
Mechanisms for Anonymous Memories

言語: English

出版者:

公開日: 2010-01-07

キーワード (Ja):

キーワード (En):

作成者: TAMURA, Shinsuke, HADDAD, Hazim Anas,

TSURUGI, Hiroya, ROKIBUL, Alam Kazi MD.

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/2333URL
IEEE Computer Society

Mechanisms for Anonymous Memories
Shinsuke Tamura, Hazim Anas Haddad, Hiroya Tsurugi and Alam Kazi MD. Rokibul

Graduate School of Engineering, University of Fukui

tamura@fuis.fuis.fukui-u.ac.jp

Abstract-This paper discusses requirements for anonymous
memories, and proposes their implementation approaches with
possible applications. The anonymous memory is a set of
memory sections assigned to anonymous owners of memory
sections, and enables the owners to maintain their sensitive
information securely without disclosing their identities even to
the manager of the memory system. Possible industrial
applications include the remote maintenance, in which
maintenance companies maintain machines located at remote
factories without knowing owners of machines.

Anonymous memory sectionsMemory manager

I. INTRODUCTION

An anonymous memory is a set of memory sections that

are owned by anonymous owners. Owners can maintain their

sensitive information securely while concealing their

identities from others including managers of the memory. In

recent business and other activities, not only information

itself but also owners of the information are required not to be

disclosed, and this is true also for activities in industrial

sectors. For example, currently, machine maintenance

companies can know not only operation histories of machines

to be maintained but also names of factories where the

machines are located [8], but the owner of the machines do

not want maintenance companies to know their names in

order to keep their production secrets confidential from their

competitors. To satisfy these requirements, in the following

sections, the anonymous memory is proposed. Requirements,

possible implementation approaches and applications are also

discussed.

II. REQUIREMENTS FOR THE ANONYMOUS MEMORY

Fig. 1 shows the configuration of the anonymous memory.

It consists of multiple memory sections that are assigned to

individual owners of the sections. All operations on these

sections are executed by the memory manager, e.g. owners

access their memory sections through the manager. The

memory manager consists of registration, access control,

memory access, error detection and accounting parts, and

registers/deregisters owners, authenticates owners to protect

the memory system from being accessed by unauthorized

entities, executes read/write operations on memory sections,

detects illegal memory operations, and charges owners for

their memory uses, respectively. Owners of memory sections

and the memory manager are connected through anonymous

networks to enable owners to access their memory sections

while concealing their network addresses.

Fig.1 Configuration of the anonymous memory

To store information securely while maintaining anonymity

of owners, the anonymous memory should satisfy the

following requirements.

Anonymous owners: Owners must be able to read/write data

from/to their memory sections without disclosing their

identities. At the same time, it must be ensured that only

authorized entities are allowed to access their memory

sections. Also in order to achieve anonymity of owners that

access their memory sections through networks, owners

must be able to send their messages and receive responses

while concealing their network addresses.

These requirements can be satisfied by currently

available technologies for anonymous authentication and

communication. However, anonymous memories must

have the following additional features. Namely, different

from other systems, in which users are registered and

deregistered to or from the systems while disclosing their

identities, in the anonymous memory system, memory

section owners must be registered or deregistered to and

from the system anonymously, because fixed memory

sections are assigned to individual owners. When owners

are registered or deregistered while showing their identities,

the memory manager can easily identify linkages between

memory section owners and their owning memory sections

by finding memory sections that are created/discarded just

after/before the registration/deregistration of owners.

Regarding to the anonymous communication, to use

memory sections for general data retrievals, anonymous

networks should maintain their efficiency almost at the

2

Anonymous network

1

Access control

Registration

Memory access

Error detection

Accounting

N

Memory owners

978-1-4244-3507-4/09/$25.00 ©2009 IEEE Page 398

same level as that of non-anonymous ones. Although

various kinds of Mix-nets [1], [6] successfully achieve

anonymous communications, they are based on asymmetric

encryption mechanisms, and therefore their communication

overheads are not small enough compared with that of non-

anonymous networks. The anonymous memory requires

anonymous networks with much less overheads.

