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Abstract 

   This paper presents the T-stress solutions (T11 and T33) for semi-elliptical axial surface cracks in a 

cylinder subjected to mode-I non-uniform stress on the crack surface. Two cylindrical geometries with 

inner radius (Ri) to wall thickness (t) ratios Ri/t = 5 and 10 were considered. The T-stresses were applied 

along the crack front for normalized crack depth values a/t of 0.2, 0.4 and 0.5 and aspect ratios a/c of 0.2, 

0.4, 0.6 and 1.0. Three stress distribution; uniform, linear and parabolic were applied to the crack face. In 

addition to these solutions, concrete formulation of the superposition principle is given for the T33-stress, 

which is known as an elastic parameter that describes the out-of-plane crack tip constraint effect. Then, 

the validity of the formulation was shown through application of our T-stress solutions to the problem of 

an axial semi-elliptical surface crack in a cylinder subjected to internal pressure, and checking that the 

principle of superposition holds for the problem. 
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Constraint effect, Surface crack, Non-uniform stress distribution, Internal pressure, Cylinder. 

 

Nomenclature 

a: depth of a semi-elliptical crack 

c: length of a semi-elliptical crack 

p: internal pressure 

t: cylinder wall thickness 

r and : in-plane polar coordinates of the plane normal to the crack front (Fig. 1) 

u: local coordinate along crack depth (Figs. 2 and 3) 

xj: crack tip local coordinates (j = 1~3, see Fig. 1) 

z: local coordinate normal to crack depth (Fig. 3) 

E: Young’s modulus 

KI: local mode I stress intensity factor 

L: cylinder length 

LBox: mesh generation parameter (Fig. 5) 

Q: load system 

R, Z and : cylindrical coordinates (Fig. 2) 

Ri and Ro: inner and outer radius of a cylinder 
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Rs: mesh generation parameter (Fig. 5) 

T11 and T33: T-stresses (Eq. (1)) 

V11 and V33: normalized T-stresses (Eq. (7)) 

: Difference in T-stresses solutions by direct calculation and by superposition (Tables 8~11) 

l, lj (j = 1~4): mesh generation parameter (Fig. 5) 

: angle to specify location on the semi-elliptical crack front (Figs. 2 and 4) 

: = Ro/ Ri 

: Poisson’s ratio 

: = R/ Ri 
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1.   Introduction 

   The limited ability of a single parameter such as the stress intensity factor (SIF) K or J-Integral J to 

fully characterize crack tip conditions irrespective of geometry and load level has been recognized for 

years [1, 2]. To overcome this problem, two parameter description of the crack-tip stress-strain state have 

been studied over the past two decades. The so-called elastic T-stress, or the second term of the Williams 

[3] series expansion for linear elastic crack tip fields, have been strong candidates as the second parameter 

of this two-parameter approach. Larsson and Carlsson [2] and Rice [4] showed that the sign and 

magnitude of the T-stress substantially changed the size and shape of the plane strain crack tip plastic 

zone at finite load levels. Bilby et al. [5] showed that the T-stress has a strong influence on the magnitude 

of hydrostatic triaxiality in the near crack tip elastic–plastic fields. The important features emerging from 

these works are that: 1) the sign and magnitude of T-stress can substantially alter the level of crack tip 

stress triaxiality, hence influence crack tip constraint, and 2) positive T-stress strengthens the level of 

crack tip stress triaxiality and leads to high crack tip constraint; while negative T-stress reduces the level 

of crack tip stress triaxiality and leads to the loss the crack tip constraint. Though the T-stress is an elastic 

parameter, the later works by Al-Ani and Hancock [6], Betegon and Hancock [7], Du and Hancock [8] 

and O’Dowd and Shih [9] indicated that the T-stress, in addition to the J, provides a practical 

two-parameter characterization of plane strain elastic–plastic crack tip fields (corresponding to, for 

example, materials in the lower to mid-transition temperature range; referred to as “cleavage after 
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significant plastic deformation, but before the initiation of ductile growth” by some researchers [10]) in a 

variety of crack configurations and loading conditions. These works were focused on 2D (in-plane) crack 

tip constraint issues, and thus, the methodology was effective in regard to explaining the effect of crack 

depth on the fracture toughness testing [10]. Hereafter, in-plane T-stress will be denoted as T11 (Fig. 1). 

On the other hand, out-of-plane crack tip constraint is also known to have a significant influence on 

the facture behavior of materials [11], and work have been done to express this constraint along the 3D 

crack front by the out-of-plane T-stress T33. Using an analytical technique, Gao [12] analyzed the 

variation of T11 and T33 along a slightly wavy 3D crack front. Numerical techniques based on 3D finite 

elements for calculating the distribution of these T-stresses along a curved 3D crack front were developed 

by Nakamura and Parks [13]. Using their numerical method, Wang and co-workers evaluated the 

T-stresses solutions for a semi-elliptical surface crack fronts in a finite thickness plate under various 

loading conditions [14, 15], and a quarter-elliptical corner crack in a finite thickness plate subjected to 

tension and bending [16].  

In order to apply the two parameter fracture mechanics methodology, it is important to provide T 

-stresses solutions for various crack configurations under various load conditions. So in this paper, 

concrete formulation of the superposition principle is given for the T33-stress. Then, the T-stress solutions 

(T11 and T33) are presented for a semi-elliptical axial surface crack in a cylinder subjected to mode-I 

non-uniform stress on the crack face (Fig. 2). Two cylindrical geometries with inner radius of the cylinder 

T. Meshii, et. al., Engineering Fracture Mechanics, 77, 2467-2478 (2010).
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(Ri) to wall thickness (t) ratios Ri/t = 5 and 10 were considered. The T-stresses were presented along the 

crack front for normalized crack depth values a/t of 0.2, 0.4 and 0.5 and normalized crack length values 

a/c of 0.2, 0.4, 0.6 and 1.0. Three stress distributions: uniform, linear and parabolic were applied to the 

crack face. Finally, the validity of these solutions was shown by applying our T-stress solutions to the 

problem of an axial semi-elliptical surface crack in a cylinder subjected to internal pressure, and checking 

that the principle of superposition holds for the problem. 

