn
block-graft

CONV, Mn
block-graft

OSM, and, Mn
block-graft

NMR for each of the two samples 

coincided with each other.    The resultant of each Mn
block-graft value of the two samples was 

smaller than the corresponding Mk
block-graft value.  These results suggest that the metallation of 
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PHSt to (PHSt)–K+ by DPE-K or Cumyl K could not be performed in a 100% conversion even 

after long reaction times. 

    The sedimentation patterns of the two block-graft copolymers were also examined.  As 

shown in Fig. 38, each pattern showed a single sharp peak.  Taking into account the results 

of the GPC examination and the sedimentation patterns, the product of each of the two 

samples was found to contain PSt-b-(PHSt-g-PEO)-b-PSt block-graft copolymer that has a 

narrow MWD, no backbone, and no homo-PEO. 

 

(b) Grafts, Mn
graft 

     When preparing SGE-2, two different initiators of PSt-b-(PHSt)–K+-b-PSt and Cumyl K 

existed in the solution of a “grafting from” process.  Hence, homo-PEO was simultaneously 

prepared by the remaining Cumyl K.  Homo-PEO showed a sharp GPC peak, corresponding 

to the Mw/Mn value of less than 1.10.  A number average molecular weight of the resultant 

homo-PEO, Mn
PEO

VPO for SGE-2 was determined by vapor pressure osmometry.  A kinetic 

molecular weight of the graft, Mk
graft, can be calculated by Eq. (27): 

 Mk
graft = WEO / Itotal (27) 

where WEO is the weight of EO and Itotal is the molar quantity of initiator introduced to the 

backbone solution. 

     The newly produced PSt-b-(PHSt)–K+-b-PSt macromolecular initiators have potassium 

alkoxide serving as grafting points and the remaining initiators of DPE-K and cumyl K have 

alkyl potassium.  Although the initiation mechanisms of the potassium alkoxide and the 

alkyl potassium should be different from each other, the propagation mechanisms of them 

remains the same.  Therefore, the polymerization results of EO by the potassium alkoxide 

and the alkyl potassium were expected to be the same as each other because of a long time 
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period required for propagation.  From these considerations, we shall assume that the 

molecular weight of the graft, Mn
graft, is equal to that of homo-PEO; namely, Mn

graft = Mn
PEO

VPO

 

for SGE-2 and Mn
graft = Mk

graft for SGE-1.  

 

(c) Metallation efficiency, fmetal 

     The degree of polymerization of a PHSt block in PSt-b-PHSt-b-PSt is equal to the 

number of possible chemical links between the backbone and grafts.  This characteristic 

number is termed Nk
graft.  Metallation efficiency (fmetal) that characterizes scheme (28) can be 

defined as [120],  

 fmetal = (Itotal – IPEO) / (Wblock/Mn
block) Nk

graft (28) 

where, Itotal and IPEO are the molar quantities of initiators for being introduced to the 

polymerization solution and for preparing homo-PEO, respectively.  IPEO can be determined 

from WPEO/Mn
PEO

VPO, where WPEO is the weight of homo-PEO prepared by the remaining 

initiator.  Wblock is the weight of PSt-b-PHSt-b-PSt used in the “grafting from” process.  As 

shown in Table 22, the resultant fmetal
 values were found to be not 100%, but approximately 

50% for SGE-1 and 28% for SGE-2.  The nonquantitative metallation appears to be caused 

by electrostatic repulsion between negative charges of the initiator and the resultant 

(PHSt)–K+.  The hydroxyl groups of PHSt are located in close proximity so that a potassium 

ion may induce a formation of a chelation and/or a complex in the adjacent hydroxyl group, 

or a hydroxyl group and potassium alkoxide may coexist at the equilibrium. 

     The difference in the fmetal
 values between SGE-1 and SGE-2 can be explained by a 

shielding effect and the equilibrium between the hydroxyl group and potassium alkoxide. 

 

(d) Number of grafts, Ngraft 
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     The number of grafts, N graft
OSM and N graftini can be defined as 

 Ngraft
OSM = (Mn

block-graft
OSM – Mn

block
OSM) / Mk

graft (29) 

 Ngraft
ini = Nk

graft fmetal (30) 

As shown in Table 22, the thus-estimated N graft
OSM and Ngraft

ini values of the two samples were 

smaller than the corresponding Nk
graft value.  Thus, N graft

OSM/Nk
graft and fmetal are expected to be 

attributable to the spacing (a frequency) of graft points on a backbone [94]. 

     In the case of a “grafting onto” process (chapter 3. 1. 4), where PIs– reacts with 

PSt-b-PVS to yield PSt-b-(PVS-g-PIs), the spacing of graft points on a backbone could be 

estimated to be 26%—32%.  Moreover,  the nonquantitative coupling was due to the steric 

hindrance.  In the case of a “grafting from” process shown in the present chapter, the 

nonquantitative metallation result being 28%–50% appears to be reasonable due to the 

electrostatic repulsion.  In conclusion, the anionic living technique appears to be unfavorable 

for preparing the graft copolymers with a quantitative metallation of 100%.  On the other 

hand, the formation of the peptide bond between the carboxylic acids of OP and the amino 

groups of PAS (chapter 2. 2. 4) seems to quantitatively proceed and to yield the graft 

copolymers with a DOG value of 100%.  Although the length of the graft should be 

important for discussing the coupling reaction, a coupling reaction using DCC appears to be 

more suitable for preparing the graft copolymers by a “grafting onto” process compared to the 

anionic living mechanism. 

 

3. 2. 4. Morphology 

     Fig. 39 shows transmission electron micrographs of two samples of 

PSt-b-(PHSt-g-PEO)-b-PSt cast from the respective benzene solutions.  The films were 

dried under a vacuum at 40ºC for 3 days.  However, the further annealing to promote the 
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formation of equilibrium morphologies was not carried out at the present study.  The black 

and white regions in the electron micrographs correspond to the PEO phase serving as grafts 

and the PSt/PHSt phase serving as a backbone, respectively.  Here, the PSt/PHSt phase is 

suspected to be a mixed phase of PSt and PHSt [96]. 

     From DSC measurements, the two block-graft copolymers were found amorphous 

polymers, even though they have PEO as grafts.  The degree of crystallinity, XC, of PEO has 

been known to depend on its molecular weight and molecular architecture, wherein PEO is a 

homo polymer or a block of a linear block copolymer [121–123].  The PEO chain of Mn= 

6000 has been reported to have XC = 95 % for homo PEO and XC = 45 % for 

PEO-b-PSt-b-PEO block copolymer.  Additionally, the PEO chain of Mn = 3400 has been 

reported to have XC = 92% for homo PEO and XC = 30% for PEO-b-PSt-b-PEO.  

Considering this, homo-PEO seems to be a floating chain whose two ends are not attached to 

a PSt block, while the PEO chain in PEO-b-PSt-b-PEO seems to be a cilium-chain having 

only one end attached to a PSt block.  This confined PEO chain should disturb the 

crystallization of the PEO chain, and hence induce a decrease in the XC value of the block 

copolymer [121-123].  From a viewpoint of the confined PEO chain, the molecular structure 

of the PEO chain in PSt-b-(PHSt-g-PEO)-b-PSt is thought to be the same as that in 

PEO-b-PSt-b-PEO.  However, the PEO chains should be crowded near the PHSt backbone 

for PSt-b-(PHSt-g-PEO)-b-PSt.  This finding is responsible for XC = 0 % of the two films of 

the block-graft copolymers.   

     Recently , a number of crystalline/amorphous diblock copolymers have been studied on 

the MS structure and crystallite of the crystalline segment [7, 124].  The crystalline 

characteristics such as melting temperatures, degrees of crystallization and crystalline 

lamellar thickness should be affected by annealing temperatures and annealing times.  
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However, these annealing effects were not considered in the present morphological result.  

Despite this, the samples have a remarkable feature of having XC = 0 %, even if one block is a 

crystalline polymer of PEO. 

     As shown in Fig. 39, each of the two samples formed a clear lamellar structure.  

which can be observed in all points of the films.  The SGE-1 and SGE-2 films had a PEO 

content of 28.6 wt% and 28.9 wt%, respectively.  A linear block copolymer that has one 

component in an amount of 29 wt% is expected to form a spherical structure or a cylindrical 

structure of PEO, wherein PSt/PHSt forms a continuous phase.  From the viewpoint of 

morphological behavior, the PEO (graft) content dependence of the block-graft copolymers 

was found to shift further to the higher PEO content side compared to that of the linear block 

copolymers.  This morphological behavior did not depend on the molecular weight of PEO 

in the range of 3400 to 6000.  The same morphological feature was observed in 

(PVS-g-PIs)-b-PSt prepared by a “grafting onto” process. 

     The lamellar thickness of the PSt phase and PEO phase could be determined from the 

transmission electron micrographs.  Unperturbed root-mean-square of the end-to-end 

distances, <R2>0
1/2, for PSt and PEO chains can be calculated by the following [125]; <R2>1/2 

= bn1/2, where b is a Kuhn's segment length and n is a degree of polymerization.  As shown 

in Table 23, in each of the two films observed, lamellar thickness of the PSt phase is most 

likely the same as the corresponding calculated lamellar thickness.  In contrast, in each of 

the two films observed, lamellar thickness of the PEO phase was found to be approximately 

two times larger than the corresponding calculated lamellar thickness.  This finding 

corresponds to the speculation that the graft chain extends in contrast to the corresponding 

unperturbed polymer chain because the graft chains become crowded near the PHSt chain.  
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Therefore, the block-graft copolymers are believed to contain PEO that becomes amorphous 

and not crystalline.  

     Morphological shifts of the experimentally observed MS structure from those predicted 

from linear block copolymers should be discussed on a basis of the phase diagram calculated 

by Milner [114-116], in a similar manner as chapter 3. 1. 5.  PSt-b-(PHSt-g-PEO)-b-PSt can 

be considered as an asymmetric miktoarm star block copolymer of (PEO)n(PSt)1 [109, 110].  

Since the vPEO and bPEO values are not known, the (lPIs/lPSt)1/2 value could not be estimated.  

However, this value seems almost to be one [109, 126], which in turn creates the asymmetry 

parameters as follows: ε is close to 10.3 for SGE-1 (nA=20.6.0, nB=2.0) and 5.9 for SGI-2 (nA = 

11.8, nB = 2.0).  Fig. 35 shows the result of mapping the morphological results of the two 

samples onto the theoretical phase diagram calculated by Milner.  The shifts of the MS 

structures from those of linear block copolymers can be explained by the asymmetric factor.  

It is also desired to know the theoretical phase diagram of the block-graft copolymers for 

discussing in detail.   