Secure data maintenance: Various kinds of causes about data

corruptions exist for memory systems, e.g. the memory

system may not accomplish operations requested by

memory users, memory users may intentionally or

accidentally put invalid data in their memories, malicious

third parties may corrupt data, etc. To prevent data

corruptions or to recover from data corruptions when

preventions are difficult, any memory system must identify

cause events that lead data corruptions. However, the

establishment of mechanisms to identify cause events that

introduce data corruptions in the anonymous memory is

more difficult than in usual memory systems, because data

in memory sections are read or written by anonymous

owners; and mechanisms that resolve disputes about data

corruptions between the memory manager and owners

become important.

Also, the volume of evidences that should be maintained

by memory section owners for resolving disputes must be

reduced as much as possible. Because these evidences are

sensitive, owners cannot keep them in their private

memories when their volumes are large, i.e. owners should

maintain these evidences in other secure memory systems

managed by other entities. However, maintaining data in

various different systems is inconvenient and also error

prone for memory section owners.

Anonymous payment: The memory manager should be able

to charge owners fees for their uses of memory sections at

the end or the beginning of its every service period,

without knowing their identities. At the same time memory

section owners must be able to protect themselves from the

memory manager’s charges of excessive fees.

III. POSSIBLE IMPLEMENTATION APPROACHES

A. Anonymous authentication

This subsection proposes anonymous authentication

mechanisms that satisfy the requirement about anonymous

owners discussed in the previous section, except the ones

about anonymous registration and deregistration of owners.

Mechanisms that enable anonymous registration and

deregistration are discussed in Sec.3.D.

The authentication mechanisms in anonymous memory

systems must satisfy the following requirements, i.e.

1) Identities of memory section owners that are accessing

their memory sections must not be disclosed to any entity

except the owners themselves, and

2) The memory manager must accept requests for accessing

particular memory sections only from owners of the

corresponding memory sections.

Anonymous tokens based on blind signature [4][7] and

several additional mechanisms proposed here satisfy the

above requirements. A mechanism for anonymous tokens

works as follows. Namely, the memory manager M

authenticates memory section owner O only when O shows a

token that has M’s signature and it is not used repeatedly.

Here, each token consists of a unique number, and M issues a

new token to O for its next authentication request while

blindly signing on it, in exchange for the token that O is

currently using. Then, because only authorized owners have

tokens with M’s signature, and M signs on tokens without

knowing their contents, O can prove its eligibility without

disclosing its identity.

 In more detail, O chooses a number Tn that is unique in the

system before its (n-1)-th authentication request, and encrypts

Tn into EO(Tn) by its secret encryption key KO. Then, M signs

on EO(Tn) by its secret key KM to generate SM(EO(Tn)). Here,

the result SM(EO(Tn)) is M’s blind signature on Tn. Namely, O

can generate a token SM(Tn) while decrypting SM(EO(Tn)) by

its secret decryption key KO
-1; and anyone can reconstruct Tn

from SM(Tn) by using KM
-1, the public key of M. However, M

cannot identify O from SM(Tn), because M signs on EO(Tn)

without knowing Tn.

It is trivial to link individual memory sections to their

anonymous owners. Manager M can identify the linkage

between a memory section and its owner O by only

memorizing blinded token EO(Tn) that O showed to M at its

previous ((n-1)-th) authentication request. Namely, M can

decide that O has the right to access its requesting memory

section when O’s showing token SM(Tn) is consistent with

blinded token EO(Tn) corresponded to the memory section.

Additive encryption algorithms described in subsection 3-C

enables M to determine whether SM(Tn), O’s showing token,

is consistent with blinded token EO(Tn) that is corresponded to

the memory section, without knowing O’s secret key.

For the purpose to conceal only the identity of owner O, O

can ask M to sign on Tn without encrypting it, if O had

acquired initial signed token SM(T1) anonymously. However

if Tn is not blinded, M can know the exact memory section

corresponding to Tn, M can also generate copies of SM(Tn) by

itself, and unnecessary disputes about impersonation will

occur, e.g. O can complain that M issues its token SM(Tn) also

to P while giving a copy of SM(Tn) to P. Therefore O should

show its unique number Tn while encrypting it into EO(Tn).