 

2. Principle of superposition for T33 

In this section, the superposition method for the T-stresses calculation is discussed first. Then the 

concrete formula based on this method used to obtain T33-stress solutions for other stress distributions is 

deduced. The concrete formula for T11-stress worked out by Wang et al. [15] is also introduced for 

reference. 

In an isotropic linear elastic body containing a crack subjected to symmetric (mode I) loading, the 

leading terms (up to order O(1)) in a series expansion of the stress field very near the crack front are [13] 
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where r and  are the in-plane polar coordinates of the plane normal to the crack front shown in Fig. 1 and 

KI is the local mode I stress intensity factor. Here x1 is the direction formed by the intersection of the 

plane normal to the crack front and the plane tangential to the crack plane. The terms T11 and T33 are the 

amplitudes of the second orders term in the three-dimensional series expansion of the crack front stress 

field in the x1 and x3 directions, respectively. 

First, consider a cracked two dimensional specimen loaded by mode I load system Q, as demonstrated 

in Fig. 3. The stress field of this problem can be divided into two parts: the regular field which appears 

under the same loading conditions in the uncracked specimen (problem Fig. 3(b)), and a corrective field 

due to the presence of the crack (Fig. 3 (c)). Note that the corrective field (Fig. 3(c)) is generated by the 

crack face pressure, z(u/a), induced by the load system Q in the uncracked body. Therefore, the elastic 

SIF or T-stresses for the problem (Fig. 3 (a)) can be calculated from the summation of the SIF or T 

-stresses for these two problems, respectively; 

surface33uncrack3333

surface11uncrack1111

surfaceuncrack

TTT

TTT

KKK







 （3） 

where subscripts uncrack and surface show that the parameters corresponds to an uncracked problem (Fig. 

3 (b)) and to a cracked problem (Fig. 3 (c)), respectively. 

In Eq. (3), Kuncrack = 0 is well known, but T-stresses for the uncracked body is not zero. Wang [15] 

formulated T11 uncrack at crack tip A as follows.  

T. Meshii, et. al., Engineering Fracture Mechanics, 77, 2467-2478 (2010).



 8 

 
A2211022011

0
uncrack11 )(lim 




r
T                           (4) 

 

In the following, we formulated the superposition principle for T33 stress. Initially the uncracked 

problem in Fig. 3 (b) is considered as a state of closed crack, due to applying stress {z(u/a)} on the 

crack surface. With this approach the stress distribution near point A in Fig. 3 (b) can be formally 

described by Eq. (1). By considering the  = 0 plane, and by subtracting the singular term in 33 and 22 

in Eq. (3), T33 uncrack, or the stress at point A (r  +0) is deduced as follows.  

 
A2233022033

0
uncrack33 )2(2lim 




r
T  （5） 

The validity of Eq. (5) will be shown in section 3 for a the problem of an axial semi-elliptical surface 

crack in a cylinder subjected to internal pressure. 

 

3. Finite element analysis for a semi-elliptical axial surface crack in a cylinder subjected to mode-I 

non-uniform stress distributions 

3.1. Method of T-stresses extractions and numerical examples 

   T11 was obtained by using the domain integral and interaction integral techniques [13], which is a 

ready to use function in WARP3D [17]. These techniques have been widely used in the past for 

calculating various T11 solutions [15, 16, 18, 19]. Finally, T33 was evaluated from Eq. (2). 

To show the validity of our mesh generation and T-stresses extraction process, we considered the case 
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of a quarter-elliptical corner crack subjected to tension 0 (Fig. 4 left), for which T11 and T33 solutions are 

known [16]. The case of a/t = 0.2, a/c = 0.4, W/c = 32, L/W = 1 was considered. The finite element 

analyses were made with 20-noded isoparametric three-dimensional solid elements using WARP3D [17]. 

In order to model the square root singularity at the crack tip, three dimensional prism elements with four 

mid-side nodes at the quarter points (singular element: a degenerate cube with one face collapsed) were 

used and the separate crack tip nodal points were constrained to have the same displacement [20]. Eight 

singular elements were used around the crack tip, which is common for all cases in this work. Material 

constants for Young’s modulus E = 206 GPa and Poisson’s ratio  = 0.3 were applied. Considering the 

symmetry condition, one half of the structure was modeled as shown in Fig. 4 right. In this model, K and 

T-stresses convergence was checked by making parameter studies of the singular element size in the 

radial direction l and along the crack front c, under the condition that the spider web radius Rs = 20 l 

(Fig. 5). The selected crack tip element size was l/a = 0.01, ca/l = 17.3 and cc/l = 6.6. The results 

are summarized in Table 1 in the form of Vkk = Tkk/0. Since it is known that the values of the T-stresses at 

or in the vicinity of the free surfaces ( = 0) were found to be unreliable [13], T-stresses for  /(/2) = 1/4, 

1/2, 3/4 and 1 were considered. We see from Table 1 that our T-stresses are in good agreement with the 

reference values. Though only one result is presented in this paper, similar results were obtained for other 

crack configurations. Thus, we consider that the mesh generation procedure together with the T-stresses 

extraction procedure was validated. 

