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Suppose we want to identify an input state with one of two unknown reference states, where the input state
is guaranteed to be equal to one of the reference states. We assume that no classical knowledge of the reference
states is given, but a certain number of copies of them are available instead. Two reference states are indepen-
dently and randomly chosen from the state space in a unitary invariant way. This is called the quantum state
identification problem, and the task is to optimize the mean identification success probability. In this paper, we
consider the case where each reference state is pure and bipartite, and generally entangled. The question is
whether the maximum mean identification success probability can be attained by means of a local operations
and classical communication �LOCC� measurement scheme. Two types of identification problem are consid-
ered when a single copy of each reference state is available. We show that a LOCC scheme attains the globally
achievable identification probability in the minimum-error identification problem. In the unambiguous identi-
fication problem, however, the maximal success probability by means of LOCC is shown to be less than the
globally achievable identification probability.

DOI: 10.1103/PhysRevA.78.012309 PACS number�s�: 03.67.Hk

I. INTRODUCTION

It is an extremely nontrivial problem to distinguish differ-
ent states of a quantum system by measurement �1–5�. First
of all, this is because of the statistical nature of quantum
measurement, which destroys the state of the system to be
measured, and one cannot clone an unknown quantum state
�6�. Another relevant issue is nonlocality of quantum me-
chanics. When the system to be measured is a composite, we
can generally obtain more information about the system by a
global measurement on the whole system than by a combi-
nation of local measurements on its subsystems �7–12�.

Let us focus on the problem of distinguishing two pure
states of a composite system which is shared by two parties.
It is a fundamental question of quantum-information theory
whether the optimal discrimination can be obtained by
means of a local operations and classical communication
�LOCC� scheme for the two parties.

Walgate et al. �13� showed that any two mutually or-
thogonal pure states can be perfectly distinguished by
LOCC. This is rather surprising since their result holds re-
gardless of entanglement of the states. It has also been shown
that any two generally nonorthogonal pure states can be op-
timally discriminated by LOCC: the optimal success prob-
ability of discrimination by a global measurement can be
attained by a LOCC protocol. This was shown for two types
of discrimination problem: the discrimination problem with
minimum error �14� where an erroneous guess is allowed,
and the unambiguous discrimination problem �15–17� where
no error is allowed but an inconclusive result can be pro-
duced. These results can be interpreted as meaning that there
is no nonlocality in the discrimination of two pure states.

We can consider a different setting for the discrimination
problem of two pure states. In the usual setting, it is assumed
that perfect classical knowledge of the two states to be dis-
criminated ��1 and �2� is given. The measurement scheme for
the optimal discrimination naturally depends on the classical
knowledge of the states. Instead, let us assume that there is

no classical knowledge of the states �1 and �2, but a certain
number �N� of their copies are available as reference states.
One’s task is to correctly identify a given input state � with
one of the reference states �1 and �2 by means of a measure-
ment on the whole state � � �1

�N
� �2

�N. When the number of
copies N is infinite, the problem is reduced to quantum state
discrimination. This is because we can always obtain com-
plete classical knowledge of a quantum state if we have in-
finitely many copies of the state. We call this problem “quan-
tum state identification.” The optimal success probability by
a global measurement scheme has been determined for the
minimum-error �18� and unambiguous �19,20� identification
problems.

In this paper, we investigate the pure-state identification
problem of N=1 where the two reference pure states �1 and
�2 are bipartite. The input state � given to Alice and Bob is
guaranteed to be one of the reference states �1 and �2 with
prior probabilities �1 and �2. The two reference states are
assumed to be independently and randomly distributed on
the pure-state space in a unitary invariant way. Each refer-
ence state generated in this way is generally entangled. Two
types of identification problem will be considered: identifi-
cation with minimum error and unambiguous identification
where no error is allowed. For the minimum-error identifica-
tion, we will demonstrate that Alice and Bob can identify the
input state by means of a LOCC protocol with the success
probability given by the optimal global identification
scheme. In the case of the unambiguous identification prob-
lem, the maximal success probability by means of LOCC
will shown to be less than the globally achievable identifica-
tion probability.

II. MINIMUM-ERROR IDENTIFICATION WITHOUT
LOCC CONDITIONS

In this section, we will precisely formulate the minimum-
error pure-state identification problem and derive the maxi-
mum mean success probability without the LOCC conditions
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for the case of N=1 and an arbitrary prior occurrence prob-
ability of the reference states. In the case of a single-qubit
system, the problem has been solved by Bergou et al. �21�.
For the case of general N but with equal prior occurrence
probabilities, see Ref. �18�.

We have three quantum systems numbered 0, 1, and 2,
each on a d-dimensional space Cd. The input pure state �
= ������ is prepared in system 0 and the two reference pure
states �1= ��1���1� and �2= ��2���2� in systems 1 and 2, re-
spectively. The space that an operator acts on is specified by
a number in parentheses. For example, ��0� is a density op-
erator on system 0. The input state � is promised to be one of
the reference states �1 and �2 with prior probabilities
��1 ,�2	. The two reference states are independently and ran-
domly chosen from the state space Cd in a unitary invariant
way. More precisely, the distribution is assumed uniform on
the �2d−1�-dimensional unit hypersphere of 2d real vari-
ables �Re ci , Im ci	i=0

d−1, where ci are the expansion coeffi-
cients of the state in terms of an orthonormal base ��i�	i=0

d−1.
The distribution does not depend on a particular choice of
the base.

Our task is to correctly identify the input state with one of
the reference states �� ��=1,2� by measuring the whole sys-
tem 0 � 1 � 2. We denote the corresponding positive-
operator-valued measure �POVM� elements by E� ��
=1,2�. The mean identification success probability is then
given by

p�d� = 

�=1,2

���tr�E����0��1�1��2�2��� , �1�

where the symbol �¯� represents the average over the refer-
ence states �1 and �2. Note that the POVM E� is independent
of �1 and �2, since we have no classical knowledge of the
reference states.

