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In order to develop skills, actions, and behavior in
a human symbiotic environment, a robot must learn
something from behavior observation of predecessors
or humans. Recently, robotic imitation methods based
on many approaches have been proposed. We have
proposed reinforcement learning based approaches
for the imitation and investigated them under an as-
sumption that an observer recognizes the body parts
of the performer and maps them to the ones of its own.
However, the assumption is not always applicable be-
cause of physical differences between the performer
and the observer. In order to learn various behaviors
from the observation, the robot has to cluster the ob-
served body area of the performer on the camera im-
age and maps the clustered parts to its own body parts
based on reasonable criterion for itself and feedback
the data for the imitation. This paper shows that the
clustering the body area on the camera image into the
body parts of its own based on the estimation of the
state value in a framework of reinforcement learning
as well as it imitates the observed behavior based on
the state value estimation. Clustering parameters are
updated based on the temporal difference error analo-
gously so the parameters of the state value function of
the behavior are updated based on the temporal differ-
ence error. The validity of the proposed method is in-
vestigated by applying it to an imitation of a dynamic
throwing motion of an inverted pendulum robot and
human.

Keywords: reinforcement learning, imitation, state
value, clustering

1. Introduction

In order to develop skills, actions, and behavior in a
human symbiotic environment, a robot often learns some-
thing from observation of predecessors or humans. Ob-
servation makes behavior learning faster and more effi-
cient [1–3]. Recently, robotic imitation methods based on
many approaches have been proposed (for example, [4,

5]). It is desirable to acquire various unfamiliar behav-
ior with some instructions from others, for example, sur-
rounding robots and/or humans in a real environment. Be-
havior learning through observation has been more impor-
tant.

Reinforcement learning has been studied in learning
motor skills and robot behavior acquisition in single and
multiagent environments [6]. Reinforcement learning
generates not only an appropriate behavior mapping from
states to actions to achieve a given task but also a util-
ity of the action, called a “state value,” an estimated dis-
counted sum of potential rewards agent receives by fol-
lowing a policy of the behavior. Estimation error of the
state value is called “temporal difference error” (hereafter
TD error) and the agent updates the state value and the
behavior based on the TD error, eventually, representing
its behavior based on the state value.

On the other hand, Meltzoff proposed [7] a “Like me”
hypothesis that a child uses the experience of self to un-
derstand the actions, goals, and psychological states of a
performer including its caregiver. From a viewpoint of
reinforcement learning framework, this hypothesis sug-
gests that the reward and state value of the performer
might be estimated through observing the behavior. Taka-
hashi et al. proposed a method understanding observed
behavior based on state value estimation [8] and mutu-
ally developing observed behavior acquisition and recog-
nition [9, 10].

The imitation based on reinforcement learning ap-
proaches has been investigated them under an assump-
tion that the observer recognizes the body parts of the per-
former and maps them to the ones of the observer. How-
ever, the assumption is not always applicable because the
performer physically differs from the observing robot. In
order to learn various behavior from the observation of
physically different performers, the robot thus must clus-
ter the observed body area of the performer on the camera
image and maps the clustered parts to its own body parts
based on reasonable criteria for itself and feedback the
data to behavior learning by itself.

When a child learns dynamic behavior by observing
its caregiver, the caregiver intentionally demonstrate ac-
tions easy for the child to imitate – tossing the child a
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Fig. 1. Scenario of mapping an observed body image to
its own: an observer watches an inverted-pendulum robot
throwing a ball and maps the body parts of the performer to
its own.

ball slowly rather than quickly so that the child can fig-
ure out how to catch and throw it back – an action called
“motionese.” The motionese can be thought that it be-
comes easy for the child to estimate the caregiver’s er-
ror of reward, and there is an effect of taking the match-
ing of the body part with the caregiver as a result. Na-
gai et al. [11, 12] state that motionese is analyzed using a
saliency based attention model effective in task learning.

As our imitation method is based on reinforcement
learning, especially value function, clustering the body
area on the camera image based on the value system is in-
vestigated in this paper. We show a method for clustering
performer’s body area on the camera image for the imi-
tation of the observed behavior based on a value system
from which values are obtained in reinforcement learning.
Clustering parameters are updated based on the temporal
difference error (hereafter TD error: estimation error of
the state value) analogously so state-value parameters of
the behavior are updated based on the TD error. Prelimi-
nary investigation results by applying it to a imitation of a
dynamic throwing motion of an inverted pendulum robot
are shown.