T. Meshii, et. al., Engineering Fracture Mechanics, 77, 2467-2478 (2010).



 10 

3.2. T-stresses for a semi-elliptical axial surface crack in a cylinder subjected to mode-I non-uniform 

stress distributions 

Three-dimensional finite elements were used to model the symmetric quarter of a cylinder containing 

an inner surface semi-elliptical crack. Figure 2 shows the geometry and co-ordinate system used. The 

finite element analyses were made with 20-noded isoparametric three-dimensional solid elements using 

WARP3D [17]. Eight singular elements were always used around the crack tip, which is common for all 

cases in this work. Aspect ratios a/c of 0.2, 0.4, 0.6 and 1.0 with normalized crack depth of a/t = 0.2, 0.4 

and 0.5 were considered. Three stress distributions: uniform, linear and parabolic (i.e., j = 0, 1 and 2 in 

Eqs (6) and (7)) were applied to the crack face.  




 
2

0

)/()/(
j

j

j auau                                  (6) 

)31(
2

0

surface orkVT
j

jkkjkk 


                                 (7) 

Here, u = R  Ri, with R and Ri radius and inner radius, respectively. In all analyses in the current 

calculations, wall thickness t = 10 mm, cylinder length to wall thickness ratio L/t = 20, Young’s modulus 

E = 206 GPa and Poisson’s ratio of = 0.3 were applied. A typical finite element mesh is illustrated in Fig. 

6. In these models, K and T-stresses convergence was checked by making parameter studies of the 

singular element size in the radial direction l and along the crack front c. The selected crack tip 

element size is summarized in Table 2. 

Since it is known that the values of the T-stresses at or in the vicinity of the free surfaces ( = 0) were 
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found to be unreliable [13], T-stresses for  /(/2) = 1/4, 1/2, 3/4 and 1 were considered in the present 

work. Normalized T11 and T33 solutions along the crack front for an axial semi-elliptical surface crack in a 

cylinder subjected to mode-I non-uniform stress distribution are summarized in Tables 3~6, in the form of 

V11 and V33, as defined in Eq. (7). 

Next, we validated our T-stress solutions in these tables by applying the superposition principle to 

these solutions to the axial semi-elliptical surface crack in a cylinder subjected to internal pressure. In 

concrete, T-stresses obtained from Tables 3~6 and Eqs. (3)~(5), were compared with those directly 

extracted from FEA under internal pressure loading. This validation of our T33 solution is also expected to 

provide the evidence that our superposition formulation of T33 has sufficient accuracy. 

To apply superposition principle Eq. (3), Tkk surface and Tkk uncrack (where, k = 1 or 3) are necessary.  

Tkk surface under the polynomial stress distribution in Eq. (6) is obtained from Eq. (7), using the coefficients 

Vkk j (tabulated in Tables 3~6) once the coefficients j s are known. Since one of the purposes of this study 

was first to validate the superposition principle, inner pressure p = 1 MPa was applied on the inner 

surface of the cylinder, but not on the crack faces. The ends of the cylinder were set as thrust free. For this 

case, the analytical stresses for an uncracked cylinder are given as [21], 
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where R and  are radial and circumferential stress at radius R, and  is outer to inner radius ratio Ro/Ri. 
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It is clear from Eq. (8) that the crack opening stress 22 =  varies according to R
2

, and thus, the stress 

distribution in the range of 0 ≤ u/a ≤ 1 cannot be generally expressed in the form of Eq. (6). However, for 

the cases we considered,  can be approximated as a quadratic (almost linear) function of u/a as follows, 
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and thus, the Tkk surface (k = 1 or 3) for this problem is given by Eq. (7). j/p for the cases considered here 

are given in Table 7. 

To obtain the Tkk uncrack with Eq. (4) and (5), 11, 33 and 22 =  at crack tip location A in Fig. 2 are 

necessary. These stresses vary with the location A, and are given as follows. 
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Substituting back to Eqs. (4) and (5), T33 obtained by applying the superposition principle, labeled as 

T33 sup, is given for this problem as 

j

j

j

j

j

j

V
a

u
T

V
a

u
T

33

2

0

2233sup33

11

2

0

2211sup11

)}(2)({)(

)}()({)(

































                       (11) 

where Vkk j is given in Tables 3 ~6. The normalized T11 sup (for concrete, T11 sup/p) was compared with the 

direct solution T11/p in Tables 8 and 9. T33 sup/p was compared with the direct solution T33/p in Tables 10 

and 11. 

Data from Tables 8~9 shows that the difference between both solutions is less than 0.15% for T11 at 
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the four crack tip locations . The difference in the case for T33 was larger than T11, but less than 0.93%. 

Though only one superposition example is presented in this paper, the validity of Eq. (5) has been 

confirmed for other cracked structures, such as quarter-elliptical corner surface crack in a plate, and thus, 

it is clear that T33 can be obtained by the concrete superposition formulation Eqs. (3) and (5) with 

sufficient accuracy. 

 

4. Discussions 

In Tables 8~11, T-stresses solutions for an axial semi-elliptical surface crack in a cylinder subjected to 

internal pressure were presented. Referring to these tables, the T11 and T33 for all cases (crack and cylinder 

configuration) are negative. This tendency is preferable, because a decrease in crack tip constraint can be 

expected for negative T-stresses [5]. However, it must be remembered that our study was focused on 

validating the superposition principle, and thus, internal pressure was not applied at the crack surfaces. At 

the least, this internal pressure will surely increase T11 for all cases, because uniform crack surface 

loading showed positive T11 in Tables 3~6. In addition, cylinder thrust force will affect the results for the 

cases in Tables 8~11. 