 

 

4.  Concluding remarks: anionic living polymerization 

     When carrying out anionic living polymerization of common monomers such as 

styrene and methylmethacrylate, well-established techniques can be used to prepare 

well-defined polymers having desired molecular weights and narrow MWDs.  However, 

when carrying out anionic living polymerization of new monomers that contain a vinyl group 

and another functional group, particular attention should be given to the removing impurities 

from the monomers prior to polymerization and suppressing side reactions by the living ends 

during anionic polymerization. 
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     Although each of the three tAS contains a styryl group and tertiary amino group, the 

latter has no labile proton which causes extermination of the styryl living ends.  Therefore, 

for an example, using three tAS as a general approach to anionically polymerize new 

monomers with no labile proton was described from a viewpoint of the three conditions and 

four experimental proofs. 

     As IBA and HSt have labile protons, they could not be anionically polymerized.  To 

prepare well-defined PIBA and PHSt, ISBA and BSt having a trimethylsilyl group and a 

tertiary butoxy group as protecting groups, respectively, have to be anionically polymerized 

to yield the corresponding PISBA and PBSt, while subsequent deprotection should be 

performed.  In these two protecting groups, the trimethylsilyl group of PISBA can be 

promptly and completely deprotected to yield PIBA.  This finding corresponds to the fact 

that ISBA tends to contain a slight amount of IBA as impurity.  When removing a slight 

amount of IBA from ISBA prior to polymerization, it is important to select a useful purging 

reagent that is steadily reactive to IBA but entirely unreactive to ISBA.  In contrast, the 

tert-butyl group of PBSt can be strenuously deprotected to yield PHSt.  This finding 

corresponds to the fact that BSt seems stable to the purging reagents and propagating 

carbanionic species.  BSt, as well as common monomers, can be anionically polymerized 

itself with ease.  Therefore, the anionic polymerization of BSt was not described in detail, 

although the anionic reactivity of BSt was discussed by performing block copolymerization. 

     As the silylvinyl group of VS could not be protected at the present time, a 

chemoselective polymerization of a styryl group has to be performed in order to prepare a 

well-defined PVS.  For this subject, the influence of initiators, solvents, and polymerization 

times on anionic polymerization should be studied in detail.  A systematic approach to 
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depress the two side reactions and performance of the chemoselective polymerization were 

described. 

 

 

 

References 

[1] Ciferrier A, editor. Supermolecular polymers. New York: Marcel Dekker; 2000. 

[2] Alexandridis P, Lindman B, editors. Amphiphilic block copolymers. New York: 

Elsevier; 2000. 

[3] Hedric LL. Dendrimer-like star block and amphiphilic copolymers by combination 

of ring opening and atom transfer radical polymerization. Macromolecules 1998; 31: 

8691-705. 

[4] Yang XM, Peter RD, Nealey PF, Solak HH, Cerrina F. Guided self-assembly of 

symmetric diblock copolymer film on chemically nanopatterened substrates. 

Macromolecules 2000; 33: 9575-82. 

[5] Radzilowski LH, Carragber BO, Stupp SI. Three dimensional self-assembly of 

rodcoil copolymer nanostructures. Macromolecule 1997; 30: 2110-19. 

[6] Kobayashi S, Shoda S, Uyama H. In: Kobayashi S, editors. Catalysis in precision 

polymerization. New York: Wiley; 1997. 

[7] Hamley IW. The Physics of Block Copolymers. Oxford: Oxford Univ Press; 1998. 

[8] Pitsikalis M, Pispas S, Mays JW, Hadjichristidis N. Nonlinear block copolymer 

architectures. Adv Polym Sci 135, Berlin: Springer; 1998. p. 1-137.  

[9] Hadjichristidis N. Asymmetric star polymers: Synthesis and properties. Adv Polym 

Sci 142, Berlin: Springer; 1999. p. 71-127.   



-54- 

[10] Kotaka T, editor. Polymer alloy. Tokyo: Tokyo Kagaku Dohjin; 1993. 

[11] Ishizu K, Uchida S. Synthesis and microphase-separated structures of star-block 

copolymers. Prog Polym Sci 1999; 24:1439-80. 

[12] Kennedy P. Synthesis, characterization and properties of octa-arm 

polyisobutylene-based star polymers. Adv Polym Sci 146, Berlin: Springer; 1999. p. 

1-38.  

[13] Mishra M, Kobayashi S, editors. Star and hyperbranched polymers. Plastic 

engineering series 53, New York: Marcel Dekker; 1999.  

[14] Mishra M, organizer. Macromolecular design and application via macromonomers, 

macroinitiators and macroiniferters. ACS Polym Prep 37, Washington DC: ACS; 

1996. p. 402-23. 

[15] Se K. Synthesis of the star polymers having the rod-like arms. IUPAC International 

Symp on Ionic Polym, Prep, Kyoto: IUPAC; 1999. p. 80. 

[16] Se K, Watanabe O, Isono Y, Fujimoto T. Synthesis and characterization of model 

block-graft copolymers via anionic polymerization: Introduction of poly(isoprene) 

and poly(ethylene oxide) as graft chains. Makromol Chem, Macromol Symp 1989; 

25: 249-61. 

[17] Szwarc M. Carbanions, living polymers and electron transfer processes. New York: 

Interscience Publ, Wiley; 1968. 

[18] Quirk RP, editor. Application of anionic polymerization research. ACS symposium 

series 696, Washington, DC: ACS; 1996. 

[19] Hirao A, Loykulnant S, Ishizone T. Recent advance in living anionic polymerization 

of functionalized styrene derivatives. Prog Polym Sci 2002; 27: 1399-471. 

[20] Deng H, Kanaoka S, Sawamoto M, Higashimura T. Synthesis of star-shaped 



-55- 

poly(p-alkoxystyrenes) by living cationic polymerization. Macromolecules 1996; 29: 

1772-7. 

[21] Faust R, Shaffer TD, editors. Cationic polymerization. ACS symposium series 665, 

Washington, DC: ACS; 1997. 

[22] Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer 

radical polymerization. Progr Polym Sci 2001; 26: 337-77. 

[23] Matyjaszewski K, editor. Controlled radical polymerization. ACS symposium series 

685, Washington, DC: ACS; 1998. 

[24] Se K, Kijima M, Fujimoto T. Anionic polymerization of tertiary aminostyrenes and 

characterization of polymers. Polymer J 1988; 20: 791-9. 

[25] Se K. Anionic living polymerization of tert-aminostyrenes and application of the 

polymers. Polym Adv Tech 2002; 13: in press. 

[26] Nakamaha S. Synthesis of functionalized polymers by living anionic polymerization. 

In: Hatada K, Kitayama T, Vogl T, editors. Macromolecular design of polymeric 

materials. Plastic engineering series 40, Marcel Dekker: New York; 1997. p. 85-94. 

[27] Hirao A, Nakahama S. Anionic living polymerization of monomers with functional 

silyl groups. Prog Polym Sci 1992; 17: 283-317. 

[28] Ishizone T, Kato H, Yamazaki D, Hirao A, Nakahama S. Anionic polymerization of 

monomers containing functional groups. 14. Anionic polymerization of aryl 

4-vinylbenzoates. Macromol Chem Phys 2000; 201: 1077-87. 

[29] Se K, Kudoh S. Anionic polymerization of secondary aminostyrene and 

characterization of the polymer. J Appl Polym Sci 1999; 71: 2039-48. 

[30] Se K, Kijima M, Ohtomo R, Fujimoto T. Quaternization of poly(tertiary 

aminostyrene)s and characterization of the quaternized polymers. J Polym Sci, Part 



-56- 

A: Polym Chem 1997; 35: 1219-26. 

[31] Kijima M, Se K, Fujimoto T. Photochemical isomerization of p, p'-bis(chloromethyl 

azobenzene) incorporated in poly(tertiary aminostyrenes) by crosslinkage. Polymer 

1992; 33: 2402-07. 

[32] Se K, Kijima M, Fujimoto T. Photochemical isomerization of azobenzene 

incorporated in poly(N,N-dimethyl-4-vinylphenethylamine-block-styrene) diblock 

copolymer by cross linkage. Polymer 1997; 38: 5755-60. 

[33] Se K, Suzuki M, Matsuo T, Umeda T, Ueno M. Preparation of 

poly(p-isopropenylphenethyl)poly(α-methylstyrene) macromonomer and anionic 

polymerization of the macromonomer. Kobunshi Ronbunshu (Jpn J Polym Sci 

Technol) 1992; 49: 817-23. 

[34] Se K, Teramoto M. Anionic synthesis of star-block copolymers with macroinitiators 

prepared from macromonomer and characterization of the polymers (Jpn J Polym 

Sci Technol) 1997; 54: 930-8. 

[35] Szwarc M. Living polymers and mechanism of anionic polymerization. Adv Polym 

Sci 49. Berlin: Springer; 1983. p. 1-177. 

[36] Patai S, editor. The chemistry of the amino group. New York: Interscience Publ; 

1968. 

[37] Higo Y, Chosi H, Fujimoto T, Nagasawa M. Preparation and characterization of a 

poly(strong base) with narrow molecular weight distribution; 

poly(4-vinylbenzyltrimethylammonium chloride). Polym J 1980; 12: 729-34. 

[38] Sperling LH. Cross-linked polymers and rubber elasticity. In: Introduction to 

physical polymer science, 3rd ed. New York: Wiley; 2001. p. 363-431. 

[39] Barar DG, Staller KP, Peppas NA. Fridel-Craft crosslinking methods for polystyrene 



-57- 

modification. IV. Macromolecular structure of crosslinked particles. J Polym Sci, 

Part A: Polym Chem 1983; 21: 1013-24. 

[40] Van Krevelen DW, Hoftyzer PJ. Properties of polymers. Amsterdam: Elsevier; 1972. 

[41] Grulke EA. Solubility parameter values. In: Brandrup J, Immergut EH, editors. 

Polymer handbook, 3rd ed. Wiley: New York; 1989. VII 519-59. 

[42] Yamaguchi T, Nakazumi H, Irie M. Photochromic reactions of two azobenzene 

chromophors in a chiral cyclohexane moiety. Bull Chem Soc Jpn 72; 1999: 1623-27. 

[43] Nuyken O, Scheren C, Baindl A, Brenner AR, Dahn U, Gartner R, Kaiser-Rohrich S, 

Kollefrath R, Matusche P, Voit B. Azo-group-containing polymers for use in 

communications technologies. Progr Polym Sci 1997; 22: 98-183. 

[44] Irie M, Ikeda T. Photoresponsive polymers. In: Takemoto K, Ottenbrite RM, 

Kamachi M, editors. Functional monomers and polymers, 2nd ed. New York: 

Marcel Dekker; 1997. p. 65-116. 

