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based on the Landau theory
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Abstract

The discontinuous changes of volume AV,,, entropy AS,, and heat capacity at constant pressure ACp ,, at the melting point have been
predicted by the Landau theory of phase transition where the Gibbs free energy @ in order state is expressed by @ = @+ An? — Cn* +En®,
where 7 is an order parameter. In this work, A is given by a function that A = k(T — To)"(Po — P)", where kq, m, n, Ty, and Py are constants.
The order parameter 7y, for the minimum of @, is related to the volume of solid V; and is expressed by:

c\’, 3NN /c\ | AY
B T N e I
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where AV=V, — V5, AV, =V, | — Vi s and A" is the value of A at the melting point. The volume of V, changes from V,, , to V,, j, where
AVy s and AV, are volumes of solid and liquid phases at the melting point, respectively. The discontinuous change of thermal pressure
coefficient y, = (3P/3T)y, thermal expansion (9V/dT), and compressibility —(9V/dP)r at the melting point has been calculated. A typical

function of @ for a polymer has been demonstrated as a function of n and C at the melting transition.
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1. Introduction

The melting phenomena of crystalline polymer are a pro-
cess involving the disorderly arrangement of polymer chains
and are consequently associated with evolution of large pos-
itive entropy ASy, which is accompanied with the volume
change AV, under constant temperature and pressure. Inves-
tigation of discontinuous change of thermodynamic quan-
tities at the melting temperature Ty, of crystalline poly-
mers is of great importance in polymer processing. When
a manufacturing product of crystalline polymer is made from
polymer melt, the polymer passes through the melting and
crystallization in the process. Among important thermody-
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namic quantities of polymer, the thermal pressure coeflicient
yv=(0P/9T)y is akey factor to control of size of product in the
crystallization process. In addition to the yy, the discontinu-
ous changes of heat capacity Cp at constant pressure, thermal
expansion (8V/0T)p and compressibility —(aV/dP)y are also
important to control the polymer processing. In this work,
we have investigated the behavior of discontinuous changes
of thermodynamic quantities at the melting transition by the
Landau theory [1,2].

2. Prediction of discontinuous change at the melting
point based on the Landau theory

A concept of the Landau theory of phase transition rests
on an assumption that the Gibbs free energy function over



a range of phase transition is expressed by introducing an
order parameter in addition to the fundamental thermody-
namic variables of pressure P and temperature 7. According
to the Landau theory [1,2], the Gibbs free energy function @
in order state is expressed by:

® = g+ An* — Cn* + En® (h

where 7 is the order parameter and A is a function of tem-
perature and pressure, while C and E are assumed to be
independent of pressure and temperature in this work. One
of the main reasons for the assumption is that if C and £
are dependent of pressure and temperature and extra coeffi-
cients for C and FE are introduced, we cannot determine the
@ function by the five experimental data of discontinuous
changes. In this equation conditions that C and F are positive
and A is positive are necessary conditions to have two mini-
mum points in @ versus 7% curve where the minimum points
correspond to the coexisting two phases. It is found experi-
mentally that values of C and E=C?/4A" are positive as is
shown later. The value of @y is the Gibbs free energy func-
tion @ for non-ordered state with 7=0. The thermodynamic
stable state is given by the minimum condition of free energy
with respect to n and (0@/9n)=0. In Eq. (1), the condition
leads to two equations that = 0 and the other is a meaningful
one that:

A =20 4+3Ent =0 )

The expression of @y, is given using Egs. (1) and (2) by:

2
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The parameter Z in Eq. (3) is expressed by:
340\ 12
7= (4 - 74?) )

where A™ is the value of A at the melting point (P, Tin).
The derivation of Eq. (3) is given in Appendix A in more
detail. The parameter Z is related to the order parameter
Nmin Dy:

s (24"
Nmin = <3C>(Z+Z) (5)

The melting point (P, T ) is a point determined by both con-
ditions that (9@/9n) =0 and D in(Mmin, P, Tm) = Lo, where
DPmin(Mmins Pm, Tm) corresponds to Pyin for the crystalline
or solid phase coexisted with the liquid one with @¢. The
function of A with respect to P and T is essentially impor-
tant in the Landau theory. In this work, we have assumed the
function A by:

A = ko(T — To)"(Po — P (6)

where kg, m, and n are constant and Ty and Py are
characteristic temperature and pressure at A=0. The A"
is the value of A at the melting point and is given by

A" =ko(Ty — To)™(Po — Pw)". A brief summary of possi-
ble forms of the A(P, T) function could be appropriate in
order to understand our choice. A possibility of other type
of function A, such as A=a(T — To) + b(Py — P) is discussed
later.