Here, O can generate number Tn that is unique in the system

by picking it from the unique number-list prepared by M. Of

course O should pick numbers anonymously through the

anonymous authentication mechanism, for an example,

through a mechanism proposed in [9], and to force O to pick

numbers only from the unique number-list, M must signs on

numbers in the list while using a secret key different from KM.

Regarding to impersonation, M knows numbers that

owners picked from the unique number-list; therefore M can

still generate copies of valid tokens and give them to other

entities. Although impersonations themselves caused by these

copies are not serious, because M does not know

Page 399

correspondences between these copies and their

corresponding memory sections, however owners can claim

that M maliciously disclose their tokens while intentionally

disclosing their tokens to others. Disputes of this kind also

can be resolved completely by implicit transaction links

discussed in Sec.3.C. Namely, the manager and owners can

agree about the ownerships of tokens by checking the latest

memory access logs of owners while maintaining anonymity

of owners.

The 1st requirement relates to situations where intentionally

or accidentally the manager does not accept requests of

memory section owners although the owners are showing

effective tokens, or where the manager does not accomplish

requested operations correctly while accepting requests from

owners. The 2nd requirement relates to cases where memory

section owners claim that the manager does not handle their

requests without sending the requests, or claim that the

manager executes operations that they do not request. About

the 3rd requirement, anonymous memories are for reducing

responsibilities of memory section owners for maintaining

their sensitive data. Then because these evidences are also

sensitive, the volume of evidences that owners should

maintain to resolve disputes must be small enough to make

anonymous memories practical.

B. Anonymous network

Among of various kinds of mechanisms that enable entities

to send messages without disclosing their identities, Mix-net

[1],[6] is the most known and effective mechanism. However,

conventional mix-nets must adopt asymmetric encryption

algorithms; therefore although they are appropriate for

applications with short message exchanges such as ones in

electric voting, it is difficult to use them for general

applications with heavy message traffics because of their

large overheads in message encryptions and decryptions. The

anonymous memory requires more efficient networks.

These 3 requirements can be satisfied by implicit

transaction links proposed in [10]. An implicit transaction

link used in an anonymous credit card system is a pair of

transaction IDs that are corresponded to the current and the

next transactions of a cardholder as shown in Fig. 2. Here,

transaction IDs in the anonymous credit card system have the

same roles as tokens in the anonymous memory. Therefore in

the figure, the word “token” is used instead of the word

“transaction ID.” An important thing is that the next tokens

are encrypted by cardholders; therefore the card company

cannot know linkages of transactions executed by the same

cardholders, although the card company itself generates and

stores implicit transaction links. The proposed mechanism

exploits this implicit transaction link, i.e. the proposed

mechanism records the log of the n-th request of memory

section owner O with the implicit transaction link. Here,

blinded next token EO(Tn+1) in the implicit transaction link

has a different form from EO(Tn+1), the next token that O

shows to M with its current request to be signed blindly in the

anonymous authentication procedure. Different from EO(),

EO() satisfies the additive property, i.e. the relation EO(A+B)

= EO(A) + EO(B) is satisfied.

This difficulty can be removed by a symmetric encryption

based Mix-net (SEBM) proposed in [11]. Different from

usual Mix-nets, SEMB adopts symmetric encryption

algorithms to conceal identities of message senders, i.e.

encryptions and decryptions of data are achieved by simple

secret number multiplications. Therefore entities can send

large amount of data with much less overheads than in usual

Mix-nets. Also, although the massage encryption mechanism

is simple, it is hard to break it, because different secret

numbers are applied to different messages.

C. Dispute resolution

Mechanisms proposed in this subsection relate to the

requirements about secure data maintenance and a part of

anonymous owners discussed in the previous section.

Because the memory manager executes all operations on

memory sections requested by memory section owners,

disputes about data corruptions can be resolved easily after

the manager’s acceptance of memory read/write operation

requests. Namely, the manager is responsible for any data

corruptions once the manager and the owner mutually agree

with that the owner’s requesting operation is accepted by the

manager. Therefore, when the following 3 mechanisms are

established, disputes between the manager and memory

section owners about data corruptions can be resolved while

making the anonymous memory system practical.

