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Abstract  

 

The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and 

Cu) was studied using first principles calculations within spin-polarized density 

functional theory. Magnetic effect on the stability of borohydride is noted. Molecular 

adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz 

hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding 

one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.  
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Introduction 

 

 Understanding the structure, energetics, and mechanism of adsorption of 

borohydride (BH4ads) (“ads” means adsorbed on the surface) on different metals is an 

important step in the design and engineering on the atomic scale of surface catalysts for 

reactions involving borohydride. This is essential, for example, to guide the choice of 

anode catalyst for Direct Borohydride Fuel Cell (DBFC). 

DBFC is an alkaline-based fuel cell which has a potential to generate high 

power densities competitive to Direct Methanol Fuel Cell (DMFC) for portable power 

applications [1]. Over an electrocatalyst selective to direct oxidation, each borohydride 

molecule is capable of producing eight electrons via the suggested over-all cell reaction: 

. (1) 

However, the efficiency and power density of DBFCs are limited in part by the lack of 

an effective anode electrocatalyst [2-4] and the competing non-selective hydrolysis 

reaction which leads to undesirable hydrogen gas evolution [5-8]. 

 Many experimental studies on the electrooxidation of borohydride were carried 

out since the initial introduction of an aqueous sodium borohydride solution as an anode 

fuel for alkaline fuel cell in the 1960’s [9-12]. Low coulombic efficiency was reported 
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for Ni, Pd, and Pt [5,7] due to the production of hydrogen gas. Au [13-14] and Ag [14] 

anodes were reported to have high coulombic efficiency but the slow electrode kinetics 

requires high overpotentials to attain a practical power density. Other electrochemical 

studies involved pure and alloy catalysts using a variety of experimental techniques 

[15-24]. The general picture that emerged from these studies is that the initial adsorption 

of borohydride anion ( ) on catalysts, accompanied by a simultaneous transfer of 

electron generating (with y =1,2,3 for dissociative and y = 4 for 

molecular adsorption), and followed  by electrocatalytic reactions of BHyads with H2O, 

OHads, and OH-  can explain, in principle, the electrooxidation process25.  

Despite the large number of experimental studies, only a few theoretical studies 

were made on the adsorption of borohydride on different metals [25-29]. For the case of 

Pt(111), Pd(111) and Ir(111) surfaces, we previously found that borohydride dissociates  

generating BHads and 3Hads fragments [25]. The dissociated geometries differ only in the 

most stable sites for Hads (i.e, Pd: fcc hollow site, Ir: top site, Pt: next-neighboring top 

site). These are the same sites that were proposed as the preferred locations for H 

adatoms on Pd, Ir and Pt in the absence of borohydride species [30-31]. Surface 

diffusion of Hads and associative desorption yielding H2 is very likely. This explains the 

experimental observation of high H2 evolution on Pt [5,17]. Thus, a possible way to 
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avoid hydrogen evolution is to promote the molecular adsorption of borohydride on the 

metal surface. This molecularly adsorbed state was found for Au [25,27], Os, Ag, Rh, 

and Ru [25] surfaces (no H2Oads coadsorption). Low adsorption energy for the case of 

Au causes the experimentally reported low surface coverage by adsorbed species. Thus, 

high overpotentials are required to achieve an appreciable rate of oxidation on Au [14]. 

A desired anode catalyst for direct oxidation, must therefore promote a strong molecular 

adsorption of borohydride to produce high surface coverage by reactive species [29] and 

avoid hydrogen evolution. 

In this paper, we study the adsorption of borohydride on 3d transition metals 

(Cr, Mn, Fe, Co, Ni, and Cu) using first principles calculations within density functional 

theory (DFT). These metals are usually employed as alloying materials for various 

catalytic surfaces for fuel cell applications [32-41]. An understanding on how 

borohydride interacts with these alloying components can aid in the design of metal 

alloys or overlayers that are often considered experimentally. We present the adsorption 

energy of borohydride on these metals and then show the effect of the magnetic 

properties of the metals on the stability of borohydride on the surface. Then, we 

describe electronically the possible structures of borohydride on the surface and show 

that unique structures on 3d transition metals, different from those on noble metals, can 
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be achieved. To the best of our knowledge, the available literature still lacks a thorough 

fundamental understanding of the interaction of borohydride on the 3d metal surfaces 

considered in the present work.  