[45] Yoshiyuki K, Machida S, Horie K. Local free volume and structural relaxation 

structures with photoisomerization of azobenzene and persistent spectral hole 

buming poly(alkyl methacrylate)s at low temperature. J Polym Sci, Part B: Polym 

Phys 2000; 38: 3098-105. 

[46] Se K, Kijima M. Photochemical isomerization of p, p'-bis(chloromethyl) azobenzene 

incorporated in poly(N,N-dimethyl-4-vinylphenethylamine)-block-polystyrene. Rept 

Prog Polym Phys Jpn 1994; 37: 545-8. 

[47] Se K, Berry GC. Frank elastic constants and Leslie-Ericksen viscosity coefficients of 

nematic solutions of rodlike polymers. Mol Cryst Liq Cryst 1987; 153: 133-42. 

[48] Berry GC, Se K, Srinivasarao M. Rheological, rheo-optical and light scattering 

studies of nematic solutions of poly(1,4-phenylene-2, 6-benzobisthiazole). In: 



-58- 

Zachariades AE, Porter RS, editors. High modulus polymers. Plastic engineering 

series 17, New York: Marcel Dekker; 1989. p. 195-224. 

[49] Smets G. Photochromic phenomena in the solid phase. Adv Polym Sci 50. Berlin: 

Springer; 1983. p. 17-44. 

[50] Deblauwe V, Smets G. Photochromisms of spirofluorenylindolizines. J Poly Sci, 

Part B: Polym Phys 1989; 27: 671-80. 

[51] Yu WC, Sung CSP, Robertson RE. Site-specific labeling and distribution of free 

volume in glassy polystyrene. Macromolecules 1988; 21: 355-64.  

[52] Munakata Y, Tsutsui T, Saito S. The matrix effect on the thermal reactions of 

spirooxazine in polymer matrices. Polymer J 1990; 22: 843-48. 

[53] Tomioka H, Sato H. Preparation of polyion complexes consisting of spyropyrans and 

photochromism of their spin-coated films. Nihon-kagakukaishi (J Chem Soc Jpn) 

1992; 1083-90. 

[54] Klafter J, Bulumen A. Models for dynamically controlled relaxation. Chem Phys 

Lett 1985; 119: 377-82. 

[55] Matsuda A, Baba A. In: Izumi N, Ogawa K, Katou S, Shiokawa J, Shiba T, editors. 

Kiki bunnseki no tebiki (Jpn A Handbook of Instrumental Analysis), 2nd ed. Tokyo: 

Kagakudojin; 1996. 

[56] Ishizone T, Nakao A, Nakahawa S. Living anionic polymerization of styrenes 

substituted with electron-withdrawing groups. Koubunnshi Ronbunnshu (Jpn J 

Polym Sci Techn) 1997; 12: 829-42. 

[57] Yamaguchi K, Hirano A, Suzuki K, Takenaka K, Nakahama S, Yamazaki N. 

Anionic living polymerization of p-N, N-bis(trimethylsilyl)-aminostyrene. Synthesis 

of linear poly(p-aminostyrene) with a narrow molecular weight distribution. J Polym 



-59- 

Sci, Polym Lett Ed 1983; 21: 395-401. 

[58] Ito H. Preparation of lithographic resist polymers by anionic polymerization. In: 

Quirk RP, editor. Application of anionic polymerization research. ACS symposium 

series 696, Washington, DC: ACS; 1996. p. 218-34. 

[59] Se K, Ohtomo R. Grafting of oligopeptide on poly(aminostyrene)s and 

characterization of the Polymers. J Appl Polym Sci 2000; 77: 1558-67. 

[60] Hoffman AS. A commentary on the advantages and limitations of synthetic 

polymer-biomolecular conjugates. In: Okano T, editor. Biorelated polymers and gels. 

Boston: Academic press; 1998. p. 231-48.   

[61] Tsuruta T. Contemporary topics in polymeric materials for biomedical applications. 

Adv. Polym. Sci 126, Berlin: Springer; 1996. p. 1-51. 

[62] Peptide Institute Inc: address; 4-1-2 Ina, Minoh-Shi, Osaka 562-8686, Japan. 

http://www.peptide.co.jp/ 

[63] Suoda KK, Gong H, Trinkaus-Randall V. Collagen expression and orientation in 

ocular tissues. Progr Polym Sci 1998; 23: 329-74. 

[64] Bodanszky M, Bodanszky A. The practice of peptide synthesis. New York: Springer; 

1984. 

[65] Klee D, Hocker H. Polymers for biomedical applications: Improvement of the 

interface compatibility. Adv. Polym. Sci 149, Berlin: Springer; 2000. p. 1-57. 

[66] Jin HL, Hai BL, Andrade JD. Blood compatibility of polyethylene oxide surfaces. 

Progr Polym Sci 1995; 20: 1043-79. 

[67] Akashi M, Furuzone T, Kishida A, Maruyama I. A novel biomaterials: 

Aramid-silicone resin. In: Takemoto K, Ottenbrite RM, Kamachi M, editors. 

Functional monomers and polymers, 2nd ed. New York: Marcel Dekker; 1997. p. 



-60- 

267-308. 

[68] Beugeling T, Does LVD, Rejda BV, Bantjes A. Antithrombogenic polymers 

synthesized from polyisoprenes. In: Williams D, editor. Biocompatibility of implant 

materials. London: Sector Publishing Ltd; 1976. p. 187-92. 

[69] Miyake H, Miyaki Y, Se K, Fujimoto T. Non-thrombogenic behaviors of 

charge-mosaic membranes prepared from pentablock copolymers. Jinnkoh Zouki 

(Jpn J Artificial Organ) 1984; 13: 1243-49. 

[70] Miyaki Y, Nagamatsu H, Iwata M, Ohkoshi K, Se K, Fujimoto T. Artificial 

Membrane from multiblock copolymers. III. Preparation and characterization of 

charge-mosaic membranes. Macromolecules 1984; 17: 2231-36. 

[71] Nakajima A, Hayashi H, Satou H. Molecular design, structure and physical 

properties of nonthrombogenic polymeric materials. In: Asahara T, editor. Iyou 

Koubunnshi Zairyou (Jpn Medical Polymers). Tokyo: Gakujyutsu Publ Center; 1981. 

p. 123-30. 

[72] Kataoka K, Ito H, Amano H, Nagasaki Y, Kato M, Tsuruta T, Suzuki K, Okano T, 

Sakurai Y. Minimized platelet interaction with 

poly(2-hydroxyethylmethacrylate-block-4-bis(trimethylsilyl)methylstyrene) 

hydrogel showing anomalously high free water content. J Biomater Sci, Polym Ed 

1998; 9: 112-29.  

[73] Hasegawa H, Tanaka H, Yamasaki Y, Hashimoto T. Bicontinuous microdomain 

morphology of block copolymers. 1. Tetrapod-network structure of 

polystyrene-polyisoprene diblock polymers. Macromolecules 1987; 20: 1651-62. 

[74] Mogi Y, Nomura M, Kotsuji H, Onishi K. Matsushita Y, Noda I. Superlattice 

structures in morphologies of the ABC triblock copolymers. Macromolecules 1994; 



-61- 

27: 6755-60. 

[75] Roovers J. Relaxation by constraint release in combs and star-combs. 

Macromolecules 1987; 20: 2300-06. 

[76] Ito K. Polymeric design by macromonomer technique. Progr Polym Sci 1998; 23: 

581-620. 

[77] Rempp P, Franta E. Makromol Chem, Macromol Symp 91; 1995: 51-63.  

[78] Se K, Matsumura K, Kazama T, Fujimoto T. Preparation and characterization of 

poly(4-vinylphenyldimethylvinylsilane) via anionic living polymerization. Polymer J 

1997; 29: 434-41. 

[79] Se K, Matsumura K, Kazama T, Fujimoto T. Lithographic characterization of  

poly(4-vinylphenyldimethylvinylsilane) having a narrow molecular weight 

distribution. Polymer J 1997; 29: 387-90. 

[80] Se K, Yamazaki H, Shibamoto T, Takano A, Fujimoto T. Model block-graft 

copolymers via anionic living polymerization: preparation and characterization  of 

[poly(4-vinylphenyldimethylvinylsilane)-graft-polyisoprene)]-block-polystyrene. 

Macromolecules 1997; 30: 1570-76. 

[81] Hasegawa E. Recent research developments of super-high resolution resists. In: 

Yoshida T, editor. Catch-ball between polymer science and physics. Polymer 

frontier series 3, Tokyo: The Soc Polym Sci Jpn; 2002. p. 51-81. 

[82] Thompson LF, Willson CG, Tagawa S. Polymers for microelectronics. ACS 

symposium series 537, Washington, DC: ACS; 1994. 

[83] Itaya K, Shibayama K, Fujimoto T. High resolution electron beam negative resist 

with very narrow molecular weight distributions. J Electrochem Soc 1982; 129: 

663-5. 



-62- 

[84] Endo M, Tani Y, Sasago M, Nomura N. Azide-styrene resin negative deep UV resist 

for KrF excimer laser lithography. J Electrochem Soc 1989; 136: 2615-18. 

[85] Cai SX, Wybourne MN, Keana FW. Superiority of bis(perfluorophenyl) azides over 

nonfluorinated analogues as cross-linkers in polystyrene-based deep-UV resists. In: 

Thompson LF, Willson CG, Tagawa S, editors. Polymers for microelectronics. ACS 

symposium series 537, Washington, DC: ACS; 1994 , p. 348-55. 

[86] Iwasa S, Maeda K, Hasegawa E. Chemically amplified negative resists based on 

alicyclic acrylate polymers for 193-nm lithography. J Photopolym Sci Tech 1999; 

12: 487-92. 

[87] Sharma VK, Affrossman S, Pethrick RA. Poly(α-methylstyrene) and 

α-methylstyrene-maleic anhydride copolymer: An electron beam lithographic study. 

Polymer 1984; 25: 1087-89. 

[88] Shimada H, Onodera M, Shimomura S, Hirose K, Ohmi T. Residual-surfactan-free 

photoresist development process. J Electrochem Soc 1992; 139: 1721-30. 

[89] Kihara N, Ushirogouchi T, Tada T, Naito T, Saito A, Nakase M. Chemically 

amplified resist using self-solubility acceleration effect. J Electrochem Soc 1994; 

141: 3162-66. 

[90] Berry GC, Orofino TA. Branched polymers. III. Dimensions of chain with small 

excluded volume. J Chem Phys 1964; 40: 1614-21. 