The volume and entropy at the melting point is derived
from the Eq. (3) by using the thermodynamic relation
that (3@ yiy/0P)r =V and (0P ,in/07)p = — S5, respectively. For
examples, the volume in order state or solid state Vj is given
using Eq. (3) by:

(2A*?n/90)2 + Z2)(4 — Z%)

Vs = Vm,l P_ PO " (7)

The volume of solid coexisted with liquid at 7}, is
defined by Vi s and is given by Vs in Eq. (7) with
Z=1. The discontinuous volume change AV, at the melt-
g point T=T, and P=Py is given using Eq. (7)

by:
2A*2p
(3)

m m,1 m,s (C(PQ — Pm)

where Vi, 1 is the volume for liquid phases at the melting
point. ,

The melting phenomena occur when temperature of sys-
tem approaches to the melting temperature at constant
pressure. The discontinuous volume change at the melt-
ing is due to the transformation from the solid to lig-
uid where the order parameter 1 changes with volume
drastically. The order parameter 7y for the minimum
of @uin is expressed as a function volume of solid V;,
which is given using Egs. (5), (7) and (8) at P=Pp
by:

c\ 4 3\ /CY AV ‘
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where AV is defined by AV=V, -V}, ¢ and is obtained by
AV=Vs = Vm 1+ Vi 1 — Vm,s. The function of (Vs — Vi 1)
is calculated from Eq. (7) and Vi, | — Vi 5 is by Eq. (8). The
AV is not difference in the volumes of two phases. The vari-
able AV(=V; — Vy, 5) is related to Vg directly and changes
from AV =0 for V5=V, s at the beginning of melting transi-
tion to AV=AVy(=Vy, 1 — Vi, s) for V5=V, | at the end of
melting.

The experimental values of discontinuous changes, such
as ASy, AVy, ACp n, —A(BV/OP)7, 5 and A(OV/OT)p,
at the melting point are listed in Table 1 for nine crys-
talline polymers where all these values are positive for
the nine polymers. This indicates that values of Qn 1 at
the liquid phase are larger than Qm s at solid phase at
the melting point, where O corresponds to the quantity
such as S and V. The relations between the discontin-
uous changes AQp and the coefficients or indices such
as C, A", m, and n in the Egs. (1) and (6) are sum-
marized in Table 2. The qualitative relations between the
indices of m and n in the function of A and the sign of




Table 1

The experimental data of gap at the phase transition and indices of m and n calculated by Eqs. (10) and (11) for some crystalline polymers

T (K, ASe AV AChm -a(%),. o), Az m n Ref,

Pup=1bar)  (J/Kmol) (J/bar mol) (J/K mol) (105 J/baré) (10~ J/b.ar Ky ( 0% I/mol)
PE 411,414.6 9.58, 9.88 0.287,0.355 6.28, 9.0 11.9,4.2 7.0,9.3 0.98, 0.94 58,124 —04,-78 [3.4,11]
PP 449, 452.4 17.6, 15.1 0.714, 0.594 17.57,12.0 13.8,6.3 21.8,252 1.44,0.90 7.3,3.4 —3.5,55 [3,4,10]
PB-1 411.2 159 0.75 3.0 2.1 13.7 2.18 2.67 2.96 [3,10]
POM 457.2 21.0 0.436 10.0 4.4 12.9 1.77 31 -3.1 [3,8]
PEO 344 26.8 0.41 29.6 5.7 233 1.18 4.6 —3.3 [3.6]
PET 553 55.6 3.13 35 42.2 117.5 3.70 2.06 5.5 [3,7,91
Ny66 553 34.2 1.78 2.0 27.1 76.8 1.98 2.05 6.2 3,7
PTFE 605 6.9 0.745 1.1 — 374 0.34 2.11 - [3,5]
PDMS 248 10.8 0.42 9.2 - 50.1 0.23 2.8 - 4]

AV (em’/g) is converted to J/(bar-g) by a relation that 10 cm® = | I/bar. PE, polyethylene; PP, polypropylene; PB-1, polybutene-1; POM, polyoxymethylene;

PEO, polyethylene oxide; PET, polyethylenctelephtharate; NY66, nylon66; PTFE, polytetrafluoroethylene; PDMS, polydimethyl siloxane.