 

Computational Model 

 

The Cr, Mn, Fe, Co, Ni, and Cu (111) surfaces were modeled using a four-layer 

slab in a (3×3) unit cell making ~1/9 ML of adsorbate coverage. The fcc (111) facet of 

these metals was used to rule out the structural differences between different surfaces 

and to extract meaningful trends in properties as a function of substrate identity. This is 

certainly realistic for Ni and Cu since they occur naturally as fcc metals. For Cr, Mn, Co, 

and Fe, these fcc phases are important when considering epitaxial growth on substrates 

such as copper [42]. The calculated lattice constants for Cr, Mn, Fe, Co, Ni, and Cu are 

respectively: 3.61Å, 3.50Å, 3.45Å, 3.45Å, 3.53Å, and 3.68Å, in excellent agreement 

with those reported in the literatures (Cr: 3.62Å [43], Mn: 3.30Å to 3.57Å [44], Fe: 

3.60Å [45], Co: 3.31Å to 3.51Å [44], Ni: 3.52Å [46], Cu: 3.61Å [47]). Each slab is 

separated by ~15.0Å of vacuum, which is large enough to avoid the surface atom 

interaction along z axis with the neighboring unit cells. Electric dipole correction layer 
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in the vacuum area was used to cut the dipole interactions between the repeated image 

layer systems. Optimization is terminated when the Hellman-Feynman forces acting on 

each atom dropped below 0.005eV/Å. 

The adsorption of borohydride anion ( ) has been experimentally discussed 

on both noble and non-noble metal catalysts [13,15,20-24,48-49] and found to be 

accompanied by a simultaneous transfer of electron to the electrode: 

.  (2) 

The adsorption of borohydride on metal surfaces can be modeled in an overall neutral 

unit cell. This model was also utilized in other related DFT studies on borohydride 

[25-29] and for oxidative adsorption of other anions like  [50] and OH- [51-52]. 

The most stable configuration of adsorbed borohydride (BH4ads) was 

determined by exhausting the possible orientations on the metal surface. This includes 

the H-up and H-down orientations (Fig. 1) of the tetragonal borohydride with B at the 

high symmetry sites on the surface (top, bridge, hcp hollow and fcc hollow sites) and 

in-plane rotation. The adsorbate and the top two layers of the slab were fully relaxed in 

all directions while the bottom two layers of the slab were held fixed at their bulk 

structure. The adsorption energy, Eads, on each metal was computed by taking the 

difference between the total energy of the borohydride-slab system in the lowest energy 
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adsorption site and the summed energies of the relaxed clean surface and gas-phase 

borohydride.  

Spin polarized density functional theory (DFT) calculations were implemented 

via the Vienna ab initio simulation package (VASP) [53-56]. The interaction between 

ions and electrons were described using projector augmented wave (PAW) method 

[57-58]. Plane wave basis sets were employed with energy cut-off of 400eV. The 

exchange-correlation term was described using generalized gradient approximation 

(GGA) based on Perdew-Burke-Ernzerhof (PBE) [59-60] functional. The surface 

Brillouin zone integrations were performed on a grid of (4×4×1) Monkhorst-Pack 

k-points [61] using Methfessel-Paxton smearing [62] of  σ  =  0.2eV. Conjugate-gradient 

algorithm [63] was used to relax the ions into their ground state. Convergence of 

numerical results with respect to the slab thickness, the kinetic energy cut-off and the 

k-point was established.  
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Results and Discussion 

 

A. Stability and magnetic properties 

 

Fig. 2 shows the calculated adsorption energies of tetrahedral borohydride on 

the (111) surfaces of the metals considered. We note that the adsorption energy 

generally decreases as we traverse the periodic table from left to right (Cr to Cu). 

Borohydride adsorption energy is strongest for Cr, followed by Fe, Mn, Co, Ni, and Cu, 

in decreasing order of magnitude (Fig. 2). The almost monotonic tendency of adsorption 

energies to decrease from Cr to Cu can be explained by the interaction of sp band of the 

adsorbate with the metal d band which results to the formation of bonding and 

antibonding states with respect to adsorption. The overall energetics depends on the 

extent of filling of the antibonding state with respect to the Fermi energy. This derived 

sp-d antibonding state follows the position of the metal d band. Moving from Cr to Cu, 

the d band moves further below the Fermi energy. Thus, the extent of filling of the 

antibonding state from Cr to Cu increases which contributes to a repulsive interaction. 

Interestingly, Fe has a higher adsorption energy than the expected value from 

the trend of decreasing adsorption energies from Cr to Cu (as shown by the red data 
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point in Fig. 2). This can be explained by the magnetic properties of Fe. For all these 

metals (except for Cu which has a non-spin-polarized d band), the adsorption of 

borohydride results in the change of the d-band fractional occupancy, nd projected on 

the surface metal atom. Here, nd is defined as: 

 (3) 

where EF is the Fermi level and  is the d band density of states. Note that the 

numerator and denominator were evaluated within the occupied states and whole d-band, 

respectively. 