[91] Roovers J. Dilute solution properties of regular star polymers. In: Mishra M, 

Kobayashi S, editors. Star and hyperbranched polymers. Plastic engineering series 

53, New York: Marcel Dekker; 1999. p. 285-341. 

[92] Se K. Molecular characterization of star block copolymers. Kobunshi Kakou (Jpn J 

Polym Process) 1998; 47: 207-14. 



-63- 

[93] Se K., Sakakibara T., Ogawa E. Molecular weight determination of star polymers 

and star block copolymers using GPC equipped with low-angle laser light-scattering. 

Polymer 2002; 43:5447-53. 

[94] Teramachi S, Sato S, Shimura H, Watanabe S, Tsukahara Y. Chemical composition 

distribution of poly(methyl methacrylate)-graft-polystyrene prepared by a 

macromonomer technique. Effect of graft length. Macromolecules 1995: 28; 

6183-87. 

[95] Roovers JE, Bywater S. Preparation of characterization of four-branched star 

polystyrene. Macromolecules 1972; 5: 384-8.  

[96] Takano A, Okada M, Nose T, Fujimoto T. Synthesis and characterization of 

star-shaped polymer with one labeled arm. Macromolecules 1992; 25: 3596-8. 

[97] Arai K, Kotaka T, Kitano Y, Yoshimura K. 

Poly(styrene-b-butadiene-b-4-vinylpyridine) three-block polymers: Synthesis, 

characterization, morphology, and mechanical properties. Macromolecules 1980; 13: 

1670-8. 

[98] Matsushita Y, Yamada K, Hattori T, Fujimoto T, Sawada Y, Nagasawa M, Matsui C. 

Morphologies of ABC-type triblock copolymers with different composition. 

Macromolecules 1983; 16: 10-3. 

[99] Sato H, Ono A, Tanaka Y. Distribution of isomeric structures in polyisoprenes. 

Polymer 1977; 18: 580-6. 

[100] Se K, Takayanagi O, Adachi K. Dielectric study of miscibility in weakly segregated 

polymer blends. Macromolecules 1997; 30: 4877-81. 

[101] Se K, Yamamoto Y. Dielectric study of miscibility in 

cis-polyisoprene/vinyl-polyisoprene polymer blends: Molecular weight dependence. 



-64- 

Rept Prog Polym Phys Jpn 1999; 41: 498-501. 

[102] Se K, Shirasaki Y. Dielectric study of miscibility in 

cis-polyisoprene/vinyl-polyisoprene polymer blends. Rept Prog Polym Phys Jpn 

1998; 40: 483-6. 

[103] Hirai T, Fujimura N, Urakawa K, Adachi K, Donkai M, Se K. Dielectric relaxation 

of poly(n-hexylisocyanate) in concentrated solutions of polybutadiene. Polymer 

2002; 43: 1133-8. 

[104] Helfand E, Wassermann ZR. Block copolymer theory. B. Cylindrical domains. 

Macromolecules 1980; 13: 994-998. 

[105] Se K, Uesaka T. Determination of the χ parameter and the spinodal curve for 

polystyrene/polyisoprene pair using thermal jump. Rept Prog Polym Phys Jpn 1996; 

39: 421-4. 

[106] Hashimoto T, Fujimura M, Kawai H. Domain-boundary structure of 

styrene-isoprene block copolymer films cast from solutions. 5. Molecular-weight 

dependence of spherical microdomains. Macromolecules 1980; 13: 1660-9.  

[107] Okumoto M, Terao K, Nakamura Y, Norisue T, Teramoto A. Excluded-volume 

effects in star polymer solutions: Four-arm star polystyrene in cyclohexane near the 

Θ temperature. Macromolecules 1997; 30: 7493-9. 

[108] Matsushita Y, Nomura M, Watanabe J, Noda I, Imai M. Alternating lamellar 

structure of triblock copolymers of ABC type. Macromolecules 1995; 28: 6007-13. 

[109] Yang L, Hong S, Gido SP, Velis G, Hadjichristidis N. I5S Miktoarm star block 

copolymers: Packing constraints on morphology and discontinuous chevron tilt grain 

boundaries. Macromolecules 2001; 34: 9069-73. 

[110] Beyer FL, Gido SP, Uhrig D, Mays JW, Tan NB, Trevino S. Morphological 



-65- 

behavior of A2B2 star block copolymers. J Polym Sci, Part B: Polym Phys 1999; 37: 

3392-400. 

[111] Gido SP, Pochan D, Pispas S, Mays JW. Synthesis, characterization, and 

morphology of model graft copolymers with trifunctional branch points. 

Macromolecules 1996; 29: 7022-8. 

[112] Xenidou M, Beyer FL, Hadjichristidis N, Gido SP, Tan NB. Morphology of model 

graft copolymers with randomly placed trifunctional and tetrafunctional branch 

points. Macromolecules 1998; 31: 7659-67. 

[113] Beyer FL, Gido SP, Buschl C, Iatrou H, Uhrig D, Mays JW, Chang MY, Garetz BA, 

Balsara NP, Tan NB, Hadjichristidis N. Graft copolymers with regularly spaced, 

tetrafunctional branch points: Morphology and grain structure. Macromolecules 

2000; 33: 2039-48. 

[114] Milner ST. Chain architecture and asymmetry in copolymer microphases. 

Macromolecules 1994; 27: 2333-5. 

[115] Olmsted PD, Milner ST. Strong-segregation theory of bicontinuous phases in block 

copolymers. Phys Rev Lett 1994; 72: 936-9. 

[116] Olmsted PD, Milner ST. Strong segregation theory of bicontinuous phases in block 

copolymers. Macromolecules 1998; 31: 4011-22. 

[117] Se K, Miyawaki K, Hirahara K, Takano A, Fujimoto T. Model block-graft 

copolymers via anionic living polymerization: preparation and characterization of 

polystyrene-block-[poly(p-hydroxystyrene)-graft-Poly(ethylene 

oxide)]-block-Polystyrene. J Polym Sci, Part A: Polym Chem 1998; 36: 3021-34.  

[118] Firestone MA, Park J, Minami N, Ratner MA, Marks T. 

Chromophore-functionalized glassy polymers with large second-order nonlinear 



-66- 

optical responses: Synthesis, characterization, and architecture-processing response 

characteristics of poly(p-hydroxystyrene) functionalized with chiral chromorphoric 

side chains. Macromolecules 1995; 28: 2247-59. 

[119] Conlon DA, Crivell JV, Lee JL, O’Brien MJ. Synthesis, characterization, and 

deblocking of poly(4-tert-butoxystyrene) and poly(4-tert-butoxy-α-methylstyrene). 

Macromolecules 1989; 22: 509-16. 

[120] Se K, Suzuki M. Initiation efficiency of anionic living polymerization of 

macromonomers. Kobunshi Ronbunshuu (Jpn J Polym Sci Technol) 2000; 57: 

851-4. 

[121] Se K, Adachi K, Kotaka T. Dielectric relaxation in poly(ethylene oxide): 

Dependence on molecular weight. Polym J 1981; 13: 1009-17. 

[122] Se K, Adachi K, Kotaka T. Dielectric behavior of Poly(ethylene 

oxide)-polystyrene-poly(ethylene oxide) bock copolymers. Rept Prog Polym Phys 

Jpn 1979; 22: 393-6.  

[123] Se K, Kotaka T. Thermal-depolarization-current study of poly(ethylene oxide) 

polystyrene-poly(ethylene oxide) block copolymers. Rept Prog Polym Phys Jpn 

1979; 22: 397-8. 

[124] Hong S, Yang L, MacKnight J, Gido SP. Morphology of a crystalline/amorphous 

diblock copolymer: Poly((ethylene oxide)-b-butadiene). Macromolecules 2001; 34: 

7009-16. 

[125] Shibayama M, Hasegawa H, Hashimoto T, Kawai H. Microdomain structure of an 

ABC-type triblock polymers of 

polystyrene-poly[(4-vinylbenzyl)dimethylamine]-polyisoprene cast from solutions. 

Macromolecules 1982; 15: 274-80. 



-67- 

[126] Mark DG, Frank SB. Conformational asymmetry in poly(vinylcyclohexane) 

containing diblock copolymers. Macromolecules 1994, 27; 3611-18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Captions 

 

Fig. 1. Molecular structures of four useful monomers: tertiary aminostyrenes (tAS), 

N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine (IBA), 

(4-vinylphenyl)dimethylvinylsilane (VS), and p-butoxystyrene (BSt). 
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Fig. 2. Molecular structures of poly(aminostyrene)s which have amino groups classified as 

primary, secondary and tertiary groups (R is an alkyl group).  Each of these three 

amino groups is also classified as phenylamine, benzylamine and phenethylamine. 

 

Fig. 3. GPC chromatograms of PDPA prepared by (a) a n-BuLi/THF system (Mn = 8.4 x 

104), (b) a Cumyl K/THF system (Mn = 26 x 104), and (c) a Cumyl Cs/THF system 

(Mn = 6.5 x 104).  The carrier solvent is THF, the flow rate is 1.0 ml min-1, the 

polymer concentration is 0.05 w/v%, and the RI detector is employed. 

 

Fig. 4. Plots of – ln(1 – x) versus [LE]t for PDPA, prepared by using a Cumyl K/THF 

system and a Cumyl Cs/THF system in the lower polymer conversion side. 

 

Fig. 5. A neutralization curve of QPDBA treated with an anion-exchange resin.  A point 

of neutralization is pH = 7.4, which is indicated as an arrow in the figure.  

 

Fig. 6. Reaction time dependence of the degree of quaternization (DQ) of PDPA, PDBA, 

and PDPTA at 60°C.  The inserted figure describes reaction time dependence of 

DQ of PDPA at 100°C. 

 

Fig. 7. Temperature dependence of the degree of quaternization of PDPA, PDBA, and 

PDPTA for 6 h. 

 

Fig. 8. Arrhenius' plots of apparent reaction rate constants, ka, for quaternization of PDPA, 

PDBA, and PDPTA. 
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Fig. 9. A structural formula of the crosslinked film for poly(tertiary aminostyrene)s (PtAS) 

with p, p'-bis(chloromethyl)azobenzene (CAB). 

 

Fig. 10. A plot of an apparent effective network concentration (ν'e) versus Qr
–5/3 for 

PDBA(CAB)Y films in THF at 25°C.  An effective network concentration (νe) 

calculated by Small's method (µ = 0.34) (– – –) or by Hoy's method (µ = 0.32) (- - - 

- -) is also described. 

 

Fig. 11. Changes in the absorption spectra of CAB with UV (300–380 nm) irradiation time 

in methanol: (a) t = 0; (b) t = 45; (c) t = 60; (d) t = 90; (e) t = 150; (f) t = 600 s. 