2. Clustering Observed Body Area Based on
TD Error

Starting with an experimental scenario, we discuss re-
inforcement learning, state/action value function, learning
of throwing, representation of links forming a body, and
clustering observed body area based on TD error.

2.1. Scenario of Experiment
As shown in Fig. 1, each of two inverted-pendulum

robots throws a ball using an arm on the torso and has two
actuators, one for the wheels and one for the torso-arm
joint. Each robot has independently acquired behavior of
throwing a ball and maintains a state value function based
on reinforcement learning.

After learning behavior, a player demonstrates throw-
ing. The other player, as an observer, tries to map the

observed body area of the performer to its own links of
the body. Parameters of the clustering of the observed
body area for mapping the clusters to the observer’s links
of the body have to be estimated accordingly. The map-
ping enables the observer to understand and imitate the
observed behavior based on state value function as pro-
posed in [8, 10, 13].

2.2. State Value and TD Error
A robot is to discriminate set S of distinct world states

in a world modeled on a Markov process, making stochas-
tic transitions based on its current state and action taken
by the robot based on policy π . The robot receives reward
rt at step t when it follows policy π . State value at state
st , V (st), the discounted sum of the reward received over
time in policy π execution is calculated as follows:

V (st) = E[rt+1 + γrt+2 + γ2rt+3 + . . .] . . . . (1)

where 0 < γ < 1 is a discount rate. The robot receives
a positive reward if it reaches a specified goal, otherwise
zero, so, the state value increases if the robot follows an
appropriate policy π . The robot updates policy π through
trial and error to receive further higher positive rewards.
From Eq. (1), state value Vt is derived as follows:

V (st) = E[rt+1]+ γV (st+1). . . . . . . . (2)

State value Vt is updated iteratively as follows:

V (st)← V (st)+α∆V (st) . . . . . . . . (3)
∆V (st) = rt+1 + γV (st+1)−V (st) . . . . . (4)

where α(0 < α ≤ 1) is the update ratio. ∆V (st) is called
TD error and is used to update the parameter of estima-
tion of the state value function and the policy. Fig. 2(a)
shows a diagram of the state value updating procedure.
For details, see [14] and [6].

2.3. Learning Throwing
Figure 3 shows how the observer learns throwing.

Fig. 4 models the mobile inverted-pendulum robot with
an arm. θa and θt are angle from the torso to the arm
and angle between the torso and the direction of gravity,
respectively. State variables for state space of learning
throwing are θa, θ̇a, θt , and θ̇t .

The state value function is approximated using tile cod-
ing as a 4-dimension table. θa and θt spaces are quantized
into 8 and the other state variables’ spaces into 10.

The robot learns throwing through trial and error while
it receive positive reward for successfully throwing and
zero-reward otherwise. State value function is updated
over trials based on rewards.

2.4. Representation of Links of Observed Body
The throwing robot has one link each at the torso and

arm. The observer watches the robot with a camera ex-
tracting silhouettes of the observed robot by subtracting
background images. The silhouettes contain the robot
torso and arm. The observer segments the silhouette into
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(a)

(b)

Fig. 2. (a) Updating state values based on TD error through
trial and error, (b) updating link representation parameters
based on the TD error.

Fig. 3. Throwing motion.

Fig. 4. Model of an inverted pendulum mobile robot with
an arm.

two links. A link is modeled arbitrarily, with an ellipsoid
used here for simplicity. The Mahalanobis distance sim-
ply and adequately measures clustering to links. A link
has center µ and region covariance Σ. Mahalanobis dis-
tance D to the link is as follows:

D(x) =
√

(x−µ)T Σ−1(x−µ) . . . . . . . (5)

The robot consists of torso link and arm links. The Maha-
lanobis distance from arbitrary point x to the torso link Dt
is calculated using Eq. (5) with center µt and covariance

Fig. 5. Representation of links of observed body based on
Mahalanobis distance.

Σt , with the distance to the arm link Da with center µa and
covariance Σa of the arm link. Point x in the silhouette is
classified as the torso link if Dt <Da, and otherwise as the
arm link. Fig. 5 represents links of observed body based
on the Mahalanobis distance. The center vectors and co-
variance matrices of the two links are actually the cluster-
ing parameters updated based on state value function, i.e.,
TD errors.