The average over the reference states can be readily per-
formed by using the formula �22�

���n� =
Sn

dn
, �2�

where Sn is the projector on to the totally symmetric sub-
space of �Cd��n and dn is its dimension given by dn
= n+d−1Cd−1. Using E2=1−E1, the mean success probability
to be maximized is written as

p�d� = �2 +
1

d1d2
tr�E1��1S�01� − �2S�02��	 , �3�

where S�01� and S�02� are the projectors onto the totally
symmetric subspaces of spaces 0 � 1 and 0 � 2, respectively.

The only restriction on the POVM element E1 is 0�E1
�1. In order to maximize the mean success probability Eq.
�3�, we use the following result which holds for any Hermit-
ian operator �:

max
0�E�1

tr�E�� = sum of all positive eigenvalues of � ,

where the maximum is attained when E is the projector P+
onto the subspace V+��� spanned by all eigenstates of � with
a positive eigenvalue. Note that it does not matter whether

the subspace V+��� includes eigenvectors with zero eigen-
value. In our case, � is defined to be

� = �1S�01� − �2S�02� . �4�

Let us decompose the total space into three subspaces
according to the symmetry with respect to system permuta-
tions �23�:

V = Cd
� Cd

� Cd = VS � VA � VM. �5�

Here VS is the totally symmetric subspace of dimension
dim VS�d3=d�d+1��d+2� /6 and VA is the totally antisym-
metric subspace of dimension dim VA=d�d−1��d−2� /6. The
remaining subspace VM is the mixed symmetric subspace of
dimension dim VM=2d�d2−1� /3. The subspace VM con-
tains the two-dimensional irreducible representation of the
symmetric group of order 3, S3, with multiplicity dim VM /2.
We denote projectors onto VS, VA, and VM by S3, A3, and
M3, respectively.

It is clear that �=�1−�2 in VS and �=0 in VA. To deter-
mine eigenvalues of � in VM, it is convenient to introduce
two operators D and A:

D � S�01� − S�02� =
1

2
�T�01� − T�02�� , �6�

A � S�01� + S�02� − 1 =
1

2
�T�01� + T�02�� . �7�

Here, T�01� is the operator that exchanges systems 0 and 1
and T�02� exchanges systems 0 and 2. Calculating D2, we
find

D2 =
1

4
�2 − T�01�T�02� − T�02�T�01��

=
3

4
�1 − S3 − A3� =

3

4
M3,

which implies that eigenvalues of D are ��3 /2 in VM and 0
otherwise. It is also easy to show that

DA + AD = 0, �8�

A2 = 1 − D2. �9�

The anticommutability of Eq. �8� implies that, if �+ � is an
eigenstate of D with eigenvalue �3 /2, then A�+ � is also an
eigenstate of D with eigenvalue −�3 /2. By Eq. �9�, we find
that �−��2A�+ � is correctly normalized. Note that the posi-
tive and negative eigenvalues of D have the same multiplic-
ity. Thus we can choose the orthonormal base ��+,k� , �−,k�	
in VM such that

D�+ ,k� = +
�3

2
�+ ,k� ,

D�− ,k� = −
�3

2
�− ,k� ,

ISHIDA et al. PHYSICAL REVIEW A 78, 012309 �2008�

012309-2



A�+ ,k� =
1

2
�− ,k� ,

A�− ,k� =
1

2
�+ ,k� ,

where the index k runs from 1 to dim VM /2. In this base, D
and A are block-diagonalized with respect to k and each
block has the following 2�2 matrix representation:

D =
�3

2
0

0 −
�3

2
�, A = 0

1

2

1

2
0 � .

In terms of D and A, the operator � is written as

� =
1

2
��1 − �2 + D + ��1 − �2�A� . �10�

The operator � is also block-diagonalized with the same 2
�2 matrix representation, which can be readily diagonal-
ized. Two eigenvalues of � are given by

	� =
1

2
��1 − �2 � �1 − �1�2� , �11�

and we find that 	+
0 and 	−�0.
Now we can calculate the maximum success probability.

Let us assume �1
�2 for the moment. The positive eigen-
values of � are �1−�2 in VS with multiplicity dim VS and 	+
in VM with multiplicity dim VM /2. We thus obtain

pmax�d� = �2 +
1

d1d2
���1 − �2�dim VS + 	+

dim VM
2

�
=

1

2
+

d + 2

6d
��1 − �2� +

d − 1

3d
�1 − �1�2. �12�

If �1��2, the only positive eigenvalue of � is 	+ in VM;
hence we obtain

pmax�d� = �2 +
1

d1d2
	+

dim VM
2

=
1

2
−

d + 2

6d
��1 − �2� +

d − 1

3d
�1 − �1�2. �13�

These two cases can be combined to yield a symmetric form
of the maximum success identification probability for the
general magnitude relation between �1 and �2:

pmax�d� =
1

2
+

d + 2

6d
��1 − �2� +

d − 1

3d
�1 − �1�2. �14�

The maximum is attained when the POVM element E1 is
given by P+, the projector onto the subspace of positive ei-
genvalues of �. The pmax�d� given by Eq. �14� reproduces
the result for the case d=2 obtained in Ref. �21� and the one
for arbitrary d in Ref. �18� when �1=�2=1 /2.

III. MINIMUM-ERROR IDENTIFICATION BY LOCC

Let us assume that each of the three systems 0, 1, and 2,
where the input state and the two reference states are pre-
pared, consists of two subsystems. The state space of each
system is represented by a tensor product Cd=Cda � Cdb,
which is shared by Alice and Bob. Their task is to identify a
given input bipartite state with one of the two bipartite ref-
erence states by means of local operations and classical com-
munication. As in the preceding section, the two reference
states are chosen independently and randomly from the pure
state space Cd in a unitary invariant way. Therefore, those
bipartite states are generally entangled. The question is
whether Alice and Bob can achieve the maximum mean
identification success probability given by the global mea-
surement scheme. In this section, we will show that this is
possible by explicitly constructing a LOCC protocol which
achieves it.