 

5. Conclusions 

The T-stress solutions (T11 and T33) for a semi-elliptical axial surface crack in a cylinder subjected to 
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mode-I non-uniform stresses on the crack surface are presented. Two cylinder geometries of Ri/t = 5 and 

10 were considered. The T-stresses are presented along the crack front for a/t of 0.2, 0.4 and 0.5 and 

aspect ratios a/c of 0.2, 0.4, 0.6 and 1.0. Three stress distributions: uniform, linear and parabolic were 

applied to the crack face. Besides these solutions, concrete formulation of the superposition principle is 

given for the T33-stress, which is known as an elastic parameter that describes the out-of-plane crack tip 

constraint effect. Then, the validity of the formulation was shown by applying our T-stress solutions to the 

problem of an axial semi-elliptical surface crack in a cylinder subjected to internal pressure, and checking 

that the principle of superposition holds for the problem. 
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Table 7 Coefficients in Eq. (9): Quadratic approximation of the circumferential stress under internal 

pressure p 

Table 8 Principle of superposition applied for T11-stress solution for half-elliptical axial surface crack 

inside a pressurized cylinder (Ri/t = 10, L/t = 20, t = 10 mm,  = 0.3) 

Table 9 Principle of superposition applied for T11-stress solution for half-elliptical axial surface crack 

inside a pressurized cylinder (Ri/t = 5, L/t = 20, t = 10 mm,  = 0.3) 
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Table 10 Principle of superposition applied for T33-stress solution for half-elliptical axial surface crack 
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Table 1 T11, T33 stress solutions for quarter-elliptical corner crack in a finite thickness plate under remote 

uniform tension 0 (a/t = 0.2, a/c = 0.4, W/c = 32, L/W = 1,  = 0.3) 

 

 /( /2) 1/4 1/2 3/4 

T11 

Current 0.3676 0.4318 0.4449 

Qu [16] 0.3788 0.4390 0.4625 

Difference % 2.96 1.64 3.81 

T33 

Current 0.8025 0.6426 0.5933 

Qu [16] 0.8321 0.6621 0.6078 

Difference % 3.56 2.80 2.39 
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Table 2 Generated mesh size around crack 

Ri/t = 

10 
a/t = 0.2 a/t = 0.4 a/t = 0.5 

a/c 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 

l/a 0.03 0.01875 0.01875 0.03 0.03 0.01875 0.01875 0.03 0.03 0.025 0.025 0.03 

Rs/l 5 8 8 5 5 8 8 5 5 6 6 5 

l1 /l 2.00 2.00 2.00 1.98 2.00 2.00 2.00 2.00 2 2.136 2 2 

l2 /l 4.47 7.87 7.87 3.72 3.73 6.56 6.56 3.73 3.72 3.45 2.92 2.79 

l3 /l 4.53 7.39 7.39 4.53 3.25 5.49 5.51 3.25 3.72 3.06 3.11 2.48 

l4 /l 11.05 9.52 9.52 8.83 5.61 7.20 7.20 4.49 7.06 8.48 8.48 7.06 

LBox/Rs 1.19 0.75 0.75 1.19 1.20 0.75 0.75 1.20 1.20 1.07 1 1.20 

ca/l 3.96 3.56 2.30 0.82 3.96 3.56 2.31 0.82 3.96 2.67 1.73 0.82 

cc/l 0.81 1.46 1.42 0.87 0.81 1.47 1.42 0.87 0.81 1.10 1.07 0.87 

Ri/t = 

5 
a/t = 0.2 a/t = 0.4 a/t = 0.5 

a/c 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 

l/a 0.0375 0.01875 0.025 0.01875 0.0375 0.01875 0.025 0.01875 0.0375 0.01875 0.025 0.01875 

Rs/l 4 8 6 8 4 8 6 8 4 8 6 8 

l1 /l 2 2 2 2 2 2 2 2 2 2 2 2 

l2 /l 4.17 4.92 4 4.92 4.17 3.93 4 4.17 4.17 3.93 4 3.93 

l3 /l 4.03 5.54 4.2 5.54 3.75 3.67 4 3.75 4.17 4.37 4 4.37 

l4 /l 8.41 13.72 11.14 13.72 8.64 9.15 8.24 8.64 7.97 8.85 9.17 8.85 

LBox/Rs 1.5 0.75 1 0.75 1.5 0.75 1 0.75 1.5 0.75 1 0.75 

ca/l 3.82 3.56 1.73 1.31 3.82 3.56 1.73 1.31 3.82 3.56 1.73 1.31 

cc/l 0.78 1.47 1.07 1.40 0.78 1.47 1.07 1.40 0.78 1.47 1.07 1.40 
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Table 3 T11, T33 solutions for axial semi-elliptical surface crack in a cylinder subjected to mode-I 

non-uniform stress distribution (Ri/t = 10, L/t = 20, a/t = 0.2, 0.4 and 0.5, a/c = 0.2 and 0.4,  = 0.3) 

  

a/c i /( /2) a/t = 0.2 a/t = 0.4 a/t = 0.5 

V11 i V33 i V11 i V33 i V11 i V33 i 

0.2 0 
 
 
 
 

1 
 
 
 
 

2 
 
 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.5185 
0.4761 
0.4651 
0.4530 