Current token

Tn

Blinded next token

EO(Tn+1)

Fig. 2 Implicit transaction link

A log of the n-th request of memory section owner O is

constituted as a set of items shown in Fig.3, i.e. RN(n), ITL(n),

REQ(n) and r(n). In the figure, RN(n) is the number of

requests that O asked to execute until now (i.e. RN(n) = n),

ITL(n) and REQ(n) represent the implicit transaction link and

the request digest (REQ(n) is calculated as EO(H(requested

operation)); where H() is a hash function), and r(n) is a

random number secret from owners. Then different from M

that should maintain logs of all requests, O maintains only its

latest accumulated log ACC(n). ACC(n) is a set of ARN(n),

AITL(n), AREQ(n), and Ar(n), and they are calculated as

{RN(1) + --- + RN(n)}, {ITL(1) + --- + ITL(n)}, {REQ(1) + --

- + REQ(n)}, and {r(1) + --- + r(n)}, respectively. Actually, a

log is encrypted to a set of linear combinations of 4 items in

1) To force the memory manager to accomplish operations

requested by memory section owners when the owners

show their effective tokens,

2) To force memory section owners to approve completions

of their requesting operations when the manager

accomplishes the operations successfully, and

3) To reduce the volume of evidences that memory section

owners should maintain to resolve disputes about data

corruptions as much as possible.

Page 400

Fig.3 by applying M’s secret coefficients. Therefore O cannot

forge nor modify its logs consistently. On the other hand, M

that knows the coefficients can calculate ARN(n), AITL(n),

AREQ(n), and Ar(n) from the sum of encrypted logs by

solving linear equations. At the same time, M cannot modify

logs consistently either, because ITL(n) and REQ(n) are

constructed by O’s secret key.

Fig. 3 Request log

Hand shaking procedure between M and O: M and O

mutually agree with the M’s acceptance of O’s n-th request

through the following steps, i.e.,

1) O requests operations on its memory section S while

showing its n-th token SM(Tn), its accumulated log

ACC(n-1) and the location of S,

2) M checks Tn, i.e. checks whether Tn has M’s signature,

it is not used repeatedly, and it is consistent with

EO(Tn). Here EO(Tn) is the next token in the implicit

transaction link of the latest log about S,

3) When Tn passes the above checks, M accepts the

request, and it executes requested operations,

4) When O confirms that its request has been

accomplished, it calculates ITL(n) and REQ(n), and

sends them with blinded token EO(Tn+1) to M.

5) M calculates the log, signs on EO(Tn+1) as SM(EO(Tn+1))

and returns the results to O.

6) O calculates accumulated log ACC(n) and decrypts

SM(EO(Tn+1)) into SM(Tn+1).

In the 2nd step, M can determine whether Tn is consistent

with EO(Tn) without knowing the secret key of O. Because

EO() is additive, when M asks O to decrypt EO(t) = e1EO(t1) +

e2EO(t2) + --- + esEO(ts) + es+1EO(Tn) into t = e1t1 + e2t2 + --- +

ests + es+1Tn by O’s secret key, O can calculate correct t even

it does not know e1, e2, --- ,es+1, if Tn and EO(Tn) are consistent.

On the other hand, it cannot calculate t without knowing the

random numbers e1, e2, --- , es+1, when Tn is not consistent

with EO(Tn). Therefore, M can determine that Tn is consistent

with EO(Tn) when O returns t correctly. Here, e1. e2, --- ,es+1

are random numbers secret from O, and t1, t2, ---, ts are test

tokens, and O encrypts t1, t2, ---, ts into EO(t1), EO(t2), ---

EO(ts) by its secret key and sends the results to M, when O

registers itself to the anonymous memory system. M can

check the correctness of ITL(n) and REQ(n) sent from O in

the same way.