The mean success probability is given by Eq. �3� in the
preceding section. The optimal global POVM element E1 is
P+, the projector onto the subspace of positive eigenvalues of
� defined by Eq. �4�. The projector P+ does not apparently
satisfy the conditions of LOCC, since the operator � is not of
a separable form. However, it should be noticed that tr�E1��
remains the same if the support of E1 contains states with
zero eigenvalue of �. It is this freedom that we will exploit
in order to construct a POVM element E1 that satisfies the
LOCC conditions.

We begin by rewriting the operator � of Eq. �10� in terms
of local operators of Alice and Bob. Note that the exchange
operator T�01�, for example, can be written as T�01�
=T�a��01� � T�b��01�, where T�a��01� is the operator that ex-
changes Alice’s part of systems 0 and 1 and T�b��01� is de-
fined for Bob’s part in the same way. Hereafter, we use the
superscript �a� or �b� for an operator to indicate which space
�of Alice or Bob� the operator acts on. Since we have

D = D�a�
� A�b� + A�a�

� D�b�, �15�

A = D�a�
� D�b� + A�a�

� A�b�, �16�

the operator � is expressed as

� =
1

2
��1 − �2 + D�a�A�b� + A�a�D�b�

+ ��1 − �2��D�a�D�b� + A�a�A�b��� . �17�

The task for Alice and Bob is to maximize tr�E1
L�� with a

POVM element E1
L which satisfies LOCC conditions. We

first construct a separable POVM E1
L which attains the maxi-

mum value tr�P+��. This separable POVM E1
L will then be

shown to satisfy the LOCC conditions. Without loss of gen-
erality, we assume �1��2 throughout this section, since the
problem is symmetric with respect to �1 and �2.

Suppose that Alice and Bob first determine the
permutation symmetry of their systems by a projective mea-
surement with projection operators �S3

�a� ,A3
�a� ,M3

�a�	 and
�S3

�b� ,A3
�b� ,M3

�b�	, respectively. If one of them found that his
or her system is totally symmetric or antisymmetric, it is
easy for the other party to find the best strategy. For example,
assume that Alice found her system to be totally symmetric.
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Knowing Alice’s outcome, Bob performs a POVM measure-
ment, which we denote by x�b�. The contribution to tr�E1

L�� is
then given by

tr�S3
�a�

� x�b��� = dim�VS
�a��trb�x�b���b�� ,

since S3
�a�D�a�=0 and S3

�a�A�a�=S3
�a�. It is clear that the best

strategy for Bob is to take the projector P+
�b� onto the

positive-eigenvalue space of ��b�. Note that the positive-
eigenvalue space of ��b� is a subspace of VM

�b�, since the ei-
genvalue of ��b� in VS

�b� is �1−�2 ��0�. In this case the
contribution to tr�E1

L�� is given by

tr�S3
�a�

� P+
�b��� =

	+

2
dim VS

�a� dim VM
�b�.

If Alice’s part is totally antisymmetric, the operator for Bob
is given by

tra�A3
�a��� = dim�VA

�a�����b�,

���b� �
1

2
��1 − �2 − D�b� − ��1 − �2�A�b�� .

The operator ���b� differs from ��b� only in the signs in
front of D�b� and A�b�. Its eigenvalues are 0 in VS

�b� and �1
−�2 ��0� in VA

�b�. In VM
�b�, the operator ���b� has eigenvalue

	− in the positive-eigenvalue subspace of ��b� and 	+ in the
negative-eigenvalue subspace of ��b�. This implies that Bob’s
best POVM element is P−

�b�, the projector onto the ��b�’s
negative-eigenvalue subspace in VM

�b�. The contribution to
tr�E1

L�� in this case is given by

tr�A3
�a�

� P−
�b��� =

	+

2
dim VA

�a� dim VM
�b�.

The same argument also holds when Bob’s system is totally
symmetric or antisymmetric. Therefore, when the total state
does not belong to VM

�a�
� VM

�b�, the whole contribution to
tr�E1

L�� is given by

tr��S3
�a�P+

�b� + A3
�a�P−

�b� + P+
�a�S3

�b� + P−
�a�A3

�b����

=
1

2
	+�dim VS

�a� dim VM
�b� + dim VA

�a� dim VM
�b�

+ dim VM
�a� dim VS

�b� + dim VM
�a� dim VA

�b�� . �18�

When the total state belongs to VM
�a�

� VM
�b�, construction of the

best strategy for Alice and Bob is rather involved. First we
introduce the following operators X1 and X2 for each of Al-
ice’s and Bob’s spaces:

X1
��� =

2
�3

D���,

X2
��� = 2A��� �� = a,b� . �19�

Note that X1
��� and X2

��� anticommute and �X1
����2= �X2

����2=1
in the mixed symmetric space VM

���. The operator � in terms
of Xi

��� is not diagonal with respect to the index i. We further
define rotated Xi’s in order to diagonalize � with respect to
the index i:

Y1
��� = cos �X1

��� + sin �X2
���,

Y2
��� = − sin �X1

��� + cos �X2
��� �� = a,b� . �20�

We find that � takes the following “diagonal” form:

� =
1

2
��1 − �2 + 	+Y1

�a�Y1
�b� + 	−Y2

�a�Y2
�b�� , �21�

if we take

cos 2� =
�1 − �2

2�1 − �1�2

,

sin 2� =
�3

2�1 − �1�2

.