Table 2
The relation between the discontinuous change at melting point and coefficients in the Landau theory @ = P + {ko(T'— To)™(P — Po)" }1> — Cn* + (CP14A
g i _ ACpw _ av _ By _
Gap at T A:S;] - Sm’ ! A‘:{“ T m,l ;—TE& C‘ -4 (TF> Tm a ( ﬁ) P -
—dm,s — Vm,s - PN Pms _ & w v 3\ _{av
m ( ap ) Z.m, 1 + ( op ) T,m.s ( ol ) Pm,l ( Er ) Pas
2 2 2mA ()2 — 1 A2 (1 *2
Landau theory = C(27’{1 A ) = W%%ﬁ*,,—) = - (= /, 3 ) = 26”111 (; 42 =TT, wn%
m C m C(Tm — To) (Py~Pun) w19 Po—Pm

Table 3

A qualitative relation between the indices m and # in function of A in Eq. (6) and the sign of discontinuous changes at the melting point

A AV A ((L;,} ) Pm MA(%)mn A (L}’If/—) Pm
a(T - T()) + b(P() - P) -+ + — - —
Ko(T—To)(Po— P) + + - - +
Ko(T = To):(Po ~ PY’ + + 0 0 +
Ko(T — T (Py — P)? + + + } +
Ko(T—To)"(Po — PY', n, m>3 + + + + '
discontinuous change AQy are shown in Table 3 where which is given by:
a result calculated for a different type of function of A ’
that A=a(T— To)+b(Po — P) is also shown. The signs of m = - (10)
AOSIIT)p, s —AOVIIP)T, m, and A@V/IT)p. predicted [ = (AVnAChm)/(Tn ASm A@V/0T) p )]
by A=a(T — To)+b(Py — P) are all negative as is shown and
in Table 3, which are inconsistent with the experimen- 5
tal result in Table 1. On the other hand, in the case of n o=

[1 = (ASu{=A@V/0P)yn} /{A VR AWOV/T) p D]

A=ko(T—To)"(Py — PY" the signs of A(35/87)p, m, and
—A(0V/dP)r, m depend on the value of m and »n although
AV and A(8V/9T)p, v are positive for any values of m and
n. Inthe case of m>2 and n> 2, the signs of A(85/87)p, 1, and
~A(dV/OP)r, m are always positive as is shown in Table 3,
while in the case of m=n=2 these values are zero and
(08/0T)p, m and —(dV/9P)y  are continuous at the melting
point.

3. Results

It is necessary to determine the values of m and n in
A=ko(T — Ty)"(Py — P)" to determine the Gibbs free energy
@ experimentally. The values of m and » are calculated by
relations obtained from by the relations listed in Table 2,

(1)

The values of m and n calculated by the experimental data of
discontinuous changes in Table 1 are listed in Table 1 where
values of m are positive, while values of n are scattered over
negative to positive values. An accurate determination of n
is quite difficult because the value of —A(dV/dP)r n in Eq.
(11) is very small and order of 10™* cm?/(mol bar). Besides,
values of —A(0V/OP)r, i are obtained from the difference
at the melting point by an extrapolation of —(9V/dP)7, 1, to
the melting point from both sides of liquid and crystalline
states. That is a main reason why values of —A@V/0P)r, m
in Table | evaluated by different authors are different consid-
erably compared to the other values.

The value of A(9S/07)p, = ACp, m/Tm is another impor-
tant quantity which is evaluated from the data of heat capacity



for crystalline polymer over the temperature range including
the melting point [3]. It is found from the experimental data
that the derivatives in this work, such as Cp m, —(0V/4P)r, m,
and (3V/0T)p, , for liquid phase are larger than those for solid
phase at the melting point, which means that AQy, is positive.
It is interesting to point out that the values of C are positive
due to A™2/C> 0 as is shown in Table 1 and A” is also positive
by relations that nﬁfm =2A*/C and C>0.