Dispute resolution procedure; Disputes between M and O

about data corruptions can be resolved as follows. Firstly,

requests of O are ensured to be accomplished provided that O

has effective token Tn. When the manager M does not accept

O’s request or M executes operations not appropriately, O can

request operations again or claim that executed operations are

not the requesting ones, while showing Tn, because the latest

accumulated request log ACC(n-1) enables O to prove that Tn

is owned by O even after Tn and EO(Tn) have been disclosed

to M. Namely, when O calculates the sum of current tokens

and that of the blinded next tokens based on AITL(n-1), the

difference between (Tk - T1) and decrypted EO(Tk+1)

coincides with Tn. Here, T1 is the token that O used in its first

access, and the correctness of O’s decryption can be proved

in the same way as proving correctness of Tn in the 2nd step.

O also can prove that ACC(n-1) is its latest accumulated log,

because no one except O can comstruct ACC(m) (precisely

ITL(m) and REQ(m)) for n m that can be decrypted into

meaningful data by O’s secret key. Here, when M insists that

its forging ACC(m) is O’s latest log, O should disclose its

secret key in order to prove that ACC(m) is invalid. However

M must accept the risk that it cannot continue its services

when it is determined that ACC(m) is invalid. It is trivial to

ensure the accomplishment of O’s n-th request after O has got

its n-th request log from M.

RN(n) r(n)
ITL(n)

Implicit transaction link

REQ(n)

Request digest

On the other hand, M can prove that O has approved the

accomplishment of its n-th request by showing Tn+1, token

that O used for its (n+1)-th request, because O can get Tn+1

only after confirming the completion of its n-th request. Also

O should agree with the fact that Tn+1 belongs to O, when M

reveals its maintaining ITL(n). In the case when O does not

return blinded token EO(Tn+1) to M, the transaction of O does

not terminate and M cannot continue interactions with O;

however this does not cause any inconvenience. All entities

except O can continue to access the memory system

successfully.

About the 3rd requirement, as discussed in the above,

evidences that should be maintained by individual memory

section owners to prove their honesties and to ensure

completions of their requesting operations are only their latest

tokens and accumulated request logs.

The above mechanism does not prevent M’s dishonesty, in

which M writes corrupted data in memory sections while

returning consistent evidences to owners. However, these

kinds of dishonesties will be eventually detected by owners

when they read their memory sections, and disputes about the

causes of the data corruptions are resolved by using

accumulated request logs maintained by the owners as

described above. A tamper resistant memory discussed in the

next section can provide more efficient solutions.

D. Anonymous registration and payment

It is straightforward to apply anonymous credit card

systems proposed in [10] to anonymous payment for using of

memory sections. However, owners should pay for memory

uses in individual operation periods before the periods start.

Because owners are anonymous, the memory manager cannot

identify owners that did not pay for their memory uses

without complicated procedures. If payments are done before

individual operation periods, even when an owner does not

pay for its memory section, the memory manager can simply

close the corresponding memory section.

Regarding to owner registration and deregistration,

memory section owners can access their memories without

Page 401

disclosing their identities after they acquire their initial tokens,

even if they are registered while disclosing their identities.

However, when owner O creates/discards its memory section

immediately after it has been registered/deregistered, it is not

difficult for manager M to link O and its memory section.

Therefore O should register and deregister itself without

disclosing its identity, while proving its eligibility.

This anonymous registration and deregistration can be

achieved by anonymous credit card systems. Namely, the

credit card system checks the eligibility for memory section

owners when it checks that for cardholders at its card

registration phases while identifying owners; and owners

register themselves to the memory system as transactions of

the credit card system to acquire their initial tokens for

memory sections. Then, owners can protect them from being

linked to their memory sections, because transactions of

credit card systems are anonymous. Deregistration can be

executed simply based on anonymous tokens that owners

acquired at their last memory accesses.

However, credit card systems must not be linked to

anonymous memory systems except in conjunction with

registrations and payments. The reason is as follows. Namely,

in anonymous memory systems, sequences of requests of the

same memory section owners necessarily linked, because

owners access their same memory sections. However,

sequences of transactions of same cardholders must be

protected from being linked, because these sequences are

strong supports to identify cardholders. Therefore, tokens for

using credit card systems and those for accessing memory

sections must be issued as independent ones. When memory

section owners use tokens of credit card systems only for

registrations and payments, entities other than owners, e.g.

the memory manager, can link tokens of credit card systems

to those of memory systems only once a month for example.