 

Fig. 12. Changes in the absorption spectra of CAB with UV (300–380 nm) irradiation time 

for a PDBA(CAB)15 film: (a) t = 0; (b) t = 2; (c) t = 6; (d) t = 30 min. 

 

Fig. 13. Photochemical isomerization from trans to cis form of CAB at a fixed temperature 

in the following films: (PDPTA-b-PSt)(CAB)2.5 at 60°C ( ○ ), PDPTA(CAB)1.3 at 

20°C ( ○ ), PDPTA(CAB)1.3 at 60°C (- - - -) and PSt(CAB)1.5 at 20°C ( ● ).  

Absorbance (At) was detected at 320 nm after irradiation with an ultraviolet light 

(300 nm < λ1 < 380 nm) for time, t, which is plotted as an axis of the abscissa on 

the figure.  The At/A0 value represents a fraction of a trans form, which was not 

converted to a cis form of CAB. 
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Fig. 14. Typical plots of – ln[(Ct – Ce)/(C0 – Ce)] versus t for the photochemical 

isomerization from trans to cis form of CAB in the following films: PSt(CAB)1.5 at 

20°C ( ○ ), (PDPTA-b-PSt)(CAB)2.86 at 50°C ( ○ ) and 70°C ( ○ ), and 

(PDPTA-b-St)(CAB)2.74 at 80°C ( ○ ). 

 

Fig. 15. A relationship between the parameter α and temperature, at which the 

photochemical isomerization from trans to cis form of CAB proceeded in the 

(PDPTA-b-PSt)(CAB)Y films.   

 

Fig. 16. Temperature dependence of the half-life period, τ1/2 ( ○ ), and a three fourths-life 

period, τ3/4 ( ● ), for the photochemical isomerization from trans to cis form of 

CAB proceeded in the (PDPTA-b-PSt)(CAB)Y films.. 

 

Fig. 17. Photochemical isomerization from trans to cis form of CAB and from cis to trans 

form of CAB in a (PDPTA-b-PSt)(CAB)1.5 film.  The film was first irradiated with 

a UV light at 60°C ( ○ ) or 20°C ( ● ) for 2 h.  Next, each film was irradiated 

with a visible light at 20°C.  The result of a reverse thermal isomerization is also 

described by storing the film in darkness at 20°C for 180 h ( ○ ).  The film after 

irradiation with a UV light at 60°C for 2 h was finally irradiated with a visible light 

at 90°C(- -○- -). 

 

Fig. 18. GPC chromatograms of PISBA prepared from ISBA (a) once, (b) twice, and (c) 

three times dried over BuMgBr in THF.  The experimental conditions are as 
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follows: the carrier solvent of THF containing N-methylpyrrolidine (2 v/v%), the 

flow rate of 1.0 ml min-1, the RI detector, and the polymer concentration of 0.05 

w/v%. 

 

Fig. 19. GPC chromatograms of (a) PISBA-b-PSt and (b) PSt-b-PISBA.  The sequence of 

the addition of the two monomers was inverted in block copolymerization. 

 

Fig. 20. 1H-NMR spectra of PISBA (top) and the resultant PIBA (bottom) after the removal 

of a trimethylsilyl group.  A sharp NMR signal of PISBA at 0 ppm was due to the 

trimethylsilyl group and was completely disappeared in PIBA, whereas a sharp 

NMR signal of PIBA at 1.0 ppm was newly observed and was assigned to the 

amino group. 

 

Fig. 21. GPC chromatograms of (a) PISBA (____), Mn = 1.7 x 105, and the resultant 

poly(N-isopropyl-4-vinylbenzylamine) (PIBA) (– – –), Mn = 1.2 x 105 after removal 

of the trimethylsilyl group.   

 

Fig. 22. A 13C-NMR spectrum of PPA-g-(Gly-Boc) prepared with [Boc-Gly] / [PA] = 1 at 

0°C for 2 h.  Signals are assigned in the figure. 

 

 

Fig. 23. Reaction time dependence of the degree of grafting for PPA-g-(Gly-Boc) with 

[Boc-Gly] / [PA] = 1 at 0°C ( ○ ) and 45°C ( ● ). 
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Fig. 24. Plots of the degree of grafting versus molar ratios of (a) Boc-Gly, (b) Z-Gly-Pro, 

and (c) Z-Gly-Pro-Leu-Gly-Pro, to the monomer unit for PPA fed in the reaction 

mixtures at 0°C for 2 h. 

 

Fig. 25. Lee-White relative clotting times (L-WRCT) of polystyrene, PPA, 

PPA-g-(Gly-Boc), and PPA-g-(Pro-Gly-Leu-Pro-Gly-Z) having 100% of DOG.  

The L-WRCT values were determined from a Lee-White method using human 

whole blood. 

 

Fig. 26. Two schematic structures of the model block-graft copolymers, where A, B, and C 

are a backbone chain without grafting sites, a backbone chain with grafting sites, 

and graft chains, respectively. 

 

Fig. 27. GPC chromatograms of PVS prepared using n-BuLi, Cumyl K, and Cumyl Cs as 

initiators, THF as a solvent, and a polymerization time of 3 h. 

 

Fig. 28. GPC chromatograms of PVS prepared using THF, Me-THF, and 1, 3-DX as 

solvents, Cumyl Cs as an initiator, and polymerization times as described in the 

figure. 

 

Fig. 29. GPC chromatograms of PVS prepared at a polymerization time between 0.5 h and 2 

h, using Cumyl Cs as an initiator, and a mixture of Ether/1, 3-DX = 1/2 (a left 

figure) or Ether/1, 3-DX = 1/1 (a right figure) as a solvent. 
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Fig. 30. Scanning electron micrographs of image lines from resists of PVS-4 exposed to a 

deep UV light of 270 nm.  The developer is a mixture of xylene/methanol = 8/1.  

A number such as 2.0 µm appearing in this figure represents 2.0 µm lines, and all 

spaces between the lines are 0.75 µm.  Intensities of a deep UV light are (a) 135 

mJ/cm2 (185 seconds), (b) 145 mJ/cm2 (199 s), (c) 166 mJ/cm2 (227 s), and 186 

mJ/cm2 (255 s). 

 

Fig. 31. A scanning electron micrograph of image lines from a resist of PVS-4 exposed to 

an electron beam.  A developer is a mixture of xylene/methanol = 8/1.  A number 

such as 1.0 µm appearing in this figure represents 1.0 µm lines, and all spaces 

between the lines are 1.0 µm. 

 

Fig. 32. Exposure response curves of PVS-1 and PVS-4 exposed to electron beams.  

Developers in the figure are n-heptane (C7H16)/isopropyl acetate (IPA) = 1/1, ethyl 

acetate/isopropyl acetate (IPA) = 1/1, xylene/methanol (MeOH) = 8/1, 

tetrahydrofuran (THF)/methanol (MeOH) = 35/65, and methyl ethyl ketone (MEK). 

 

Fig. 33. GPC chromatograms of (PVS-g-PIs)-b-PSt block-graft copolymers of (a) SGI-1, (b) 

SGI-2, and (c) SGI-3 samples, prepared via a backbone coupling (a “grafting onto” 

process). 

 

Fig. 34. Transmission electron micrographs of (PVS-g-PIs)-b-PSt block-graft copolymer 

films of (a) SGI-1, (b) SGI-2, and (c) SGI-3, which were cast from the respective 
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benzene solutions and were subsequently stained with OsO4.  White and black 

regions correspond to PSt/PVS and PIs phases, respectively. 

 

Fig. 35. Theoretical phase diagram of (A)m(PSt)n calculated by Milner, where the 

bicontinuous phases are omitted due to being complicated.  The A polymer is PIs 

for three SGI films or PEO for two SGE films.  Symbols represent the MS 

structures of SphPSt (spheres of PSt), CylPSt (cylinders of PSt), Lam (lamella), ClyA 

(cylinders of A polymer), and SphA (spheres of A polymer).  Boldly outlined 

symbols indicate samples characterized in this study.  

 

Fig. 36. GPC chromatograms of (a) PSt-b-PBSt block copolymer ( ___ ) and the resultant 

PSt-b-PHSt block copolymer ( - - - ) after removal of the tert-butyl group, and (b) 

PBSt-b-PBu block copolymer ( ___ ) and the resultant PHSt-b-PBu block 

copolymer ( - - - ). 

 

Fig. 37. GPC chromatograms of PSt-b-PBSt-b-PSt block copolymer ( ___ ) and the 

corresponding PSt-b-PHSt-b-PSt block copolymer ( - - - ) as a backbone chain 

deprotected by HBr. 

 

Fig. 38. Sedimentation patterns of two PSt-b-(PHSt-g-PEO)-b-PSt block-graft copolymers 

of (a) SGE-1 and (b) SGI-2: a concentration of 0.25 g dl-1 and a time of 21 min for 

SGE-1, and a concentration of 0.20 g dl-1 and a time of 18 min for SGE-2, THF 

solvent, a temperature of 25°C, a speed of rotation of 59,780 rpm, and an angle of 

70 degrees. 
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Fig. 39. Transmission electron micrographs of PSt-b-(PHSt-g-PEO)-b-PSt block-graft 

copolymer films of (a) SGE-1 and (b) SGE-2, which were cast from the respective 

benzene solutions and were subsequently stained with OsO4 and RuO4, respectively.  

White and black regions correspond to PSt/PHSt and PEO phases, respectively. 
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Table 1 

Preparation of poly(N, N-dimethyl-4-vinylphenylamine), PDPA 

 

 Monomer Initiator  Solvent  Time Conv    

 mol l–1 Name m mol l–1 Name ml h % 10–4Mk
a 10–4Mn

b Mw/Mn
b 

 

 0.25 s-BuLi 0.516 Benzene 220 15 80 5.6 2.8 1.32 

 0.22 n-BuLi 0.424 THF 210 24 100 7.6 8.4 1.22 

 0.22 Cumyl Cs 0.440 THF 170 24 40 3.0 3.6 1.09 

 0.34 Cumyl Cs 0.610 THF 120 48 75 6.0 6.5 1.06 

 0.32 Cumyl Cs 0.815 THF 110 48 85 4.9 5.8 1.08 

 0.25 Cumyl K 0.144 THF 220 24 100 25.2 26.0 1.04 

 
a  Calculated from the amounts of monomer and initiator. 
b  Determined from GPC measurement. 
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Table 2 

Preparation of poly(N, N-dimethyl-4-vinylbenzylamine), PDBA and poly(N, N-dimethyl-4-vinylphenethylamine), PDPTA. 