4. Discussions

It is interesting to discuss the discontinuous change of
yy over volumes from crystalline to amorphous state at
the melting point from a viewpoint of polymer process-
ing. The thermal pressure coefficient yy has been calculated
by a relation that y, =(dV/0T)p/{—(3V/0P)r} and is given
by:

(A /CO) 1 = AV/AVa)m(BZ = 2)(Po = P) + 2(Ton — To)yv,m1{Z +n(2 — 32)/2})

The other values in the Landau theory such as (T, — 7o)
and (Py — Pp) are evaluated from the experimental data
of ratios of discontinuous gaps in Table 1 and relations
in Table 4, where AX for the line corresponds to ASp,
AV, A@BS/0T)p, m and —A(BV/IP)r, ;n while AY for the
row also corresponds to ASy, AVy, A(9S/dT)p,m and
—A(OV/3P)T, . The values listed in Table 4 give the ratios
of the discontinuous change AX/AY. The value of (T, — 7o)
is calculated by (m/2 —1)ASy/A(0S/9T)p,m using the
relation that ASy/A(0S/0T)p, = (Tm — To)/(m/2—1) in
Table 4. In the case of PDMS with T, =248 K, it is obtained
that (T, — Tp)= 116 K and Ty =132 K. It is obvious that the
experimental values, such as AV, and ASy, can reproduce
or predict by using equations in Table 2 and values of m, n,
(A*E/C) in Table 1 because the experimental values of AVp,,
ASy, and others are used to evaluate m, n, (A*?/C) and other
values in the @ function.

Yv,s = Pv,m,1 —

The behavior of y, at the melting transition is estimated
through a variable expressed by Ayy=yv s — Vv, m,s- The
discontinuous change of yy at the melting point Ay, is cal-
culated by Ayy=vy m 1~ Vv, m s (¥vm 1~ Vvs), where
Yv,m, 1= Yv,m,s =AYy, m is obtained from Eq. (A.15) and
(¥v, m, 1 — Vv, s) 1s obtained from Eq. (12).

It is important to examine the original function of @ at the
melting point in Eq. (1), which is rewritten as

172
@ = ®o + (aC)*n* — Cn* + {M} n® (13)
In deriving Eq. (13) following relations that
E=CY4A" and A"%/C=qgy arc used. A relation
(A/C)=ASm AV {ANBV/OT)p, m} is used to evalu-
ate the (A™/C) in Table 1. The typical function of @ for
PDMS with respect to C and n at T=T, is shown in
Fig. 1 where two minimum points at =0 and n = n; are
indicated where @o(17=0) is equal to @(n;;,) = Po(n = 0).
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(T = TONZ(P = P (=(@V/0P) g 1} + 200 A2/ C)(1 — AV/ AV )(Z + n(2 — 32)/2})

(12)

It is interesting to point out that the Landau theory of
phase transition [2] predicts a metastable region in the melting
transition. The metastable state appears over a temperature
between T, and Ty where Ty is a temperature at which the
minimum value of order parameter 77?;1m is equal to the max-
imum value of nﬁiax and therefore a relation C2=3AE is
obtained. The equation for T, at P= Py, is given using rela-
tions that E= C%/4A" and C? =3AE by:

1/m
=T+ (Tun— To)(g) (14)

The solid phase is metastable or less stable than the liquid
state over the temperature range Ty, <7 < T, while the liquid
state is metastable or less stable than the solid state over
Ty < T< Ty The solid and liquid phases are equally stable at
T where @o(n = 0) = @(n};,) and a relation between the

{PDMS

30000

20000
C{J/moly

Fig. 1. Typical (@ — ®g) — n — C function at the melting transition calculated by Eq. (13) with ag =230 J/mol for poly(dimethyl siloxanc) (PDMS).



Table 4

The ratios of the discontinuous change AX/AY is expressed by the coefficients in the Landau theory where AX is the value for the line, while AY is that for the

oW
AY AX
as v
AS AV A<5;)Rm _A(gﬁ)mn

A }ﬂ(Po — Pm)
AV n(Ty ~ To) :
N (g) T —To 1(Tw = To)’ .

T ) pm mj2 -1 m(m/2 — D)(Po — Pn)
A < av ) —m{ Py — Py)? —(Py — P) m(m/2 — D(Po — Pn)? |

P ) rm n(l —n/2)(Tw — To) 1 —n/2 —n(l = n/2)(Tm — Tp)?

A (ﬂ) 2(Py — P) 2T — To) 2(m/2 — 1)(Po = P) —2(1 = 2/2)(Tn — Tp)

T ) pn n m (T — To) m(Py — Pr)

For example AX/AY = ASy/AVy, =m(Py — Puy)n(Ty — To).

temperature and order parameter 1y, is given using Eq. (5)
by:

4

I 5 3C . 1/m
T=Ty + (Tm — To) {(KI) Mmin {2— <4A*> nmin}}

(15)

where a power law between (T'— Tp) and ’71%‘1/1:? is suggested.