Therefore it is impossible to estimate cardholders through

these linkages.

IV. USING ANONYMOUS MEMORY SYSTEMS

Memory section owners of the proposed anonymous

memory must execute the following steps to acquire and use

their memory sections.

1) Proving eligibility

Memory section owner O registers itself to the

anonymous credit card system, while showing its

identity, then O is automatically accepted as an

eligible entity for the memory system.

2) Registration

O registers itself to the memory system without

disclosing its identity by showing its current

transaction ID (a token for the credit card system).

Then the memory system manager M assigns memory

sections to O, and O acquires its initial token (M

registers the linkage between the encrypted initial

token and the memory sections to identify the memory

sections owned by O).

3) Accessing memory sections

O executes operations on its memory sections while

showing its current token, and acquires its next token.

4) Payment

O pays for its memory section through the credit card

system while showing its transaction ID and current

token at the beginning of every service period of the

memory system. As the consequence O acquires its

next token.

5) Deregistration

O deregisters itself from the memory system while

showing its current token.

V. APPLICATIONS OF THE ANONYMOUS MEMORY

The anonymous memory has various applications, e.g.

people can save their transaction records of anonymous credit

card systems anonymously, so that they can recover the data

even when they lose their cards. In this section, 2 possible

industrial applications are discussed, the one is the remote

maintenance and the other is the tamper resistant memory.

A. Remote maintenance

Fig.4 shows an example of the configuration of the

anonymous memory for remote maintenance. Owners of

machines put operation states of their machines in their

anonymous memory sections, and maintenance companies

maintain machines by the data stored in the memory sections

without knowing the machine owners. There are at least 2

advantages to use the anonymous memory, i.e. not to connect

machines and maintenance companies directly through

anonymous networks. Firstly, the volume of messages put

into anonymous communication channels can be distributed

over time. In cases where machines and maintenance

companies are connected directly through anonymous

networks, the volume of messages increases as maintenance

companies start their maintenance jobs. On the other hand

when anonymous memories are used, machines can send their

state information to their corresponding anonymous memory

sections through anonymous networks that are not efficient as

non-anonymous ones bit by bit, not as batch data. Secondary

maintenance data of multiple machines can be efficiently

distributed and merged so that they are seen as different

virtual machines to protect owners of machines from being

identified through histories of their states as discussed below.

A serious problem of remote maintenance systems

discussed here is the fact that in many cases operation

histories of machines located at a factory provide good

suggestions to estimate the factory. Maintenance companies

may estimate machine owners when the owners provide the

maintenance companies with complete histories of operation

states of their machines. Theoretically, there are methods to

calculate any kind of statistics from encrypted data [2][3][5],

i.e. without disclosing exact raw data, however they are not

practical, because they require a lot of computations and

communications. Therefore this subsection discusses the

other 2 possibilities although they are strongly problem

dependent. In the figure, memory sections are divided into 2

levels, i.e. level-1, in which raw operation data of machines

Page 402

are stored, and level-2, from which maintenance companies

acquire data necessary for maintenances. Here, selected data

in the level-1 memory sections are transferred to the level-2

memory sections, so that memory sections in the level-2

constitute virtual machine groups consists of combinations of

multiple machines located at different places (sometimes

owned by different owners). Therefore it becomes difficult

for maintenance companies to identify real owners of

machines from operation histories of virtual machine groups

they are maintaining. Another solution is to exploit

homomorphic encryption algorithms. Here, homomorphic

encryption function E() satisfies E(A) + E(B) = E(A+B),

E(A)E(B) = E(AB), or E(A)E(B)= E(A+B). Therefore, when

machine owners encrypt operation histories of their machines

based on these encryption algorithms to be put in the

anonymous memory sections, it is possible to divide

maintenance functions into modules, and distribute these

modules to maintenance companies and machine owners, so

that the maintenance companies calculate averages, variances,

auto/mutual correlations, etc. of encrypted operation histories,

and the machine owners decrypt them to send the results back

to the maintenance companies.