The eigenvalues of Yi
��� are 1 and −1 with multiplicity

dim VM
��� /2 since we have

�Y1
����2 = 1, �Y2

����2 = 1,

Y1
���Y2

��� + Y2
���Y1

��� = 0. �22�

The positive- and negative-eigenvalue subspaces of Y1
��� are

transformed into each other by the operation of Y2
���, and vice

versa. We should also notice that �	−�
 �	+� when �1��2.
These considerations imply that the optimal separate POVM
element is given by Q+

�a�
� Q−

�b�+Q−
�a�

� Q+
�b�, where Q�

��� is the
projector onto the positive-and negative-eigenvalue sub-
spaces of Y2

���. The contribution to tr�E1
L�� is found to be

tr��Q+
�a�

� Q−
�b� + Q−

�a�
� Q+

�b����

=
1

4
��1 − �2 − 	−�dim VM

�a� dim VM
�b�

=
1

4
	+dim VM

�a� dim VM
�b�, �23�

where we used tr�Q�
���Y1

����=0.
Thus the whole POVM element is given by

E1
L = S3

�a�P+
�b� + A3

�a�P−
�b� + P+

�a�S3
�b� + P−

�a�A3
�b�

+ Q+
�a�Q−

�b� + Q−
�a�Q+

�b�. �24�

Adding Eqs. �18� and �23�, we find that tr�E1
L�� indeed at-

tains the maximum value given by the global POVM element
E1= P+:

tr�E1
L�� =

1

2
	+ dim VM = tr�P+�� . �25�

To show the above equality, we used the relation

dim VM = dim VS
�a� dim VM

�b� + dim VM
�a� dim VS

�b�

+ dim VA
�a� dim VM

�b� + dim VM
�a� dim VA

�b�

+
1

2
dim VM

�a� dim VM
�b�, �26�

which can be readily verified by a straightforward calcula-
tion. This relation can be also understood from the viewpoint
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of inner �Kronecker� products of two representations of the
symmetric group of order 3: the product of two mixed sym-
metric representations contains the totally symmetric and an-
tisymmetric representations in addition to the mixed sym-
metric representation, whereas the product of the totally
�anti�symmetric representation and the mixed symmetric rep-
resentation is the mixed symmetric representation.

We can show that the POVM element E1
L given in Eq. �24�

can be implemented with a LOCC protocol. First Alice and
Bob determine which permutation symmetries each one’s lo-
cal state has; totally symmetric, totally antisymmetric, or
mixed symmetric. If one of them finds that his or her state is
totally symmetric or antisymmetric and the other party’s
state is mixed symmetric, this party with the mixed symmet-
ric state performs the measurement by the projectors
�P+

��� , P−
���	. They conclude that the input state is �1 if the

combination of their outcomes is either �symmetric, P+� or
�antisymmetric, P−�. Otherwise they conclude that the input
state is �2. When Alice and Bob find that both the local states
are mixed symmetric, they perform the projection measure-
ment by �Q+

��� ,Q−
���	. They conclude that the input state is �1,

only when the combination of outcomes is �+,−�.
Thus we conclude that minimum-error pure-state identifi-

cation with any prior occurrence probability can be optimally
performed within the LOCC scheme.

IV. UNAMBIGUOUS IDENTIFICATION
AND SYMMETRIES OF POVM

In this section, we precisely formulate the unambiguous
identification problem of two pure states, and rederive the
optimal success probability attainable by the global measure-
ment scheme, though the result has been reported in Refs.
�19,20�. The purpose of this section is to explain two impor-
tant symmetries of the measurement scheme of this problem,
which will also play a crucial role in determining the optimal
probability by the LOCC scheme in the next section. In this
and the next sections, we assume equal prior probabilities for
the two reference states.

A. Problem

In the unambiguous identification problem, the task is to
unambiguously identify the input pure state � with one of
the two pure reference states �1 and �2. Our measurement
can produce three outcomes �=1,2 ,0. If the outcome is
� �=1,2�, we are certain that the input state � is ��, and
outcome 0 means that we are not certain about the identity of
the input; this is called an inconclusive result. Let us intro-
duce a POVM �E�	�=0,1,2 corresponding to the three mea-
surement outcomes. The mean success probability of identi-
fication is then given by

p =
1

2
�tr�E1�1�0��1�1��2�2�� + tr�E2�2�0��1�1��2�2��� .

�27�

The condition that we are not allowed to make a mistake
imposes the following no-error conditions on E1 and E2:

�tr�E1�2�0��1�1��2�2�� = 0

tr�E2�1�0��1�1��2�2�� = 0
� for any �1 and �2.

�28�

In what follows, we will optimize the mean success prob-
ability of Eq. �27� under the no-error conditions Eq. �28�.
Performing the average over the reference states by Eq. �2�,
we write the mean success probability �27� as

p�d� =
1

2d2d1
�tr�E1S�01�� + tr�E2S�02��	 , �29�

where S�01� and S�02� are the projectors onto the totally
symmetric subspaces of spaces 0 � 1 and 0 � 2, respectively.
Averaging the no-error conditions of Eq. �28�, we obtain

tr�E1S�02�� = 0, tr�E2S�01�� = 0. �30�

Since E1 and S�02� are both positive operators, the above
conditions imply that the supports of them are orthogonal to
each other. The same is true for E2 and S�01�. The no-error
conditions are thus equivalent to

E1S�02� = S�02�E1 = 0, �31�

E2S�01� = S�01�E2 = 0. �32�

B. Symmetries of POVM

The set of POVMs satisfying the no-error conditions is
convex; if two POVMs E� and E�� respect the no-error con-
ditions, so does their convex linear combination rE�+ �1
−r�E�� for any 0�r�1. The resulting success probability is
also a convex combination, p(rE+ �1−r�E�)=rp�E�+ �1
−r�p�E��, with an obviously abbreviated notation. It is this
convexity of the POVM that we exploit in order to impose
two symmetries on the optimal POVM without loss of gen-
erality.