 
0.0778 
0.1113 
0.1382 
0.1428 

 
0.0182 
0.0405 
0.0642 
0.0705 

0.0710 
0.0492 
0.0812 
0.0865 

 
0.0223 
0.0037 
0.0143 
0.0163 

 
0.0064 
0.0009 
0.0030 
0.0025 

0.4992 
0.4560 
0.4235 
0.3977 

 
0.0719 
0.1052 
0.1228 
0.1207 

 
0.0155 
0.0380 
0.0564 
0.0583 

0.1492 
0.0020 
0.0293 
0.0278 

 
0.0501 
0.0141 
0.0045 
0.0056 

 
0.0206 
0.0083 
0.0069 
0.0091 

0.4984 
0.4522 
0.3959 
0.3578 

 
0.0720 
0.1045 
0.1110 
0.1017 

 
0.0156 
0.0378 
0.0495 
0.0464 

0.2145 
0.0386 
0.0236 
0.0383 

 
0.0693 
0.0258 
0.0238 
0.0309 

 
0.0290 
0.0140 
0.0168 
0.0229 

0.4 0 
 
 
 
 

1 
 
 
 
 

2 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.5749 
0.5114 
0.4875 
0.4524 

 
0.1183 
0.1372 
0.1537 
0.1432 

 
0.0390 
0.0568 
0.0757 
0.0712 

0.2203 
0.0705 
0.0149 
0.0089 

 
0.0679 
0.0381 
0.0268 
0.0287 

 
0.0080 
0.0041 
0.0072 
0.0027 

0.5776 
0.5074 
0.4576 
0.4045 

 
0.1188 
0.1355 
0.1425 
0.1253 

 
0.0393 
0.0560 
0.0700 
0.0619 

0.3021 
0.1282 
0.0560 
0.0469 

 
0.0959 
0.0564 
0.0412 
0.0425 

 
0.0396 
0.0286 
0.0286 
0.0338 

0.5833 
0.5084 
0.4284 
0.3558 

 
0.1206 
0.1349 
0.1304 
0.1050 

 
0.0402 
0.0556 
0.0634 
0.0505 

0.3683 
0.1707 
0.1031 
0.1013 

 
0.1169 
0.0725 
0.0579 
0.0618 

 
0.0496 
0.0361 
0.0373 
0.0440 
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Table 4 T11, T33 solutions for axial semi-elliptical surface crack in a cylinder subjected to mode-I 

non-uniform stress distribution (Ri/t = 10, L/t = 20, a/t = 0.2, 0.4 and 0.5, a/c = 0.6 and 1.0,  = 0.3) 

 

a/c i /( /2) a/t = 0.2 a/t = 0.4 a/t = 0.5 

V11 i V33 i V11 i V33 i V11 i V33 i 

0.6 0 
 
 
 
 

1 
 
 
 
 

2 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.5486 
0.5166 
0.4902 
0.4256 

 
0.1272 
0.1529 
0.1649 
0.1348 

 
0.0456 
0.0681 
0.0864 
0.0678 

0.2480 
0.1500 
0.1003 
0.1010 

 
0.0860 
0.0717 
0.0645 
0.0729 

 
0.0353 
0.0383 
0.0447 
0.0559 

0.5476 
0.5135 
0.4674 
0.3883 

 
0.1265 
0.1512 
0.1564 
0.1213 

 
0.0452 
0.0672 
0.0821 
0.0610 

0.2974 
0.1953 
0.1284 
0.1286 

 
0.1042 
0.0850 
0.0751 
0.0823 

 
0.0444 
0.0444 
0.0500 
0.0608 

0.5487 
0.5128 
0.4424 
0.3449 

 
0.1261 
0.1497 
0.1463 
0.1043 

 
0.0449 
0.0663 
0.0767 
0.0518 

0.3487 
0.2335 
0.1677 
0.1664 

 
0.1187 
0.0991 
0.0881 
0.0958 

 
0.0516 
0.0503 
0.0566 
0.0681 

1.0 0 
 
 
 
 

1 
 
 
 
 

2 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.4284 
0.4491 
0.4560 
0.3331 

 
0.1044 
0.1504 
0.1768 
0.1045 

 
0.0371 
0.0731 
0.1046 
0.0539 

0.1864 
0.1814 
0.1943 
0.2359 

 
0.0758 
0.0949 
0.1155 
0.1479 

 
0.0323 
0.0540 
0.0804 
0.1114 

0.4223 
0.4430 
0.4409 
0.3082 

 
0.1023 
0.1482 
0.1718 
0.0959 

 
0.0360 
0.0720 
0.1020 
0.0494 

0.2047 
0.2080 
0.2113 
0.2516 

 
0.0840 
0.1027 
0.1213 
0.1529 

 
0.0362 
0.0565 
0.0834 
0.1141 

0.4168 
0.4381 
0.4647 
0.2806 

 
0.0999 
0.1139 
0.1444 
0.0858 

 
0.0347 
0.0361 
0.0571 
0.0441 

0.2295 
0.3824 
0.2648 
0.2702 

 
0.0913 
0.1089 
0.0858 
0.1599 

 
0.0396 
0.0345 
0.0768 
0.1180 
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Table 5 T11, T33 solutions for axial semi-elliptical surface crack in a cylinder subjected to mode-I 

non-uniform stress distribution (Ri/t = 5, L/t = 20, a/t = 0.2, 0.4 and 0.5, a/c = 0.2 and 0.4,  = 0.3) 

 

a/c i /( /2) a/t = 0.2 a/t = 0.4 a/t = 0.5 

V11 i V33 i V11 i V33 i V11 i V33 i 

0.2 0 
 
 
 
 

1 
 
 
 
 

2 
 
 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.5131 
0.4693 
0.4565 
0.4436 