After the clustering parameters and the body region on
the observed image are defined as shown in Fig. 5, posture
parameters θa, ξa, θt , and ξt , are estimated, first, by clus-
tering pixels on the observed image with the clustering
parameters based on the Mahalanobis distance the torso
and arm. The postures of the arm and the torso are calcu-
lated using clustered pixels as follows:

θ =
1
2

arctan
( 2M11

M20−M02

)
. . . . . . . . (6)

where Mpq is a region moment:

Mpq = ∑
i

∑
j
(i− iG)p( j− jG)q f (i, j) . . . . (7)

(iG, jG) is the center and f (i, j) is pixel value at point
(i, j), i.e., 1 if the point on the performer silhouette, oth-
erwise zero.

The angular velocity of torso θ̇ is estimated with simple
numerical differentiation as follows:

θ̇ =
(θt −θt−1

T

)
. . . . . . . . . . . . (8)

where T is time step size.

2.5. Update of Link Representation Parameters
Based on TD Error

During learning, the state value function is updated
based on TD error as described in Sections 2.2 and 2.3
and shown in Fig. 2(a). After learning, the value function
is fixed, then the robot observes the other player and tries
to map the observed body area of the performer to its own
links of the body by updating the link representation pa-
rameters based on the TD error as shown in Fig. 2(b). TD
error feedback does not update state value function that
is acquired beforehand. The observer watches the per-
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former, estimates link postures of the performer, and up-
dates clustering parameters µi and Σi j of each performer
link based on the estimated TD error ˆ∆Vt as follows:

µi ← µi−β
∂ | ˆ∆Vt |

∂ µi
. . . . . . . . . . (9)

Σi j ← Σi j−β
∂ | ˆ∆Vt |
∂ Σi j

. . . . . . . . . . (10)

where, i, j, and β (0≤ β ≤ 1) are indexes of the parameter
and update ratio, respectively. The condition that the TD
error is zero means that the performer’s link posture se-
quence perfectly match to the one of the throwing of the
observer, thus, minimizing the TD error by updating the
clustering parameters indicates that the observer maps the
clustered links to its own links to represent its own throw-
ing successfully.

Estimated TD error is calculated as follows:

∆V̂t = ˆrt+1 + γ ˆVt+1− V̂t . . . . . . . . . (11)

where

ˆrt+1 = r(ŝt)

V̂t = V (ŝt)

ŝt ← Fhash(xt)

ŝt , r̂t , and V̂t are estimated state, reward, and state value
at time t. Fhash is a hash function that maps from sen-
sory values dxt to state s ∈ S. Here, the hash function is
modeled with tile coding as stated in Section 2.3.

In the experiments below, state space is quantized into
a set of discrete states where the state value function is
represented. When the differential of the state value is
calculated, in order to avoid a function discontinuity prob-
lem, the state value is interpolated linearly and TD error
of Eq. (11) is calculated with the interpolated state value.
∂ | ˆ∆Vt |

∂ µi
and ∂ | ˆ∆Vt |

∂ Σi j
are calculated numerically as follows:

∂ | ˆ∆Vt |
∂ µi

← |
ˆ∆Vt(xt |µi+δ µi)|− | ˆ∆Vt(xt |µi−δ µi)|

2δ µi
. . (12)

∂ | ˆ∆Vt |
∂ Σi j

← |
ˆ∆Vt(xt |Σi j+δ Σi j)|− | ˆ∆Vt(xt |Σi j−δ Σi j)|

2δ Σi j
. (13)

where xt |µi+δ µi and xt |µi−δ µi (xt |Σi j+δ Σi j and xt |Σi j−δ Σi j )
are estimated state value vectors (θa,ξa,θt , ξt) of the per-
former while µi (Σi j) is increased or decreased by δ µi
(δ Σi j), respectively.

The procedure of the clustering parameter learning is
as follows:

1. Initialize clustering (body segmentation) arbitrarily.

2. Update clustering parameters to reduce TD error.

3. Cluster pixels in the observed body image based on
the Mahalanobis distance with clustering parameters.

4. Update clustering parameters again with clustered
pixels.

5. Exit if TD error converged, otherwise go to 2.

Fig. 6. Fill state value.

Fig. 7. View of observation.