 

 Monomer Initiator Solvent Time Conv    

 Name mol l–1 Name m mol l–1 Name ml h % 10–4Mk
a 10–4Mn

b Mw/Mn
b 

 

 DBA 0.22 n-BuLi 0.634 THF 120 24 100 5.4 4.1 1.38 

 DBA 0.20 Cumyl K 0.922 THF 200 24 100 3.4 3.5 1.09 

 DBA 0.27 Cumyl Cs 0.421 THF 200 3 100 10.4 11.1 1.05 

 DPTA 0.16 n-BuLi 0.622 THF 120 24 100 4.5 4.1 1.22 

 DPTA 0.17 Cumyl K 0.857 THF 200 24 100 3.5 3.0 1.08 

 DPTA 0.21 Cumyl Cs 0.514 THF 160 5 100 7.1 7.7 1.04 

 
a  Calculated from the amounts of monomer and initiator. 
b  Determined from GPC measurement. 
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Table 3 

Apparent rate constants of the anionic living polymerization for PDPA 

 

 102kap
Cs kap

Cs/kap
PSt-Na a 102kap

K kap
K/kap

PSt-Na a kap
K/kap

Cs 

 l mol-1 s-1  l mol-1 s-1 

 

 1.5 1.7 x 10-5 16 18 x 10-5 10.1 

 
a  kap

PSt-Na is an apparent rate constant of polymerization for polystyrene using a K ion in THF at 

25°C: kap
PSt-Na is about 900 l mol–1 s–1. 
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Table 4 

Kinetic characteristics of quaternization of three poly(tertiary aminostyrene)s, PtAS 

with n-butyl bromide 

 

  Polymer 10–3
ΔE* /J mol-1 A* / l mol–1 min–1 

 

  PDPA 25 3.4 x 103 

  PDBA 50 4.2 x 107 

  PDPTA 50 1.30 x 108 
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Table 5 

The degree of swelling in equilibrium with THF at 25°C for PDBA(CAB)Y films 

 

   Yb  105ν'ec 105νe
d / mol cm–3 

 Polymer 10–4Mn
a % Qr mol cm–3 Small Hoy 

 

 PDBA 3.5 0.6 16.0 0.6 1.9 2.1 

 PDBA 3.5 1.0 11.0 3.6 3.7 4.1 

 PDBA 3.5 1.5 7.5 6.6 6.9 7.8 

 PDBA 3.5 1.7 6.0 7.8 10.0 11.0 

 PDBA 11.0 2.2 4.4 13.0 17.0 19.0 

 PDBA 11.0 4.0 3.1 24.0 30.0 33.0 

 
a  Determined from GPC measurement. 
b  The ratio of chloromethyl groups of CAB to tertiary amino groups in the polymer. 
c  An apparent effective network concentration calculated from the amount of polymer and CAB in the films. 
d  An effective network concentration calculated from the polymer-solvent interaction parameter (µ) estimated by 

Small's method (µ = 0.34) and Hoy's method (µ = 0.32), respectively. 
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Table 6 

Experimental conditionsa and results for the preparation of poly(N, N-dimethyl-4-vinylphenethylamine)-block-polystyrene, 

PDPTA-b-PSt diblock copolymer 

 

 First monomer Second monomer Solv  

 DPTA Time St  Time THF Initib Conv PSt cont 10–4Mn  Mw/Mn
d 

 g h g h ml m mol % % Calcc Obsd  

 

 3.4 10 3.9 3.5 160 0.158 100 53 4.6 3.9 1.07 

 
a  Polymerization was carried out at –78°C under a pressure of 10–6 mmHg. 
b  Cumyl K. 
c  Calculated from the amounts of monomer and initiator. 
d  Determined from GPC measurement. 
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Table 7 

Effects of purging reagents on anionic polymerization of N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine, ISBA 

 

   Initiator     

 Purging Monomer n-BuLi Conv 10 –4M 
k

a 10 –4M 
n  Mw/Mn

b
 f d 

 reagent m mol m mol %  GPCb OSMc   

 

 C8BP-Nae 14 0.10 0 3.5 

 BuMgBrf 6.0 0.11 0 1.3 

 BuMgBr/THF/onceg 11 0.22 Trace 1.2 4.0  

 BuMgBr/THF/twiceg 6.2 0.18 17 0.85 3.8  

 BuMgBr/THF/thriceg 17 0.066 100 6.4 6.0  7.1 1.05 0.90 

 BuMgBr/THF/thriceg  21 0.035 100 15 16 17 1.03 0.89 
 

a  Calculated from the amounts of monomer and initiator. 
 b  Determined from the GPC measurement. 
 c  Determined from membrane osmometry. 

d  Initiation efficiency of the initiator. 

e  Octylbenzophenone sodium. 
 f  sec-Butylmagnesium bromide. 

g  A THF solution of ISBA was dried over BuMgBr once, twice, or thrice. 
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 Table 8 

 Preparation of two block copolymers containing poly(N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine), PISBA and PSt blocks using n-BuLi as 

an initiator in THF at –78°C 

 

 First monomer  Second monomer Initiator Solvent  PISBA    

   Time   Time n-BuLi THF Conv Conta 

 Name m mol h Name m mol h m mol ml % %  10–4Mk
b 10–4Mn

c Mw/Mn
c 

 

 ISBA 10 20 St 30 4 0.15 140 100 44 3.7 4.0 1.05 

 St 29 4 ISBA 11 20 0.16 145 100 47 3.6 3.7 1.25 

 

 a  Determined from a 1H-NMR spectrum. 

 b  Calculated from the amounts of monomer and initiator. 

 c  Determined from GPC measurement. 
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 Table 9 

 Aminostyrene derivatives discussed in this chapter 

  

 Monomer Polymer Ra β-carbonb / ppm 

 
 DPAc PDPA —N—CH3 108 

       —CH3 

 DBAd PDBA —CH2—N—CH3 110 

             —CH3 

 ISBAe PISBA —CH2—N—CH(CH3)2 110 

             —Si(CH3)3 

 SPAf PSPA —N—Si(CH3)3 110 

       —Si(CH3)3 

 St PSt —H 112 
 
 a  A p-substituent group of the styrene derivatives. 
 b  A carbon of CH2 in CH2 = CH–Phenyl–R, where R is a p-substituent group. 
 c  N, N-dimethyl-4-vinylphenylamine. 
 d  N, N-dimethyl-4-vinylbenzylamine. 
 e  N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine. 
 f  N, N-bis(trimethylsilyl)phenylamine. 
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 Table 10 

Anionic polymerization of N, N-bis(trimethylsilyl)phenylamine, SPA and ISBA by n-BuLi in THF at –78°C 

 

    Polym  Polymer with a protecting group Polymer without a protecting group 

 Monomer Initi Solv time Conv 10–4Mn 10–4Mn 

 Name m mol m mol ml h % Name Calcb Obsc Mw/Mn
c Name Obsc Mw/Mn

c 

 

 SPAa 16 0.18 40 1 100 PSPA 2.3 2.4 1.04 PPA 1.1 1.05 

 ISBAa 17 0.066 57 24 100 PISBA 6.4 6.0 1.05 PIBA 4.9 1.05 

 
a  SPA and ISBA were polymerized to yield PSPA and PISBA, respectively.  Two trimethylsilyl groups of PSPA and a trimethylsilyl 

group of PISBA were deprotected to produce PPA and PIBA, respectively. 
b  Calculated from the amounts of monomer and initiator. 
c  Determined from GPC measurement. 
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Table 11 

Contact angles of the films for a drop of water 

  

 Sample Contact angle 

  

 PSta 91 

 PPA 83 

 PPA-g-(Gly-Boc) 78 

 PPA-g-(Pro-Gly-Leu-Pro-Gly-Z) 73b 

  
  a  PSt was measured as a reference. 
  b  After 10 minutes, the contact angle attained a constant value of 36 degrees. 
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Table 12 

Anionic polymerization of (4-vinylphenyl)dimethylvinylsilane, VS with various initiators  

 

     Polym   

  Initiator  Monomer time  Conv 

 Solvent Name m mol l–1 mol l–1 h 10–4Mk
a % 

 

 THF n-BuLi 1.63 0.435 3.0 3.01 60 

 THF Cumyl K 1.96 0.315 3.0 3.02 100 

 THF Cumyl Cs 2.04 0.435 3.0 4.01 100 

 

 a  Calculated from the amounts of monomer and initiator. 
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Table 13 

Anionic polymerization of VS in various solvents 

 

     Polym    

  Initiator  Monomer time   Conv  

 Solvent Name m mol l–1 mol l–1 h 10–4Mk
a 10–4Mn

b % Mw/Mn
c 

 

 Etherd Cumyl K 5.05 0.231 2.0 0.860  Trace 

 Me-THFe Cumyl Cs 1.85 0.420 2.0 4.27 4.39 30 1.07 

 THF Cumyl Cs 0.862 0.210 1.0 4.58  90 

 1, 3-DXf Cumyl Cs 1.18 0.253 0.5 4.03  100 

 Ether/1, 3-DX= 1 / 2g Cumyl Cs 0.516 0.110 0.5 4.01  100 1.04 

 

 a  Calculated from the amounts of monomer and initiator. 
 b  Determined by membrane osmometry. 
 c  Determined from GPC measurement. 

d  Diethyl ether. 
e  2-methyltetrahydrofurane. 
f  4, 4-dimethyl-1, 3-dioxane. 
g  A 1:2 mixture of Ether/1, 3-DX (a volume fraction). 
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Table 14 

Anionic polymerization of VS in a mixture of Ether/1, 3-DX for various polymerization times 

 

     Polym   

  Initiator  Monomer time  Conv  

  Solvent Name m mol l–1 mol l–1 h 10–4Mk
a % Mw/Mn

b 

 

 Ether/1, 3-DX = 1 / 2c Cumyl Cs 0.232 0.129 0.5 10.5 100 1.03 

 Ether/1, 3-DX = 1 / 2c Cumyl Cs 0.535 0.110 1.0 3.87 100 1.07 

 Ether/1, 3-DX = 1 / 2c Cumyl Cs 0.559 0.108 2.0 3.63 100 1.11 

 Ether/1, 3-DX = 1 / 1d Cumyl Cs 0.292 0.098 0.5  6.31 100 1.04 

 Ether/1, 3-DX = 1 / 1d Cumyl Cs 0.726 0.114 1.0 2.95 100 1.05 

 Ether/1, 3-DX = 1 / 1d Cumyl Cs 0.676 0.128 2.0 3.56 100 1.09 

 

 a  Calculated from the amounts of monomer and initiator. 

 b  Determined from GPC measurement. 
c  A 1:2 mixture of diethyl ether/4, 4-dimethyl-1, 3-dioxane (a volume fraction). 
d  A 1:1 mixture of diethyl ether/4, 4-dimethyl-1, 3-dioxane (a volume fraction). 
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Table 15 