 
0.0768 
0.1099 
0.1359 

0.14 
 

0.0178 
0.0397 
0.0629 
0.0689 

0.0744 
0.0460 
0.0771 
0.0818 

 
0.0230 
0.0032 
0.0131 
0.0148 

 
0.0066 
0.0003 
0.0024 
0.0018 

0.4863 
0.4366 
0.3976 
0.3688 

 
0.0693 
0.1004 
0.1150 
0.1114 

 
0.0144 
0.0355 
0.0521 
0.0532 

0.1486 
0.0072 
0.0161 
0.0114 

 
0.0491 
0.0152 
0.0088 
0.0111 

 
0.0201 
0.0088 
0.0089 
0.0119 

0.4838 
0.4247 
0.3540 
0.3086 

 
0.0694 
0.0972 
0.0975 
0.0849 

 
0.0147 
0.0342 
0.0423 
0.0373 

0.2013 
0.0426 
0.0409 
0.0605 

 
0.0642 
0.0262 
0.0291 
0.0384 

 
0.0268 
0.0138 
0.0195 
0.0267 

0.4 0 
 
 
 
 

1 
 
 
 
 

2 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.5682 
0.5051 
0.4798 
0.4443 

 
0.1161 
0.1348 
0.1504 
0.1397 

 
0.0382 
0.0559 
0.0745 
0.0698 

0.2153 
0.0731 
0.0154 
0.0097 

 
0.0675 
0.0374 
0.0268 
0.0292 

 
0.0256 
0.0194 
0.0214 
0.0269 

0.5562 
0.4854 
0.4346 
0.3816 

 
0.1128 
0.1285 
0.1347 
0.1172 

 
0.0367 
0.0530 
0.0664 
0.0581 

0.2910 
0.1222 
0.0607 
0.0534 

 
0.0937 
0.0566 
0.0426 
0.0446 

 
0.0383 
0.0284 
0.0294 
0.0347 

0.5574 
0.4772 
0.3943 
0.3219 

 
0.1132 
0.1252 
0.1190 
0.0935 

 
0.0368 
0.0511 
0.0578 
0.0447 

0.3545 
0.1673 
0.1095 
0.1092 

 
0.1126 
0.0710 
0.0598 
0.0647 

 
0.0473 
0.0359 
0.0381 
0.0453 
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Table 6 T11, T33 solutions for axial semi-elliptical surface crack in a cylinder subjected to mode-I 

non-uniform stress distribution (Ri/t = 5, L/t = 20, a/t = 0.2, 0.4 and 0.5, a/c = 0.6 and 1.0,  = 0.3) 

 

a/c i /( /2) a/t = 0.2 a/t = 0.4 a/t = 0.5 

V11 i V33 i V11 i V33 i V11 i V33 i 

0.6 0 
 
 
 
 

1 
 
 
 
 

2 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.5420 
0.5108 
0.4837 
0.4177 

 
0.1248 
0.1505 
0.1621 
0.1311 

 
0.0447 
0.0672 
0.0853 
0.0661 

0.2391 
0.1444 
0.0982 
0.1013 

 
0.0841 
0.0693 
0.0640 
0.0727 

 
0.0344 
0.0370 
0.0442 
0.0560 

0.5294 
0.4945 
0.4484 
0.3684 

 
0.1209 
0.1452 
0.1502 
0.1143 

 
0.0427 
0.0645 
0.0792 
0.0575 

0.2930 
0.1883 
0.1303 
0.1305 

 
0.1007 
0.0839 
0.0748 
0.0827 

 
0.0427 
0.0439 
0.0500 
0.0612 

0.5244 
0.4852 
0.4150 
0.3185 

 
0.1189 
0.1412 
0.1376 
0.0955 

 
0.0416 
0.0622 
0.0723 
0.0473 

0.3299 
0.2242 
0.1680 
0.1681 

 
0.1149 
0.0963 
0.0878 
0.0966 

 
0.0493 
0.0492 
0.0565 
0.0684 

1.0 0 
 
 
 
 

1 
 
 
 
 

2 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

0.4238 
0.4439 
0.4507 
0.3323 

 
0.1031 
0.1488 
0.1752 
0.1054 

 
0.0366 
0.0725 
0.1039 
0.0550 

0.1763 
0.1774 
0.1874 
0.2340 

 
0.0746 
0.0943 
0.1152 
0.1466 

 
0.0315 
0.0532 
0.0802 
0.1108 

0.4109 
0.4299 
0.4279 
0.3005 

 
0.0989 
0.1441 
0.1677 
0.0947 

 
0.0345 
0.0702 
0.1002 
0.0496 

0.1988 
0.1981 
0.2057 
0.2477 

 
0.0818 
0.1018 
0.1203 
0.1519 

 
0.0349 
0.0570 
0.0831 
0.1137 

0.4021 
0.4208 
0.4068 
0.2689 

 
0.0957 
0.1404 
0.1599 
0.0832 

 
0.0328 
0.0681 
0.0960 
0.0435 

0.2172 
0.2238 
0.2308 
0.2675 

 
0.0880 
0.1091 
0.1282 
0.1590 

 
0.0385 
0.0607 
0.0873 
0.1174 
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Table 7 Coefficients in Eq. (9): Quadratic approximation of the circumferential stress under internal 

pressure p 

Ri/t a/t 0/p 1/p 2/p 

10 0.2 

0.4 

0.5 

10.524 

10.523 

10.523 

0.230 

0.458 

0.571 

0.006 

0.024 

0.036 

5 0.2 

0.4 

0.5 

5.545 

5.544 

5.542 

0.260 

0.512 

0.633 

0.013 

0.047 

0.068 

 

 

Table 8 Principle of superposition applied for T11-stress solution for half-elliptical axial surface crack 

inside a pressurized cylinder (Ri/t = 10, L/t = 20, t = 10 mm,  = 0.3) 