According to the crystalline-amorphous composite model
[12] the discontinuous change AQy, at the melting transition
for the completely crystallized polymer with the degree of
crystallinity x, = 1.0 is related to that in a semi-crystalline
polymer with value of x; by:

AQm(xe) = xcAQm, x¢ =1.0 (16)

The ratio of two AQy, such as AQ; m{xe )/ AQ2, mlxe) for
a semi-crystalline polymer with x; is equal to the ratio
of AQq mxe=1)/AQ m(x.=1) for completely crystalline
one by the Eq. (16). Therefore, the ratio is independent on
x; and is a quantity reflecting the intrinsic properties of
the crystalline polymer if the model is correct. There are
many ratios of discontinuous changes at the melting point,
if the values ACp m/Tm, A@V/OT)p, m and —AOV/OP)7, m
are taken into account in addition to AV, and AS,,. The
ratio AV /ASn(=dT,/dP) is one of the typical examples.
The relations between these ratios and the coefficients in the
Landau theory summarized in Table 4 show that this ratio
does not depend on C and A”, while the AQy, depends on C
and A” as is shown in Table 2. It is noteworthy that a rela-
tion AV = (nA*/(Py — Pm)}n'r*nzin derived from Egs. (A.6)
and (A.10) suggests that all of discontinuous change at Ty in
Table 2 is proportional to A*n;;zme

5. Conclusions

In this work, the order parameter 1 is introduced to take
into account a change of degree of order of polymer during

the melting transition based on the Landau theory which can
predict the melting transition or the first order phase tran-
sition successfully. We have determined the function of 5
with respect to volume of solid Vi based on the Landau
theory. A general criterion for the signs of discontinuous
changes such as Ayy m, A@V/T)p, m, —A(BV/OP)r, i has
been discussed in the framework of the Landau theory where
AQn is defined by AQm =0m 1 — Om,s. The parameters in
the Gibbs free energy function @ in the Landau theory have
been evaluated numerically and a typical function of @ for
a polymer has been demonstrated as a function of 5 and C
at the melting transition. It is also interesting to point out
that the results obtained in this work are applicable to the
melting phenomena for simple solids with low molecular
weight.

Appendix A. Derivation of Eq. (3)

A definition of @ is given by:
@ = &+ An* — Cn* + Erf° )
and the minimum condition of @ is given by:
A=2Cn* +3Ey" =0 @
The larger value of n in Eq. (2) gives the minimum of @,

while the smaller value of 5 gives the maximum of @ and are
expressed by:

. CH(C?-3AE)"

Tinin = 3E (A1)
and
C —(C*—3AE)"*
”rzn = ( ) (A2)
3E



By substitution of Eq. (A.1) into Eq. (1) the minimum func-
tion of @ is obtained:

(C+(C2 —34E)*)(24/3 — 2C? /9E)

Dpin = D
min o+ 3E

AC
e A3
Y (A3)

The conditions at the melting point are given by @ = @q and
the minimum condition of @ in Eq. (2). The former condition
is given by:

A*Iin = Ciito + Engy = 0 (A4)

and the latter one is given by:

A* =202 4+ 3EnE =0 (A.5)

min

[t is obtained from Egs. (A.4) and (A.5) that:

o 2AF
Toin = G (A.6)
and
CZ
E= o (A7)

We assumed in this work that F is constant and given by Eq.
(A.7). By substituting £= C%/4A" into Eq. (A.3), a following
equation is obtained:

o 4A4%2 A 8

=0+ (5 ) | () - (5)

3AN2 /A 4
] w

By introducing a parameter Z= (4 — 34/A")? the Eq. (A.8)
is given by:

*2

4A
(pmin = &y +

4—37> -7
z7c>[ ]

(A /CO)(1 = AV/ AV mBZ = 2)(Po — P) + 2T = To)yu,m{Z + n(2 = 32)/2}}

Appendix B. Derivation of A(3V/9T)p, —A(3V/3P)r,
and A(9P/3T)y at melting point

The volume of solid V; calculated from (9P,;,/0P)7 is
given by:

B Q2A®2n/9C)2 + Z)(4 — Z%)

Vs =V, A9
s m,1 Po — P ( )
and AV = Vit — Vi 18 given by:
24%2n/C
AV, = 2ATn/C (A.10)
Py~ Py

The relation for AV=V; — Vy, s at P= Py, is expressed using
Egs. (A.9) and (A.10) by:

AVia(2+ 2)(4 — Z7)
9

AVy — AV = (A1)

There are three solutions of Z for a AV. A positive value
of Z is obtained for AV>AVy/9 and two positive Z are
obtained for 0 < AV < AV/9, while Z=0 and (5'2 — 1) for
AV=AVy/9. The other value of Z is negative or complex
number.