Molecular characteristics of poly[(4-vinylphenyl)dimethylvinylsilane], PVS prepared under an optimum conditiona 

 

 

 Sample Monomer Initiator 10–4Mk
b Conv 10–4Mn

c  Mw/Mn
d  

  g m mol  % 

 

 PVS-1 9.53 0.392 2.43 100 2.50 1.05 

 PVS-2 8.99 0.206 4.36 100 4.59 1.08  

 PVS-3 8.37 0.181 4.62 100 4.81 1.08  

 PVS-4 7.45 0.0578 12.9 100 13.6 1.03  

 

 a  Anionic polymerization using Cumyl Cs as an initiator in a 1:2 mixture of Ether/1, 3-DX as a solvent for 30 min at –78°C. 

 b  Calculated from the amounts of monomer and initiator. 

 c  Determined by membrane osmometry. 

 d  Determined from GPC measurement.   
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Table 16 

Lithographic characteristics of PVS thin films spin-coated onto silicon wafers 

  

    Sensitivityb  Contrastb 

 Sample 10–4Mn
a Light Dg

0.5 γ  

 

 PVS-1 2.50 UV lightc   

 PVS-4 13.6 Deep UV light 19 mJ/cm2  3.8 

 PVS-1 2.50 Electron beam  7.0 x 10–6 C/cm2 2.8 

 PVS-4 13.6 Electron beam 2.1 x 10–6 C/cm2  3.6 

  
a  Determined by membrane osmometry. 
b  Symbols for Dg

0.5 and γ are explained in Eq. (12). 
c  No gel was observed in the exposed area.   
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Table 17 

Preparationa of [poly((4-vinylphenyl)dimethylvinylsilane)-graft-polyisoprene]-block-polystyrene, (PVS-g-PIs)-b-PSt block-graft copolymers by a 

“grafting onto” process 

 

   Backboneb     Graft   A backbone coupling 

Sample           Temp 

code Code g Solvent ml Code g Solvent ml [PIs] / [VS]f °C  

 

 SGI-1 B-1 1.50 THF 55 G-1c 12.5 THF 250 4.4 –78 

 SGI-2 B-1 0.98 Bz 40 G-2d 7.3 Bz 125 4.6 40 

 SGI-3 B-1 1.12 Bz 45 G-3e 3.9 Bz 80 7.9 40 
 

a  A backbone coupling (a ‘grafting onto’ process) was carried out for 24 h under 10–6 mmHg.  
b  VS (1.0 g) and St (32.4 g) were sequentially polymerized by Cumyl Cs in THF (580 ml) for 20 min and 1 h, respectively at –78°C; the Mk value of 

22.9 x 104, the Mn value of 23.9 x 104 by osmometry and the Mw/Mn value of 1.06 from GPC measurement. 
c  Is (12.7 g) was polymerized by Cumyl Cs in THF (250 ml) for 8 h at –78°C; the Mk value of 2.11 x 104, the Mn value of 2.1 x 104 and the Mw/Mn 

value of 1.05  
d  Is (21.5 g) was polymerized by sec-BuLi in Bz (370 ml) for 8 h at room temperature; the Mk value of 1.76 x 104, the Mn value of 1.8 x 104 and the 

Mw/Mn value of 1.06. 
e  Is (11.5 g) was polymerized by sec-BuLi in Bz (240 ml) for 8 h at room temperature; the Mk value of 0.319 x 104, the Mn value of 0.32 x 104 and 

the Mw/Mn value of 1.10.  
f  A molar ratio of living polyisoprene (graft chains) to VS unit (number of possible chemical links). 
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Table 18 

Molecular characteristics of three (PVS-g-PIs)-b-PSt block-graft copolymers 

 

   Backbone   Graft   Block-graft copolymer 

 Sample 10–4Mn

 

   10–4Mn    10–4Mn
block-graft c  wt% 

 code PVS PSt DPVS a PIs Ngraft Ngraft/DPVS b NMR OSM VS St Is 

 

 SGI-1 0.72 23.2 38.3 2.1 10.0 0.261 44.7 45.0 1.6 51.6 46.8 

 SGI-2 0.72 23.2 38.3 1.8 10.9 0.284 44.2 43.5 1.7 53.3 45.0 

 SGI-3 0.72 23.2 38.3 0.32 12.5 0.326 28.0 27.9 2.6 83.2 14.2 

 
a  A degree of polymerization of a VS block in PVS-b-PSt used as a backbone. 
b  A ratio of Ngraft to DPVS. 
c  Number average molecular weights of Mn

block-graft
NMR determined by NMR measurement, and Mn

block-graft
OSM determined by membrane osmometry.  
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Table 19 

Preparation and characterization of two block copolymers of poly(p-tert-butoxystyrene)-block-polybutadiene, PBSt-b-PBu and 

polystyrene-block-poly(p-tert-butoxystyrene), PSt-b-PBSt 

  

 Initiator  First monomer Second monomer  Temp Block copolymer 

 Name m mol Solvent Name g Name g °C Conv/%  10–4Mk 10–4Mn
a Mw/Mn

a 

 

 n-BuLi 0.110 THF BSt 6.8 Bu 2.0 –78 100  8.1 7.3 1.06 

 n-BuLi 0.112 THF St 3.8 BSt  6.8 –78 100 9.5 8.9 1.04 

 
 a  Determined from GPC measurement. 
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Table 20 

Preparation and characterization of polystyrene-block-poly(p-tert-butoxystyrene)-block-polystyrene, PSt-b-PBSt-b-PSt block copolymer as a backbone 

 

 Initiator    Monomer / g  Temp  Time / min   10–4Mk
a     

 Name m mol Solvent St BSt St °C St  BSt St St BSt St Total 10–4Mn
b Mw/Mn

c 

 
 n-BuLi 0.190 THF 16.2 1.28 16.2 –78 15 15 15 8.56 0.69 8.56 17.8 17.7 1.08 

 
 a  Calculated from the amounts of monomer and initiator. 

 b  Determined by membrane osmometry. 

 c  Determined from GPC measurement. 
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Table 21 

Preparation of polystyrene-block-[poly(p-hydroxystyrene)-graft-poly(ethylene oxide)]-block-polystyrene, PSt-b-(PHSt-g-PEO)-b-PSt block-graft 

copolymers by a “grafting from” process 

 

 Backbone  Initiator  Solvent  Grafts Metallation Grafting 

        EO Temp Time Temp Time 

 Polymer g Name m mol [I]/[HSt]a Name ml g °C h °C h 

 

 SGE-1 1.65 DPE-K 2.1.6 5.7 THF 250 7.60 60 1 40 60 

 SGE-2 0.70 Cumyl K 0.483 3.0 THF 110 3.04 60 1 40 60 

 

 a  A molar ratio of initiator to the hydroxyl group in the PHSt block. 
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Table 22 

Molecular characteristics of two PSt-b-(PHSt-g-PEO)-b-PSt block-graft copolymers 

 

 

 Backbone Block-graft copolymer Graft Metallation Number of grafts  

     10–4Mn
block-graft 

  10–4Mn
block 10–4Mk

block-graft CONV OSM NMR 10–4Mk
graft 10–4Mn

PEO
VPO fmetal Nk

graft OSM Ini 

 Polymer Obsa Eq. (24)b Eq. (25)b Obsa Eq. (26)b Eq. (27)b Obsa Eq. (28)b  Obsa Eq. (29)b Eq. (30)b 

 

 SGE-1 17.5 31.8 25.2 24.5 25.0 0.35  0.496 41.5 20.6 21.1 

 SGE-2 17.5 42.5 26.5 24.6 25.0 0.63 0.60 0.284 41.5 11.8 11.2 

 
a  Obs implies that the molecular weight (Mn) and number of grafts (Ngraft) can be determined experimentally without special assumption.  

 b  Each of Mn and Ngraft can be calculated from the corresponding equations defined in this review. 
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 Table 23 

Compositions and domain sizes of two PSt-b-(PHSt-g-PEO)-b-PSt block-graft copolymers cast from the respective benzene solutions 

 

 Domain size / nm 

 Composition / wt % Backbone (PSt) Graft (PEO) 

 Polymer St HSt EO Calca Obsb Calca Obsb 

 

 SGE-1 69.9 1.5 28.6 19.6 17 – 20 6.1 10 – 13 

 SGE-2 69.6 1.5 28.9 19.6 19 – 21 8.1 15 – 20 

 
a  Calc means an unperturbed root-mean-square of the end-to-end distance, <R 2>0

 1/2 = bn 1/2 of the corresponding polymer chains.  

The n is a degree of polymerization of a PEO chain or a PSt chain in PSt-b-(PHSt-g-PEO)-b-PSt, as described in Table 22.  The b 

is a Kuhn’s segment length. 
b  Obs could be determined from the transmission electron micrographs. 

 



 
- Fig. 1 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Molecular structures of four useful monomers: tertiary aminostyrenes (tAS), 

N-isopropyl-N-trimethylsilyl-4-vinylbenzylamine (IBA), 

(4-vinylphenyl)dimethylvinylsilane (VS), and p-butoxystyrene (BSt). 
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Fig. 2. Molecular structures of poly(aminostyrene)s which have amino groups classified as 

primary, secondary and tertiary groups (R is an alkyl group).  Each of these three amino 

groups is also classified as phenylamine, benzylamine and phenethylamine. 
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Fig. 3. GPC chromatograms of PDPA prepared by (a) a n-BuLi/THF system (Mn = 8.4 x 104), (b) 

a Cumyl K/THF system (Mn = 26 x 104), and (c) a Cumyl Cs/THF system (Mn = 6.5 x 104).  