 

a/c 




a/t = 0.2 a/t = 0.4 a/t = 0.5 

T11/p T11 sup/p 

% 

T11/p T11 sup/p 

% 

T11/p T11 sup/p 

% 

0.2 
 
 
 
 

0.4 
 
 
 
 

0.6 
 
 
 
 

1 
 
 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 

1 

5.7358 
6.1857 
6.2387 
6.3388 

 
4.8797 
5.7345 
5.9910 
6.3456 

 
4.9873 
5.5804 
5.9410 
6.6261 

 
6.0862 
6.0919 
6.2321 
7.5914 

5.7378 
6.1872 
6.2404 
6.3410 

 
4.8854 
5.7380 
5.9932 
6.3476 

 
4.9870 
5.5809 
5.9422 
6.6275 

 
6.0857 
6.0924 
6.2343 
7.5944 

0.03 
0.02 
0.03 
0.04 

 
0.12 
0.06 
0.04 
0.03 

 
0.01 
0.01 
0.02 
0.02 

 
0.01 
0.01 
0.03 
0.04 

5.7992 
6.1197 
6.3101 
6.5199 

 
4.7635 
5.5240 
5.9483 
6.4498 

 
4.9122 
5.3802 
5.8317 
6.6183 

 
6.0740 
5.9582 
6.0638 
7.4499 

5.8018 
6.1210 
6.3113 
6.5237 

 
4.7654 
5.5250 
5.9495 
6.4535 

 
4.9132 
5.3809 
5.8337 
6.6222 

 
6.0748 
5.9591 
6.0658 
7.4544 

0.05 
0.02 
0.02 
0.06 

 
0.04 
0.02 
0.02 
0.06 

 
0.02 
0.01 
0.03 
0.06 

 
0.01 
0.02 
0.03 
0.06 

5.7406 
6.0254 
6.4196 
6.7388 

 
4.6436 
5.3903 
6.0791 
6.7616 

 
4.8586 
5.2747 
5.9235 
6.8753 

 
6.0934 
5.9101 
6.0795 
7.5421 

5.7431 
6.0270 
6.4204 
6.7433 

 
4.6458 
5.3908 
6.0797 
6.7666 

 
4.8602 
5.2754 
5.9247 
6.8802 

 
6.0947 
5.9107 
6.0814 
7.5475 

0.04 
0.03 
0.01 
0.07 

 
0.05 
0.01 
0.01 
0.07 

 
0.03 
0.01 
0.02 
0.07 

 
0.02 
0.01 
0.03 
0.07 
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Table 9 Principle of superposition applied for T11-stress solution for half-elliptical axial surface crack 

inside a pressurized cylinder (Ri/t = 5, L/t = 20, t = 10 mm,  = 0.3) 

 

a/c 




a/t = 0.2 a/t = 0.4 a/t = 0.5 

T11/p T11 sup/p 

% 

T11/p T11 sup/p 

% 

T11/p T11 sup/p 

% 

0.2 
 
 
 
 

0.4 
 
 
 
 

0.6 
 
 
 
 

1 
 
 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 

3.3513 
3.5828 
3.5836 
3.6249 

 
2.7932 
3.3100 
3.4421 
3.6199 

 
2.7655 
3.1783 
3.3997 
3.7661 

 
3.2576 
3.3554 
3.5171 
4.2310 

3.3533 
3.5841 
3.5849 
3.6270 

 
2.7933 
3.3107 
3.4439 
3.6226 

 
2.7648 
3.1784 
3.4011 
3.7683 

 
3.2561 
3.3549 
3.5187 
4.2350 

0.06 
0.04 
0.04 
0.06 

 
0.002 
0.02 
0.05 
0.07 

 
0.03 
0.003 
0.04 
0.06 

 
0.05 
0.01 
0.05 
0.09 

3.3466 
3.4661 
3.5230 
3.6195 

 
2.7443 
3.1455 
3.3165 
3.5493 

 
2.7395 
3.0189 
3.2288 
3.6216 

 
3.2450 
3.2218 
3.3002 
3.9862 

3.3494 
3.4685 
3.5246 
3.6218 

 
2.7456 
3.1460 
3.3174 
3.5538 

 
2.7410 
3.0199 
3.2305 
3.6253 

 
3.2443 
3.2219 
3.3024 
3.9923 

0.08 
0.07 
0.05 
0.06 

 
0.05 
0.02 
0.03 
0.13 

 
0.06 
0.03 
0.05 
0.10 

 
0.02 
0.003 
0.07 
0.15 

3.2868 
3.3915 
3.5772 
3.7476 

 
2.6819 
3.0604 
3.3588 
3.6767 

 
2.7200 
2.9518 
3.2390 
3.6977 

 
3.2505 
3.1707 
3.2551 
3.9632 

3.2905 
3.3937 
3.5788 
3.7501 

 
2.6845 
3.0615 
3.3593 
3.6813 

 
2.7220 
2.9526 
3.2399 
3.7014 

 
3.2517 
3.1713 
3.2565 
3.9687 

0.11 
0.07 
0.05 
0.07 

 
0.10 
0.04 
0.01 
0.13 

 
0.07 
0.03 
0.03 
0.10 

 
0.04 
0.02 
0.04 
0.14 
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Table 10  Principle of superposition applied for T33-stress solution for half-elliptical axial surface crack 

inside a pressurized cylinder (Ri/t = 10, L/t = 20, t = 10 mm,  = 0.3) 

 

a/c 




a/t = 0.2 a/t = 0.4 a/t = 0.5 

T33/p T33 sup/p 

% 

T33/p T33 sup/p 

% 

T33/p T33 sup/p 

% 

0.2 
 
 
 
 