Fig.4 Remote maintenance

B. Tamper resistant memory

A tamper resistant memory section is a memory section

that can protect the data in it from being modified by

unauthorized entities. One form of a tamper resistant memory

section is a duplicated one, i.e. a memory section that has

multiple copies. Data owners can check correctness of their

data by comparing multiple copies; they can detect illegal

data modifications when data in multiple copies are not

consistent, and they can recover the modified data along the

majority decision principle.

A proposed tamper resistant memory based on the

anonymous memory shown in Fig. 5 enhances the security of

these duplicated memory sections. Namely, different from

normal duplicated memory sections, in which entities, e.g.

system managers, can illegally modify data without being

detected by modifying data in all copies, data in anonymous

memory based duplicated memory sections are difficult to

modify, because unauthorized entities that try to modify the

data do not know locations of the copies.

To make the tamper resistant memory more secure,

asynchronous and fake memory access mechanisms must be

implemented, because entities can identify locations of

anonymous copies by eavesdropping simultaneous memory

access messages. Also the data in different copies must be

encrypted by different keys, in order to disable eavesdroppers

to identify locations of anonymous copies by comparing their

contents.

Anonymous

memory section
Anonymous

memory section

Anonymous

network

Memory section

owner

Anonymous

memory section

Fig. 5 Tamper resistant memory

VI. CONCLUSION

This paper discusses requirements for the anonymous

memory. Approaches to satisfying the requirements and 2

industrial applications, i.e. remote maintenance and tamper

resistant memories are also discussed. Although it is not

discussed, SAAS (Software As A Service) is one of the

possible important applications.

3

Level-2

Section-y

Maintenance

Company-2

Level-1

Section-b

Level-1

Section-a
Level-2

Section-x

Machine owners

Anonymous network

21

Maintenance

Company-1

REFERENCES

Level-1

Section-c
[1] D. Chaum, “Untraceable electronic mail, return address and digital

pseudonyms,” Communications of the ACM, Vol.24, No.2, pp. 84-88,

1981.

[2] A. C. Yao, “How to generate and exchange secrets,” Proc. of the 27th

IEEE Symp. on Foundations of Computer Science, pp.162-167, 1986.

[3] O. Goldreich, M. Micali and A. Wigderson, “ How to play any mental

game,” Proc. 19th ACM Symp. on Theory of Computing, pp.218-229,

1987.

[4] S. Brands, “Untraceable off-line cash in wallets with observers,” Proc.

Of CRYPTO’93, pp.302-318, 1994.

[5] M. Naor, B. Pinkas and R. Sumner, “Privacy preserving auctions and

mechanism design,” Proc. of the 1st ACM Conference on Electronic

Commerce, pp.129-139, 1999.

[6] B. LeeB. B. Dawson, K. Kim, J. Yang and S. Yoo, “Providing receipt-

freeness in Mixnet-based voting protocols,” Information Security and

Cryptography ICISC2003 6th International Conference, 2003.

[7] R. Shigetomi, A. Otsuka and H. Imai : “Refreshable Tokens and Its

Applications to Anonymous Loans,” SCIS2003, 2003.

[8] D. Djurdjanovic, J. Lee and J. Ni, “Watchdog agent - An infotronics

based prognostics approach for product performance assessment and

prediction”, International Journal of Advanced Engineering

Informatics, Special Issue on Intelligent Maintenance Systems, Vol.17,

No.3-4, pp.109-125, 2003.

[9] S.Tamura and T. Yanase, “Information sharing among untrustworthy

entities,” IEEJ Trans. EIS, Vol.125, No.11, pp.1767-1772, 2005.

[10] S.Tamura and T. Yanase, “A mechanism for anonymous credit card

systems,” IEEJ Trans. EIS, Vol.127, No.1, pp.81-87, 2007.

[11] S. Tamura, K. Kouro, S. Sasatani, K. MD. R. Alam and H. A. haddad,

“An information system platform for anonymous product recycling,”

Journal of Software, Vol.3, No.6, pp.46-56, 2008.

Page 403