The carrier solvent is THF, the flow rate is 1.0 ml min-1, the polymer concentration is 0.05 

w/v%, and the RI detector is employed. 
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Fig. 4. Plots of – ln(1 – x) versus [LE]t for PDPA, prepared by using a Cumyl K/THF system 

and a Cumyl Cs/THF system in the lower polymer conversion side. 
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Fig. 5. A neutralization curve of QPDBA treated with an anion-exchange resin.  A point of 

neutralization is pH = 7.4, which is indicated as an arrow in the figure.  
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Fig. 6. Reaction time dependence of the degree of quaternization (DQ) of PDPA, PDBA, and 

PDPTA at 60°C.  The inserted figure describes reaction time dependence of DQ of 

PDPA at 100°C. 
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Fig. 7. Temperature dependence of the degree of quaternization of PDPA, PDBA, and PDPTA 

for 6 h. 
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Fig. 8. Arrhenius' plots of apparent reaction rate constants, ka, for quaternization of PDPA, 

PDBA, and PDPTA. 
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Fig. 9. A structural formula of the crosslinked film for poly(tertiary aminostyrene)s (PtAS) with 

p, p'-bis(chloromethyl)azobenzene (CAB). 
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Fig. 10. A plot of an apparent effective network concentration (ν'e) versus Qr
–5/3 for PDBA(CAB)Y 

films in THF at 25°C.  An effective network concentration (νe) calculated by Small's 

method (µ = 0.34) (– – –) or by Hoy's method (µ = 0.32) (- - - - -) is also described. 
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Fig. 11. Changes in the absorption spectra of CAB with UV (300–380 nm) irradiation time in 

methanol: (a) t = 0; (b) t = 45; (c) t = 60; (d) t = 90; (e) t = 150; (f) t = 600 s. 
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Fig. 12. Changes in the absorption spectra of CAB with UV (300–380 nm) irradiation time for a 

PDBA(CAB)15 film: (a) t = 0; (b) t = 2; (c) t = 6; (d) t = 30 min. 
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Fig. 13. Photochemical isomerization from trans to cis form of CAB at a fixed temperature in the 

following films: (PDPTA-b-PSt)(CAB)2.5 at 60°C ( ○ ), PDPTA(CAB)1.3 at 20°C ( ○ ), 

PDPTA(CAB)1.3 at 60°C (- - - -) and PSt(CAB)1.5 at 20°C ( ● ).  Absorbance (At) was 

detected at 320 nm after irradiation with an ultraviolet light (300 nm < λ1 < 380 nm) for 

time, t, which is plotted as an axis of the abscissa on the figure.  The At/A0 value 

represents a fraction of a trans form, which was not converted to a cis form of CAB. 
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Fig. 14. Typical plots of – ln[(Ct – Ce)/(C0 – Ce)] versus t for the photochemical isomerization 

from trans to cis form of CAB in the following films: PSt(CAB)1.5 at 20°C ( ○ ), 

(PDPTA-b-PSt)(CAB)2.86 at 50°C ( ○ ) and 70°C ( ○ ), and (PDPTA-b-St)(CAB)2.74 at 

80°C ( ○ ). 
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Fig. 15. A relationship between the parameter α and temperature, at which the photochemical 

isomerization from trans to cis form of CAB proceeded in the (PDPTA-b-PSt)(CAB)Y 

films.   
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Fig. 16. Temperature dependence of the half-life period, τ1/2 ( ○ ), and a three fourths-life period, 

τ3/4 ( ● ), for the photochemical isomerization from trans to cis form of CAB proceeded 

in the (PDPTA-b-PSt)(CAB)Y films.. 
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Fig. 17. Photochemical isomerization from trans to cis form of CAB and from cis to trans form of 

CAB in a (PDPTA-b-PSt)(CAB)1.5 film.  The film was first irradiated with a UV light at 

60°C ( ○ ) or 20°C ( ● ) for 2 h.  Next, each film was irradiated with a visible light 

at 20°C.  The result of a reverse thermal isomerization is also described by storing the 

film in darkness at 20°C for 180 h ( ○ ).  The film after irradiation with a UV light at 

60°C for 2 h was finally irradiated with a visible light at 90°C(- -○- -). 
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Fig. 18. GPC chromatograms of PISBA prepared from ISBA (a) once, (b) twice, and (c) three 

times dried over BuMgBr in THF.  The experimental conditions are as follows: the 

carrier solvent of THF containing N-methylpyrrolidine (2 v/v%), the flow rate of 1.0 ml 

min-1, the RI detector, and the polymer concentration of 0.05 w/v%. 
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Fig. 19. GPC chromatograms of (a) PISBA-b-PSt and (b) PSt-b-PISBA.  The sequence of the 

addition of the two monomers was inverted in block copolymerization. 
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Fig. 20. 1H-NMR spectra of PISBA (top) and the resultant PIBA (bottom) after the removal of a 

trimethylsilyl group.  A sharp NMR signal of PISBA at 0 ppm was due to the 

trimethylsilyl group and was completely disappeared in PIBA, whereas a sharp NMR 

signal of PIBA at 1.0 ppm was newly observed and was assigned to the amino group. 
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Fig. 21. GPC chromatograms of (a) PISBA (____), Mn = 1.7 x 105, and the resultant 

poly(N-isopropyl-4-vinylbenzylamine) (PIBA) (– – –), Mn = 1.2 x 105 after removal of the 

trimethylsilyl group.   
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Fig. 22. A 13C-NMR spectrum of PPA-g-(Gly-Boc) prepared with [Boc-Gly] / [PA] = 1 at 0°C for 

2 h.  Signals are assigned in the figure. 
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Fig. 23. Reaction time dependence of the degree of grafting for PPA-g-(Gly-Boc) with [Boc-Gly] 

/ [PA] = 1 at 0°C ( ○ ) and 45°C ( ● ). 
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Fig. 24. Plots of the degree of grafting versus molar ratios of (a) Boc-Gly, (b) Z-Gly-Pro, and (c) 

Z-Gly-Pro-Leu-Gly-Pro, to the monomer unit for PPA fed in the reaction mixtures at 0°C 

for 2 h. 
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Fig. 25. Lee-White relative clotting times (L-WRCT) of polystyrene, PPA, PPA-g-(Gly-Boc), and 

PPA-g-(Pro-Gly-Leu-Pro-Gly-Z) having 100% of DOG.  The L-WRCT values were 

determined from a Lee-White method using human whole blood. 
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Fig. 26. Two schematic structures of the model block-graft copolymers, where A, B, and C are a 

backbone chain without grafting sites, a backbone chain with grafting sites, and graft 

chains, respectively. 

 



 
- Fig. 27 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27. GPC chromatograms of PVS prepared using n-BuLi, Cumyl K, and Cumyl Cs as 

initiators, THF as a solvent, and a polymerization time of 3 h. 
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Fig. 28. GPC chromatograms of PVS prepared using THF, Me-THF, and 1, 3-DX as solvents, 

Cumyl Cs as an initiator, and polymerization times as described in the figure. 
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Fig. 29. GPC chromatograms of PVS prepared at a polymerization time between 0.5 h and 2 h, 

using Cumyl Cs as an initiator, and a mixture of Ether/1, 3-DX = 1/2 (a left figure) or 

Ether/1, 3-DX = 1/1 (a right figure) as a solvent. 
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Fig. 30. Scanning electron micrographs of image lines from resists of PVS-4 exposed to a deep 

UV light of 270 nm.  The developer is a mixture of xylene/methanol = 8/1.  A number 

such as 2.0 µm appearing in this figure represents 2.0 µm lines, and all spaces between 

the lines are 0.75 µm.  Intensities of a deep UV light are (a) 135 mJ/cm2 (185 seconds), 

(b) 145 mJ/cm2 (199 s), (c) 166 mJ/cm2 (227 s), and 186 mJ/cm2 (255 s). 

 

Please change: 

   Photograph of Fig. 34 in the Original Manuscript. 

       ⇒         Here, Fig. 30 in the Revised Manuscript. 
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Fig. 31. A scanning electron micrograph of image lines from a resist of PVS-4 exposed to an 

electron beam.  A developer is a mixture of xylene/methanol = 8/1.  A number such as 

1.0 µm appearing in this figure represents 1.0 µm lines, and all spaces between the lines 

are 1.0 µm. 

 

Please change: 

   Photograph of Fig. 35 in the Original Manuscript. 

       ⇒         Here, Fig. 31 in the Revised 

Manuscript. 
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Fig. 32. Exposure response curves of PVS-1 and PVS-4 exposed to electron beams.  Developers 

in the figure are n-heptane (C7H16)/isopropyl acetate (IPA) = 1/1, ethyl acetate/isopropyl 

acetate (IPA) = 1/1, xylene/methanol (MeOH) = 8/1, tetrahydrofuran (THF)/methanol 

(MeOH) = 35/65, and methyl ethyl ketone (MEK). 
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Fig. 33. GPC chromatograms of (PVS-g-PIs)-b-PSt block-graft copolymers of (a) SGI-1, (b) 

SGI-2, and (c) SGI-3 samples, prepared via a backbone coupling (a “grafting onto” 

process). 
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Fig. 34. Transmission electron micrographs of (PVS-g-PIs)-b-PSt block-graft copolymer films of 

(a) SGI-1, (b) SGI-2, and (c) SGI-3, which were cast from the respective benzene 

solutions and were subsequently stained with OsO4.  White and black regions correspond 

to PSt/PVS and PIs phases, respectively. 

 

Please change: 

  Photographs of Fig. 39 in 

  the Original Manuscript. 

     ⇒     Here, Fig. 34 in the 

   Revised Manuscript. 
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Fig. 35. Theoretical phase diagram of (A)m(PSt)n calculated by Milner, where the bicontinuous 

phases are omitted due to being complicated.  The A polymer is PIs for three SGI films 

or PEO for two SGE films.  Symbols represent the MS structures of SphPSt (spheres of 

PSt), CylPSt (cylinders of PSt), Lam (lamella), ClyA (cylinders of A polymer), and SphA 

(spheres of A polymer).  Boldly outlined symbols indicate samples characterized in this 

study.  
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Fig. 36. GPC chromatograms of (a) PSt-b-PBSt block copolymer ( ___ ) and the resultant 

PSt-b-PHSt block copolymer ( - - - ) after removal of the tert-butyl group, and (b) 

PBSt-b-PBu block copolymer ( ___ ) and the resultant PHSt-b-PBu block copolymer ( - - 

- ). 

 



 
- Fig. 37 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 37. GPC chromatograms of PSt-b-PBSt-b-PSt block copolymer ( ___ ) and the corresponding 

PSt-b-PHSt-b-PSt block copolymer ( - - - ) as a backbone chain deprotected by HBr. 

 



 
- Fig. 38 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 38. Sedimentation patterns of two PSt-b-(PHSt-g-PEO)-b-PSt block-graft copolymers of (a) 

SGE-1 and (b) SGI-2: a concentration of 0.25 g dl-1 and a time of 21 min for SGE-1, and a 

concentration of 0.20 g dl-1 and a time of 18 min for SGE-2, THF solvent, a temperature 

of 25°C, a speed of rotation of 59,780 rpm, and an angle of 70 degrees. 
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Fig. 39. Transmission electron micrographs of PSt-b-(PHSt-g-PEO)-b-PSt block-graft copolymer 

films of (a) SGE-1 and (b) SGE-2, which were cast from the respective benzene solutions 

and were subsequently stained with OsO4 and RuO4, respectively.  White and black 

regions correspond to PSt/PHSt and PEO phases, respectively. 

 