0.4 
 
 
 
 

0.6 
 
 
 
 

1 
 
 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 

1 

7.1731 
5.7345 
5.3384 
5.2718 

 
8.9791 
7.0709 
6.3650 
6.2705 

 
9.4526 
7.9408 
7.2608 
7.2388 

 
8.9380 
8.5006 
8.2782 
8.6366 

7.1768 
5.7337 
5.3440 
5.2737 

 
9.0059 
7.0675 
6.3620 
6.2669 

 
9.4706 
8.0038 
7.2776 
7.2262 

 
8.9861 
8.5268 
8.3246 
8.6287 

0.05 
0.01 
0.11 
0.04 

 
0.30 
0.05 
0.05 
0.06 

 
0.19 
0.79 
0.23 
0.17 

 
0.54 
0.31 
0.56 
0.09 

7.9696 
6.1653 
5.7613 
5.7579 

 
9.7289 
7.4867 
6.6677 
6.5252 

 
9.8967 
8.2965 
7.4366 
7.3642 

 
9.0960 
8.5732 
8.2847 
8.6272 

7.9148 
6.1684 
5.7660 
5.7582 

 
9.7465 
7.5449 
6.6597 
6.5288 

 
9.8544 
8.3255 
7.4252 
7.3709 

 
9.0340 
8.6134 
8.3301 
8.6334 

0.69 
0.05 
0.08 
0.01 

 
0.18 
0.78 
0.12 
0.05 

 
0.43 
0.35 
0.15 
0.09 

 
0.68 
0.47 
0.55 
0.07 

8.5900 
6.4928 
6.2562 
6.3874 

 
10.3488 
7.9442 
7.0760 
7.0116 

 
10.3348 
8.6803 
7.7682 
7.6843 

 
9.1970 
8.7131 
8.4626 
8.7475 

8.5529 
6.4979 
6.2551 
6.3790 

 
10.3757 
7.9229 
7.0825 
7.0253 

 
10.3219 
8.6474 
7.7613 
7.6913 

 
9.2206 
8.7000 
8.4685 
8.7486 

0.43 
0.08 
0.02 
0.13 

 
0.26 
0.27 
0.09 
0.20 

 
0.12 
0.38 
0.09 
0.09 

 
0.26 
0.15 
0.07 
0.01 
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Table 11  Principle of superposition applied for T33-stress solution for half-elliptical axial surface crack 

inside a pressurized cylinder (Ri/t = 10, L/t = 20, t = 10 mm,  = 0.3) 

 

a/c 




a/t = 0.2 a/t = 0.4 a/t = 0.5 

T33/p T33 sup/p 

% 

T33/p T33 sup/p 

% 

T33/p T33 sup/p 

% 

0.2 
 
 
 
 

0.4 
 
 
 
 

0.6 
 
 
 
 

1 
 
 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 
1 
 

1/4 
1/2 
3/4 

1 

3.8277 
2.9939 
2.7722 
2.7295 

 
4.8907 
3.7052 
3.2919 
3.2296 

 
5.2202 
4.2064 
3.7625 
3.7254 

 
5.0083 
4.6095 
4.3364 
4.4376 

3.8457 
2.9980 
2.7708 
2.7292 

 
4.8804 
3.7299 
3.2890 
3.2251 

 
5.1836 
4.2217 
3.7629 
3.7223 

 
4.9972 
4.5915 
4.3127 
4.4398 

0.47 
0.14 
0.05 
0.01 

 
0.21 
0.66 
0.09 
0.14 

 
0.70 
0.37 
0.01 
0.08 

 
0.22 
0.39 
0.55 
0.05 

4.1707 
3.1772 
2.9768 
2.9786 

 
5.1777 
3.8590 
3.3962 
3.3277 

 
5.2997 
4.2654 
3.7837 
3.7295 

 
4.9726 
4.5015 
4.2459 
4.3394 

4.1653 
3.1814 
2.9770 
2.9793 

 
5.1703 
3.8641 
3.3978 
3.3223 

 
5.2254 
4.3010 
3.7858 
3.7313 

 
4.9648 
4.5013 
4.2323 
4.3482 

0.13 
0.13 
0.008 
0.02 

 
0.14 
0.13 
0.05 
0.16 

 
0.67 
0.83 
0.06 
0.05 

 
0.16 

0.005 
0.32 
0.20 

4.3968 
3.3191 
3.2207 
3.2990 

 
5.4005 
4.0599 
3.5921 
3.5546 

 
5.4894 
4.4194 
3.9135 
3.8532 

 
5.0126 
4.5197 
4.2810 
4.3840 

4.4069 
3.3198 
3.2221 
3.2989 

 
5.4507 
4.0422 
3.5932 
3.5537 

 
5.4618 
4.4160 
3.9159 
3.8616 

 
4.9882 
4.5434 
4.2820 
4.3759 

0.23 
0.02 
0.04 
0.002 

 
0.93 
0.34 
0.03 
0.03 

 
0.50 
0.08 
0.06 
0.22 

 
0.49 
0.52 
0.02 
0.18 
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Fig. 1  Three-dimensional coordinate system for the region along the 

crack front 
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Fig. 2 Axial surface crack inside a cylinder
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Fig. 3 Principle of superposition 
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Fig. 4 Quarter-elliptical corner crack in a finite thickness plate under remote uniform 

tension s0: structure and finite element model
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Fig. 5 (a)  Mesh size around crack front
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Fig. 5 (b)  Mesh size around crack tip
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Fig. 6 Typical finite element meshes (a/t = 0.2, a/c = 0.4, Ri/t = 10, L/t = 20, t = 

10 mm, n = 0.3)
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