First we consider the exchange symmetry between sys-
tems 1 and 2. For an optimal POVM F�, we define another
POVM by

F1� = T�12�F2T�12� ,

F2� = T�12�F1T�12� ,

F0� = T�12�F0T�12� ,

where T�12� is the exchange operator between systems 1 and
2. The POVM F�� is clearly legitimate and optimal. Further-
more, a new POVM E�= 1

2 �F�+F�� �, which is a convex lin-
ear combination of F� and F�� , is also optimal and satisfies
the exchange symmetry between systems 1 and 2:

E1 = T�12�E2T�12� ,

E2 = T�12�E1T�12� ,
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E0 = T�12�E0T�12� . �33�

The second important symmetry is the unitary symmetry of
the distribution of the reference states. If a POVM F� is
optimal, another POVM defined by

U�3F��U�3�−1

is also legitimate and optimal for arbitrary unitary operator
U. We now construct a POVM by

E� =� dU U��3�F��U��3��−1, �34�

where dU is the normalized positive invariant measure of the
group U�d�. The POVM E� is clearly a legitimate and opti-
mal POVM. We can show that E� commutes with U�3 for
any unitary U:

U�3E� =� dU��UU����3�F��UU���3��−1U�3

=� dU�U���3�F��U���3��−1U�3 = E�U�3, �35�

which means that E� is a scalar with respect to the group
U�d�. Thus we can assume that the optimal POVM satisfies
the exchange symmetry of Eq. �33� and is scalar with respect
to the group U�d�.

By the exchange symmetry, the mean success probability
to be optimized takes the form

p =
1

d2d1
tr�E1S�01�� , �36�

where E1 is a unitary scalar and subject to the conditions

E1 
 0, 1 
 E1 + T�12�E1T�12� , �37�

in addition to the no-error conditions given by Eq. �31�.

C. Optimal identification probability

As in the two preceding sections, we decompose the total
space into three subspaces VS, VA, and VM, according to the
symmetry with respect to system permutations. Under the
unitary transformation U�3, the three subspaces VS, VA, and
VM are clearly invariant since U�3 commutes with system
permutations. Furthermore, it is known that U�3 acts on VS
and VA irreducibly, and the mixed symmetric space VM con-
tains two �dim VM /2�-dimensional irreducible representa-
tions of the group U�d� �23�. Now, suppose that a positive
operator E is a unitary scalar; E commutes with U�3. If
tr�ES�02��=0, Schur’s lemma requires that E be a linear
combination of two projection operators A3 and M3A�02�,
with A�02�=1−S�02� being the projector onto the antisym-
metric subspace of 0 � 2. Similarly, if tr�EA�02��=0, E is a
linear combination of S3 and M3S�02�. These facts will be
used also in the next section.

With these considerations, we can determine the operator
form of the POVM element E1. The operator E1 is given by
a linear combination of A3 and M3A�02� since E1 is a uni-
tary scalar and satisfies the no-error condition tr�E1S�02��

=0. But A3 does not contribute to the mean success prob-
ability of Eq. �36�. Thus, without loss of generality, we can
write

E1 = M3A�02� , �38�

where  is a positive coefficient. The range of  is restricted
by the positivity of E0, which is written as

E1 + T�12�E1T�12� = M3�A�02� + A�01��

= M3�1 − A� � 1.

This requires �2 /3, since the operator A defined in Eq. �7�
has eigenvalues �1 /2 in VM. Clearly, the mean success
probability attains its maximum when  takes the largest
possible value, 2/3. The optimal POVM is thus given by

E1 =
2

3
M3A�02� ,

E2 =
2

3
M3A�01� ,

E0 =
1

3
M3�1 + 2A� + S3 + A3. �39�

In order to obtain the optimal probability, we need trace
tr�M3A�02�S�01��, which is calculated as follows:

tr�M3A�02�S�01�� =
1

4
tr�M3�1 + T�01�

− T�02� − T�02�T�01��	

=
1

2
tr�M3D2�

=
3

8
dim VM, �40�

where we used tr�M3T�01��=tr�M3T�02��=0. Using the ex-
plicit expressions for the dimensions, we finally obtain the
optimal mean success probability of unambiguous identifica-
tion:

pmax =
d − 1

3d
. �41�

V. LOCAL UNAMBIGUOUS IDENTIFICATION

Let us now assume that each of the three systems consists
of two subsystems shared by Alice and Bob and its state
space is represented by a tensor product Cd=Cda � Cdb. The
task of Alice and Bob is to unambiguously identify a given
input state by means of LOCC with one of the two reference
states.

A. Separable POVM and symmetries

Any POVM E�
L which satisfies the LOCC conditions has

a separable form:

ISHIDA et al. PHYSICAL REVIEW A 78, 012309 �2008�

012309-6



E�
L = 


i

E�i
�a�

� E�i
�b� �� = 0,1,2� , �42�

where

E�i
�a� 
 0, E�i

�b� 
 0, 

�

E�
L = 1. �43�

It is known that there exist separable POVMs that do not
satisfy the LOCC conditions �11�. We will first optimize the
success probability within the separable class of POVMs,
and then show that the obtained optimal separable POVM
can be implemented by a LOCC protocol.

Note that a convex linear combination of separable
POVMs is again separable, and the no-error conditions
tr�E1

LS�02��=tr�E2
LS�01��=0 are also preserved. This enables

us to impose two symmetries on the optimal separable
POVM as in the preceding section. We begin with the ex-
change symmetry for systems 1 and 2. Since T�12�
=T�a��12� � T�b��12�, it is clear that T�12�E�

LT�12� is sepa-
rable if E�

L is separable:

T�12�E�
LT�12� = 


i

T�a��12�E�i
�a�T�a��12�

� T�b��12�E�i
�b�T�b��12� .