Table 1. Physical parameters of the inverted pendulum robot.

volume [m3] mass [kg]
arm 0.02 × 0.02 × π × 0.38 0.75
torso 0.1 × 0.3 × 0.5 13.0
wheel 0.1 × 0.1 × π × 0.02 0.5

2.6. State Value Extrapolation
TD error from the observed trajectory may not be avail-

able because estimated angles and angular velocities of
the torso and arm tends to be outside the learned state
space, especially in early learning stage of classification
of observed body image. Therefore, simple extrapolation
of state value from the learned state to the inexperienced
state is introduced as discounted value with γ of the aver-
age of the state values in adjoining learned states. The ex-
ample of two-dimension state space is shown in Fig. 6. If
the center state is inexperienced and has no state value, the
discounted average state values in adjacent states is calcu-
lated as the extrapolated state value of the center state.

3. Experiment with Inverted-Pendulum Robot

Experiments use two mobile inverted-pendulum robots,
each acquired throwing through trial and error based on
reinforcement learning. One acts as the performer and
the other as the observer. The observer’s camera captures
the images sequence shown at left in Fig. 7. It extracts
performer silhouettes as shown at right in Fig. 7.

Table 1 shows physical parameters of the inverted-
pendulum robot. The ball is 22 cm in diameter and
weights 450 g. The dynamics is simulated by the Open
Dynamics Engine (ODE).1 The arm angle range is lim-

1. http://www.ode.org
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(a) Arm (b) Torso

Fig. 8. Posture trajectory under condition 1.

(a) before the update (seg-
mentation)

(b) after the update (segmen-
tation)

(c) before the update (image) (d) after the update (image)

Fig. 9. Body segmentation and image before/after update of clustering parameters in condition 1.

ited to −0.84π < θa < 0.84π rad so that the arm of the
robot does not collide with the robot torso. The torso an-
gle range is limited to −0.5π < θt < 0.5π rad so that the
torso does not collide with the ground.

3.1. Experiments: Identical Structure and Con-
straints

Performer and observer have the same physical struc-
ture and constraints. Experiments confirm how body seg-
mentation converges with different initial clustering (body
segmentation) parameters. The performer and observer

use identical throwing motions.

3.1.1. Condition 1
Under condition 1, the observer initializes clustering

parameters with the upper three-quarters of the extracted
region clustered into the arm and the rest on the torso.
Clustering parameters are then updated as detailed above
until TD error converges. Fig. 8 shows estimated and
ground-truth trajectories of the arm and torso posture dur-
ing the throwing motion before and after clustering pa-
rameters are updated. Figs. 9(a) and (b) show the se-

806 Journal of Advanced Computational Intelligence Vol.14 No.7, 2010
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(a) before the update (seg-
mentation)

(b) after the update (segmen-
tation)

(c) before the update (image) (d) after the update (image)

Fig. 10. Body segmentation and image before/after update of clustering parameters under condition 2.

quence of the body segmentation before and after updat-
ing. Dark gray shows the arm and light gray the torso. The
upper three-quarters of the extracted silhouette is clus-
tered on the arm and the rest on the torso initialized before
updating. At some points, after updating, half of the area
is clustered on the arm and the rest on the torso. Inter-
estingly, even though the posture trajectory is estimated
reasonably well as shown in Fig. 8, cluster of the arm and
torso differ somewhat from that expected. The torso is,
for example, recognized as the smaller region and the arm
is bigger than the actual. In order to clarify this result cor-
rectly, Figs. 9(c) and (d) show the sequence of body image
with the sequence of the recognized posture parameters of
the performer. Figs. 9(c) and (d) differ little, but, the arm
angel in early throwing motion is estimated well, as con-
firmed in Fig. 8(a). Keeping the arm folded against the
torso is necessary for keeping the ball to throw. The arm
inclination from number 1 to 2 in Fig. 9(c) is shallower
than the ground-truth. The arm inclination from number 1
to 2 in Fig. 9(d) is close to its own throwing and early
arm oscillation improves after clustering parameters up-
dating. Therefore, arm and torso clustering appropriately

converges so that clustering results explain the observed
motion with its own throwing motion.

3.1.2. Condition 2
Under condition 2, the observer initializes clustering

parameters with the upper half of the extracted region
clustered on the arm and the rest on the body, with little
difference in Figs. 10(c) and (d). In Fig. 11, the estimated
posture trajectory is almost the same as the performer’s
posture trajectory before updating but not after updating,
probably due to the difference in the learning experience
of the two. However, the body part matching after up-
dating is similar to that under condition 1. Therefore, the
body part matching between oneself and others is appro-
priate in this initial clustering parameter.

3.1.3. Condition 3
Under condition 3, the observer initializes clustering

parameters in the upper quarter of the extracted region on
the arm and the rest on the torso.