The thermal expansion coefficient « and the compressibil-
ity B are calculated from Eq. (A.9) and are given by:

AN )4
ar Ps B ar Pm,l

(A O)1 ~ AV/AVM)(BZ —~2)/2)
(Po— PYT —Ty)

(A12)
and

<3V> B (BV)
P ) g P/

+(2nA*2/C)(1 — AV/AV +n(2 —32)/27)
(P — Py

(A.13)

The thermal pressure coefficient y, is given using
yy =(aV/T)p/—(3V/3P)r by:

Yv,s = Yv.m,] —

(T — T)Z(Po — PY{~@V/OP)p 1} + 2 A2/ C)(1 — AV/ AV )(Z + n(2 - 32)/2))

(A O)m(Py = Pu) + 2T — To)py,m1(1 = n/2)}

(A.14)

The yy, m, s is obtained by using Eq. (14) with AV=0. At
the melting point 7= Ty, and P= Py where AV= AV, and
Z=1,Ayy m is given by:

AVym = Vvm,] = Vv,m,s =

(T = T){(Po = Pm)*{—(3V1/3P)7} + 2(n A2/ C)(1 — n/2))

(A.15)



Appendix C. Derivation of discontinuous change of
heat capacity ACp i at melting point

The entropy for solid state S is given using P, in Eq.
(3) and (0Pp,;n/0T) = —S by:

B @2mA*2]C)1 — AV/AVy)
T — To

S5 = Sm,l (A.16)

where Sm, 1 is S for liquid phase at the melting point. The Sy, s
for solid phase at (Ti, Py is give by Eq. (A.16) with AV=0
or Vs=Vy, s which is given:

2mA*/C

A17)
T —To (

Sm,s - Sm,l -

The entropy change ASy, at the melting point is given by:

_ 2mA¥/C

ASy = A18
m Tm o T() ( )

while the A0S/0T)p, m(=(Cp, m,1 — CP, m, s)/Tm) is given by:

Cpm1—Cps
T
_QAZm/C)(1 = AV/AV)Bm/2 —1=m/Z)
a (T —To)?

(A.19)

The discontinuous change of Cp n at the melting point
ACp, n is given by:

ACpm i Cpmit— Cpms _ (2A*2m/C)(m/2 - D

T T (T — To)?

(A.20)

where Cp is the heat capacity at constant pressure.

Appendix D. Calculation for a case of
A=a(T —Ty)+b(Py — P)

A simple function for A is given by:

A= a(T — To) + b(Py — P) (A21)

The A™ at the melting point is given by:

A* = a(Tm — To) + b(Po — Pr) (A22)
where coefficient of ¢ and b are constant, while Ty and Py are
temperature and pressure at A =0, respectively. The function

of @iy 18 given by:

*2

4A
Prin = Po + (~——~) 4-372>-7%

A3
27C (A-23)

The volume Vs in ordered state is given from Eq. (A.23) by:
2A%b
3C

Vs = Vi1 — ( ) 2+ 2) (A.24)
where (8Z/0P)r=3b/(2ZA") is used. The volume change at

the melting AV, is given using Z=1 or A=A" by:

2A*b
AV = Vit — Vs = c (A.25)
The entropy at ordered state is given by:
2A%a
Ss = Sm,1 — 3¢ 2+2 (A.26)

where (92/0T)p=—3a/(2ZA™) is used. The entropy change
ASpy at melting is given by:

2A*a )
ASm = Sm,l - Sm,s = C (A.27)
The (35/3T)p, s at the ordered state is given by:
6N as a
== + == (A.28)
or Ps oT P,m,1 cz

and the change of (85/97)p at the transition point is given by:

(as) ’_<as> +a2 (A29)
ar P,m,s ar P,m,1 c o
and 1s rewritten as:
s as ACp —a?
(7) _ <?) _ ACpm _ =@ (A.30)
ar Pm,l 01 Pm,s Tm c

The similar calculation for A(@V/0T)p, m, and — A(OV/OP)7, m
has been done by using Eq. (A.24).
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