Therefore, we can impose on separable POVMs the same
exchange symmetry as the one given in Eq. �33�:

E1
L = T�12�E2

LT�12� ,

E2
L = T�12�E1

LT�12� ,

E0
L = T�12�E0

LT�12� . �44�

For the unitary symmetry, we notice that U�3F�
L�U�3�−1 is

not generally separable for a separable POVM F�
L =
iF�i

�a�

� F�i
�b�. However, this is true if U is a tensor product of two

unitaries as U=u�a� � v�b�:

U�3F�
L�U�3�−1 = 


i

u�a��3F�i
�a��u�a��3�−1

� v�b��3F�i
�b��v�b��3�−1.

For the class of this separable U, we can repeat the argument
given in the preceding section. Assume that a separable
POVM F�

L is optimal. Integrating over u�a� and v�b� with the
invariant measure, we obtain

E�
L �� du�a�dv�b��u�a��3v�b��3�F�

L�u�a��3v�b��3�−1

= 

i

E�i
�a�

� E�i
�b�,

where E�i
�a� and E�i

�b� are given by

E�i
�a� =� du�a�u�a��3F�i

�a��u�a��3�−1,

E�i
�b� =� dv�b�v�b��3F�i

�b��v�b��3�−1.

The POVM E�
L obtained in this way is again separable and

optimal. Furthermore, it is easy to see that E�i
�a� and E�i

�b� are
both unitary scalars: for any unitaries u�a� and v�b�, we have

�E�i
�a�,u�a�� = 0, �E�i

�b�,v�b�� = 0. �45�

Let us closely examine the no-error conditions for separable
POVMs. The global projector S�02� is decomposed by local
symmetry projectors as follows:

S�02� = S�a��02� � S�b��02� + A�a��02� � A�b��02� .

The no-error condition tr�E1
LS�02��=0 is then expressed as



i

�tr�E1i
�a�S�a��02��tr�E1i

�b�S�b��02��

+ tr�E1i
�a�A�a��02��tr�E1i

�b�A�b��02��	 = 0.

In this equation, all terms are non-negative, implying that
each term should vanish. Therefore, for each i, we have two
possibilities: one is

tr�E1i
�a�S�a��02�� = 0 and tr�E1i

�b�A�b��02�� = 0,

and the other is

tr�E1i
�a�A�a��02�� = 0 and tr�E1i

�b�S�b��02�� = 0.

Note that other combinations like

tr�E1i
�a�S�a��02�� = 0 and tr�E1i

�a�A�a��02�� = 0

do not occur as this would imply that E1i
�a� or E1i

�b� is identi-
cally zero. From the no-error condition for E2

L, we obtain
similar conditions for its components E2i

�a� and E2i
�b�.

B. Possible operator form of separable POVM

As in the preceding section, we can show that a positive
operator E�p� on space V�p� �p=a ,b� which is a unitary scalar
and satisfies tr�E�p�S�p��02��=0 is a linear combination of
A3

�p� and M3
�p�A�p��02�. Similarly, if E�p� satisfies

tr�E�p�A�p��02��=0, then E�p� can be written as a linear com-
bination of S3

�p� and M3
�p�S�p��02�. Now we can write the

possible form of the separable E1
L which has the unitary sym-

metry and satisfies the no-error conditions:

E1
L = 1S3

�a�
� M3

�b�A�b��02� + 2A3
�a�

� M3
�b�S�b��02�

+ 3M3
�a�S�a��02� � A3

�b� + 4M3
�a�A�a��02� � S3

�b�

+ �1M3
�a�S�a��02� � M3

�b�A�b��02�

+ �2M3
�a�A�a��02� � M3

�b�S�b��02� , �46�

where 1 ,2 ,3 ,4 and �1 ,�2 are non-negative coefficients.
The operators S3 � A3 and A3 � S3 are not included in E1

L,
since the corresponding outcomes do not arise; the total state
contains no totally antisymmetric component. E2

L and E0
L are

given by E2
L=T�12�E1

LT�12� and E0
L=1−E1

L−E2
L.

We have now found the possible operator form of a sepa-
rable POVM that respects the no-error conditions. The re-
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maining requirement on the POVM is the positivity of E0
L,

which restricts the range of the coefficients  and �. The
positivity of E0

L is equivalent to E1
L+E2

L�1. We will sepa-
rately check this inequality in each of all subspaces of the
permutation symmetry.

In the subspace VS
�a�

� VM
�b�, the relevant part of E1

L+E2
L is

written as

1�S3
�a�

� M3
�b�A�b��02� + S3

�a�
� M3

�b�A�b��01��

= 1S3
�a�

� M3
�b��1 − A�b�� .

This part should be smaller than the projector onto the sub-
space, S3

�a�
� M3

�b�. Here, A�b� is defined to be �T�b��01�
+T�b��02�� /2 in the same way for the global operator A de-
fined by Eq. �7�. The eigenvalues of A�b� in VM

�b� are 1/2 and
−1 /2. Therefore we obtain 1�2 /3. Similarly, we obtain
4�2 /3 from the inequality in the subspace VM

�a�
� VS

�b�.
The inequality E1

L+E2
L�1 in VA

�a�
� VM

�b� takes the form

2�A3
�a�

� M3
�b�S�b��02� + A3

�a�
� M3

�b�S�b��01��

= 2A3
�a�

� M3
�b��1 + A�b�� � A3

�a�
� M3

�b�,

which requires that 2�2 /3. In the same way, we obtain
3�2 /3 from the inequality in VM

�a�
� VA

�b�. Thus all the four
coefficients  should be less than or equal to 2/3.