Figures 12(c) and (d) differ little. In Fig. 13, the esti-
mated posture trajectory with initial clustering parameters

Vol.14 No.7, 2010 Journal of Advanced Computational Intelligence 807
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(a) Arm (b) Torso

Fig. 11. Posture trajectory.

(a) before the update (seg-
mentation)

(b) after the update (segmen-
tation)

(c) before the update (image) (d) after the update (image)

Fig. 12. Body segmentation and image before/after update of clustering parameters in condition 3.

is almost the same as that of the performer. After updating
parameters, estimation becomes worse, somehow. How-
ever, the result of the body part clustering after the update
resembles that under conditions 1 and 2. Therefore, the
body part matching between oneself and others can be re-

garded as converges appropriately from the initial cluster-
ing parameter.
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(a) Arm (b) Torso

Fig. 13. Posture trajectory in condition 3.

Fig. 14. One sequence of human throwing motion the robot watches with a camera.

(a) Arm (b) Torso

Fig. 15. Posture trajectory in experiment of recognition of human throwing motion.

3.2. Experiments: Recognition of Body Parts of
Throwing Human

In this experiment, a human performer shows throw-
ing to the robot. The human performer is approximately
168 cm tall and weighing 54 kg. The robot watches the
human performer and acquires the sequence of camera
images as shown in Fig. 14. The observing robot extracts
a silhouette of the performer by subtracting the back-
ground image.

Obviously, the robot does not have the same physical
structure and constraints as the human performer. The ob-

server initialized clustering parameters as the upper three-
quarters of the extracted region clustered on the arm and
the rest on the torso, then, updated clustering parameters
until TD error converges.

Figure 15 shows estimated and trajectories of the arm
and torso posture during throwing before and after the
clustering parameters were updated. There is no ground-
truth trajectory because the human body angle trajec-
tory does not have any sense for the observing robot and
the observer just recognize the human’s throwing motion
based on its own throwing motion.

Figures 16(a) and (b) show the sequence of body seg-
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(a) before the update (segmenta-
tion)

(b) after the update (segmentation)

(c) before the update (reproduc-
tion)

(d) after the update (reproduction)

Fig. 16. Body segmentation and reproduction before/after update of clustering parameters for human throwing motion recognition.

mentation before and after the clustering parameters are
updated, with the arm in dark gray and the torso in light
gray. Figs. 16(c) and (d) show the sequence of the body
image reproduced by own body before and after the clus-
tering parameters are updated. During the throwing mo-
tion of the observer, the torso is inclined ahead and the
arm greatly raised. The inclining the torso ahead means
the torso angle is less than 0 rad in Fig. 15(b). In
Figs. 16(c) and (d), the arm before/after clustering pa-
rameters updating is raised from number 2 to number
4. With initial clustering parameters, the torso does not
incline ahead and the torso angle exceeds than 0 from
Fig. 15(c). After updating, the torso inclines ahead once
during throwing, indicating that the observer successfully
segments the silhouette of the throwing on the image and
maps them to its own torso and arm reasonably.

4. Conclusions and Future Work

This paper proposed a method for segmentation of per-
former’s body for the imitation of the observed behavior
based on a value system from which values can be ob-
tained by reinforcement learning. The segmentation pa-
rameters are updated based on TD error, similar to how
state value parameters are updated based on the TD error.
Our proposed method can be easily combined with a be-
havior imitation method based on reinforcement learning,
especially value-function-based learning. The validity of

the proposed method was investigated with an imitation of
dynamic throwing by a mobile inverted-pendulum robot.
Results showed that clustering parameters are updated for
estimation of the posture trajectory of the performer, al-
though, the sizes and shapes of the clustered regions are
different from the ones expected.

As future work, we are planning to improve our method
by adding constraints on shapes and sizes of links of the
body. Furthermore, extension of the proposed method is
planned for simultaneous learning of state value function
for the observed behavior and updating link representa-
tion parameters for observed body image in order to imi-
tate behavior of a performer with different shapes and link
configurations. The proposed method depends on the dy-
namics of the robot body and the motion. Limitation on
the proposed method should be clarified from this view-
point. Another point is the introduction of reinforcement
learning with continuous state and action spaces, for ex-
ample, [15–18]. In this paper, discrete state space is used,
therefore, the proposed method requires ad hoc state value
extrapolation not necessary with learning using continu-
ous state space. Reinforcement learning handling contin-
uous space may provide sufficient sophistication for our
proposed method.
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