It is not straightforward to find allowed ranges of �1 and
�2 from the inequality in VM

�a�
� VM

�b�. In the space VM
�a�

� VM
�b�,

we define an operator X to be

X � �1�S�a��02�A�b��02� + S�a��01�A�b��01��

+ �2�A�a��02�S�b��02� + A�a��01�S�b��01�� , �47�

which is the part of E1
L+E2

L contributing to the space VM
�a�

� VM
�b�. We need to find the greatest eigenvalue of X, since the

inequality implies X�M3
�a�

� M3
�b�. It should be understood

that we are working in subspace VM
�a�

� VM
�b�, and the projec-

tors M3
�a� and M3

�b� will be omitted. In terms of A�p� and D�p�,
the operator X is expressed as

X = ��1 − A�a�
� A�b� − D�a�

� D�b��

+ ��1�a�
� A�b� − A�a�

� 1�b�� ,

where �= 1
2 ��1+�2� and �= 1

2 ��1−�2�. In order to diagonal-
ize X, it is convenient to introduce the basis in which
A�p��p=a ,b� is diagonal:

A�p��m+� =
1

2
�m+�, A�p��m−� = −

1

2
�m−� ,

D�p��m+� =
�3

2
�m−�, D�p��m−� =

�3

2
�m+� ,

where m=1,2 , . . . ,dim�VM
�p�� /2. The bipartite state �m��

� �m��� for a given set of m and m� will be written as ����
for simplicity.

In this basis, two eigenvalues of X are easily found by
inspection:

X��+ +� + �− − �� = 0,

X��+ +� − �− − �� =
3

2
���+ +� − �− − �� .

States �+−� and �−+� are transformed by X as

X�+ − � = �5

4
� − ���+ − � −

3

4
��− +� ,

X�− +� = �5

4
� + ���− +� −

3

4
��+ − � .

The other two eigenvalues are determined by diagonalizing
the 2�2 matrix corresponding to the above transformation
and found to be

�� =
5

4
� �� 9

16
�2 + �2.

Of the four eigenvalues, the greatest one is �+. The positivity
of E0

L thus requires that the positive coefficients �1 and �2
should satisfy the condition

5

4
� +� 9

16
�2 + �2 � 1, �48�

where �= 1
2 ��1+�2� and �= 1

2 ��1−�2�.

C. Maximum success probability by separable POVM

Now that we have the possible form of the separable
POVM E�

L and the conditions for the coefficients in it, we
can optimize the mean success probability given by

pL =
1

d2d1
tr�E1

LS�01�� . �49�

The trace tr�E1
LS�01�� can be calculated by decomposing the

trace into traces in the subsystems as

tr�E1
LS�01�� = tr�E1

L�S�a��01�S�b��01� + A�a��01�A�b��01��	 .

We must calculate many traces in subsystems, for which the
following formulas can be used �p=a ,b�:

tr M3
�p�S�p��02�S�p��01� = tr M3

�p�A�p��02�A�p��01�

=
1

2
tr�M3

�p��A�p��2�

=
1

8
dim VM

�p�,

tr M3
�p�S�p��02�A�p��01� = tr M3

�p�A�p��02�S�p��01�

=
1

2
tr�M3

�p��D�p��2�

=
3

8
dim VM

�p�.

The result is given by
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tr�E1
LS�01�� =

3

8
�1 dim VS

�a� dim VM
�b� + 2 dim VA

�a� dim VM
�b�

+ 3 dim VM
�a� dim VA

�b� + 4 dim VM
�a� dim VS

�b��

+
3

32
��1 + �2�dim VM

�a� dim VM
�b�.

It is clear that we should take the largest possible value 2/3
for the coefficients  in order to maximize tr�E1

LS�01��. For
�1 and �2, note that tr�E1

LS�01�� contains �’s in the form of
�1+�2, and we can use the following inequalities:

�1 + �2 = 2� �
5

4
� +� 9

16
�2 + �2 � 1. �50�

Evidently, �1+�2 takes the maximum value 1 only when
�1=�2=1 /2. The maximum value of tr�E1

LS�01�� with sepa-
rable POVM is thus given by

tr�E1
LS�01�� =

1

4
�dim VS

�a� dim VM
�b� + dim VA

�a� dim VM
�b�

+ dim VM
�a� dim VA

�b� + dim VM
�a� dim VS

�b�

+
3

8
dim VM

�a� dim VM
�b�� . �51�

On the other hand, we have

tr�E1S�01�� =
1

4
dim VM �52�

for the global POVM element E1. Using the relation of
dimensions given in Eq. �26�, we thus conclude that
tr�E1

LS�01��� tr�E1S�01��, implying that any separable
POVM cannot attain the maximum unambiguous identifica-
tion probability by the global measurement scheme.

D. LOCC protocol

Thus, the optimal separable POVM element E1
L is given

by Eq. �46� with i=2 /3 and �i=1 /2:

E1
L =

2

3
�S3

�a�
� M3

�b�A�b��02� + A3
�a�

� M3
�b�S�b��02�

+ M3
�a�S�a��02� � A3

�b� + M3
�a�A�a��02� � S3

�b��

+
1

2
�M3

�a�S�a��02� � M3
�b�A�b��02�

+ M3
�a�A�a��02� � M3

�b�S�b��02�� . �53�

The remaining elements are given as E2
L=T�12�E1

LT�12� by
the exchange symmetry, and E0

L=1−E1
L−E2

L by the complete-
ness of the POVM. We can now show that this separable
POVM E�

L can be implemented by a LOCC protocol, which
is summarized as follows.

�1� First, Alice and Bob determine the permutation sym-
metry of their local system: totally symmetric, mixed sym-
metric, or totally antisymmetric. This is done by a projective
measurement with the set of orthogonal projectors
�S3

�p� ,M3
�p� ,A3

�p�	 of each party p �=a ,b�. Note that the cases

S3
�a�

� A3
�b� and A3

�a�
� S3

�b� do not occur, since they would
imply that the whole system is totally antisymmetric.

�2� If their outcome is S3
�a�

� S3
�b� or A3

�a�
� A3

�b�, Alice and
Bob declare an inconclusive result, i.e., 0.

�3� If one of the two parties p �=a or b� finds that his or
her local system is totally symmetric, S3

�p�, and the system of
the other party q ��p� is found to be mixed symmetric,
M3

�q�, then party q performs a POVM measurement:

e1 �
2

3
M3

�q�A�q��02� ,

e2 �
2

3
M3

�q�A�q��01� ,

e0 �
1

3
M3

�q��1 + 2A�q�� .

Note that the set �e1 ,e2 ,e0	 is a POVM since e�
0 ��
=0,1 ,2� and 
�e�=M3

�q�. The final identification result by
Alice and Bob is the measurement outcome � �=0,1 ,2� of
party q.

�4� If one of the two parties p �=a or b� finds that his or
her local system is totally antisymmetric, A3

�p�, and the sys-
tem of the other party q ��p� is found to be mixed symmet-
ric, M3

�q�, then party q performs a POVM measurement:

e1� �
2

3
M3

�q�S�q��02� ,

e2� �
2

3
M3

�q�S�q��01� ,

e0� �
1

3
M3

�q��1 − 2A�q�� .

It is easily verified that the set �e1� ,e2� ,e0�	 is also a POVM in
VM

�q�, and the final identification result of Alice and Bob is
chosen to be the measurement outcome � �=0,1 ,2� of party
q.

�5� Finally, when the total system is found to be in VM
�a�

� VM
�b�, one of the two parties, say Alice, performs the fol-

lowing POVM measurement:

e11 �
1

2
M3

�a�A�a��02�, e12 �
1

2
M3

�a�S�a��02� ,

e21 �
1

2
M3

�a�A�a��01�, e22 �
1

2
M3

�a�S�a��01� .

It is evident that the above set �ea1a2
	a1,a2=1,2 forms a POVM

in VM
�a�. If Alice’s outcome a1 is equal to 1, Bob performs a

projective measurement by the set of orthogonal projectors
�fb	b=1,2:

f1 � M3
�b�S�b��02�, f2 � M3

�b�A�b��02�;

otherwise, by the set of orthogonal projectors �fb�	b=1,2:
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f1� � M3
�b�S�b��01�, f2� � M3

�b�A�b��01� .

The final identification result � of Alice and Bob is Alice’s
result a1, if Alice’s outcome a2 coincides with Bob’s out-
come b. Otherwise, the final result is the inconclusive one,
i.e., 0.

Substituting explicit dimensions in Eq. �51�, we obtain the
optimal success probability with the LOCC protocol:

pmax
L =

1

36dadb�dadb + 1�
�11da

2db
2 + da

2 + db
2 − 13� , �54�

whereas the globally attainable success probability of Eq.
�41� in terms of dimensions da and db is given by

pmax =
1

3dadb
�dadb − 1� . �55�

Although there is a finite gap between pmax and pmax
L as

shown before, the numerical difference is not very large. For
example, in the case of a two-qubit bipartite system �da
=db=2�, the optimal LOCC protocol gives pmax

L =19 /80,
whereas the globally attainable probability is given by pmax
=1 /4. The difference is only 1/80. In the limit of da and db
going to infinity, we find that pmax

L approaches 11/36 and pmax
approaches 1/3 with the difference 1/36.

VI. CONCLUDING REMARKS

It is known that two bipartite pure states can be optimally
discriminated within a LOCC scheme if classical knowledge
of the two states are available. In this paper, we investigated
the identification problem of two bipartite pure states, where
no classical knowledge of the reference states is given but
only a copy of each reference state is available. The two
reference states are independently and randomly chosen from
the state space in a unitary invariant way.

In the case of minimum-error identification, we found that
the optimal identification can be done locally. This is true for
any prior probabilities, but we assumed that the number N of
copies of each state is 1. In the limit of large N, the identi-

fication problem reduces to the standard discrimination prob-
lem. This is because one can obtain complete classical infor-
mation on the reference states by performing a
tomographical measurement on infinitely many copies of
them. We note that an infinite number of copies of a bipartite
state is not equivalent to perfect classical knowledge of the
state. In general, possession of an unlimited number of cop-
ies is more advantageous than mere classical knowledge of
the state, because two parties sharing the states can utilize a
quantum channel. However, for the identification problems
with N=� considered in this paper, it turns out not to be an
advantage. This is because the discrimination of two known
pure states can be performed optimally by LOCC and no
scheme can perform better than the optimal global protocol.
Therefore, we can say that the pure-state identification can be
optimally performed by means of LOCC when N=1 and N
=�. We conjecture that this is also true for arbitrary N.

On the other hand, we have demonstrated that any LOCC
scheme for the unambiguous identification of two bipartite
pure states cannot attain the maximum success probability
achieved by the global measurement at least for the case of
equal prior probabilities. This contrasts remarkably with the
results for standard discrimination and the minimum-error
identification. Our result provides an example of nonlocality
in distinguishing two pure states. It is an interesting problem
to study the unambiguous identification of bipartite pure
states when the number of copies of the reference states is
finite but greater than 1.

Just for completeness, we comment on the N=0 case,
where no measurement �global or LOCC� on the input state
can improve the success probability. The maximum success
probabilities are max��1 ,�2	 and 0 for the minimum-error
and the unambiguous identification problems, respectively.

In this paper, we assumed that the two reference states are
independently and uniformly distributed in the state space.
This is a sensible assumption to make for two completely
unknown states. However, we note that the optimal identifi-
cation protocol depends on the distribution of the reference
states, and whether the LOCC scheme attains global optimal-
ity may also change for different distributions.
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