The reduction of the spin-up and the increase of the spin-down d-band 

fractional occupancy, respectively,  causes the forward shifting of the spin-up and 

backward shifting of the spin-down components of the d-band before and after 

adsorption as shown schematically in Fig. 3. This phenomenon is accompanied by the 

change of the total magnetic moment for the three metal atoms directly bonded to 

borohydride. A dramatic change in the magnitude of the magnetic moment is seen for Fe 

(3.78μB), compared to relatively small changes for the other metals (Cr: 0.942μB, Mn: 

0.632μB, Co: 0.924μB, Ni: 0.588μB). A similar demagnetization of the substrate upon the 

adsorption of molecules was reported in several works [64-66]. This finding is 

supported by the largest change in the spin-up and spin-down d-band fractional 
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occupancy, △nd, of Fe compared to other metals before and after the adsorption (Table 

I). Thus, the large asymmetric shift of the Fe d-band has a stabilizing effect on the 

adsorption of borohydride. The changes in the d-band fractional occupancy 

 are reported in Table I. 

 A comparison of the calculated adsorption energies for these metals with 4d 

and 5d transition metals is shown in Fig. 4. The adsorption energy for Cr, Mn and Fe 

(-7.14eV, -4.93eV and -5.36eV, respectively) are much greater than the reported strong 

adsorption on other transition metals (Pt: -4.40eV, Ir: -4.40eV, Os: -4.43eV, and Ru: 

-4.22eV) [25], computed using the same parameters such as adsorbate coverage and 

number of slab layers. The lower adsorption energy (-4.09eV) previously reported [26] 

for 0.25ML coverage of borohydride on Mn(111) implies the enhanced repulsive 

interaction between adsorbates as coverage is increased. The small adsorption energy 

for Cu (-2.87eV) can be explained by the full occupancy of its d-orbitals. This relatively 

small adsorption energy was also observed previously for the case of other metals with 

fully occupied d band (Ag: -1.98eV, Au: -1.69eV) [25]. The trend of decreasing 

magnitude of adsorption energy (from Cu, Ag to Au) was also observed in other DFT 

studies [67-70]. To explain this trend, note that the other factor that affects the 

adsorption energy is the repulsive energy cost of orthogonalization between borohydride 
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sp and metal d states as dictated by Pauli exclusion principle. This orthogonalization 

energy increases as the d orbital becomes more extended. Moving from Cu, Ag to Au, 

the d orbital becomes more extended making the adsorption energy decrease from Cu, 

Ag to Au. 

 

B. Molecular adsorption 

 

For Co, Ni and Cu surfaces, borohydride molecularly chemisorbs through the 

H-up orientation with boron above the fcc hollow site and hydrogen atoms residing at 

the top sites (Fig. 5a). Here, molecular adsorption is categorized based on the B-H bond 

length (Fig. 4): between 1.26Å (gas-phase bond length) and 1.49Å (elongated bond 

length). 

For the other metals considered in this study (Mn, Fe and Cr), stable molecular 

adsorption structure was also found but at lower adsorption energy (more weakly 

bound) compared to the dissociated structure, which we will discuss in the next section. 

The preference for the fcc hollow over the hcp hollow site is very small ( ̃ 0.02eV). 

This means that the presence (or absence) of atoms just below the hcp (or fcc) hollow 

site does not significantly affect the adsorption energetics. This supports the previous 
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findings wherein a small preference between the fcc and hcp hollow sites were found 

for 4d and 5d transition metals [25,27-28]. The distances from the surface hydrogen 

atom to the nearest metal atom are 1.63Å, 1.60Å, and 1.70Å on Co, Ni, and Cu, 

respectively. The bond length between boron and hydrogen atoms near the metal surface 

has increased from 1.25Å in the gas phase to 1.33Å, 1.33Å, and 1.26Å on Co, Ni, and 

Cu, respectively. The H-B-H angles are 91.7o, 90.2o and 96.5o for Co, Ni, and Cu 

respectively. Based on the previously reported results [25], borohydride has the same 

B-H bond length on Cu and Au. For Co and Ni, the B-H bond lengths fall within the 

reported molecular adsorption structure of borohydride on other transition metals 

(1.26-1.49Å) [25]. For comparison, the B-H bond lengths of borohydride on other 

metals were shown in Fig. 4.  

To understand the electronic factors that determine the bonding of borohydride 

on these surfaces, we analyzed the density of states (DOS) of the system. For the 

molecular adsorption at the hollow site, the broadening and shifting of DOS is 

prominent only on the dzz state while the other states are essentially unchanged. In Fig. 

6, we show this state for the case of Cu as a representative metal. There is a formation 

of new peaks below the bottom of the dzz-projected DOS of the metals, which resonate 

with the surface H-s orbitals of borohydride. This forms the bonding state between the 
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metal and borohydride. Thus, the molecular adsorption of borohydride at the hollow site 

is characterized by the strong hybridization of metal-dzz state with H-s state. This is 

illustrated by the partial charge density distribution projected using 0.01 electron/ao
3 

isosurface value at an identified bonding state shown in the inset of Fig. 6. Here, the 

mixing between charge density of the H atoms and the metal is very evident. This 

hybridization is promoted when borohydride is in H-up orientation, which explains its 

stability over the H-down orientation. 

 

C. Dissociative adsorption  

 

For the case of Mn and Fe surfaces, the adsorption at the bridge site (i.e., B on 

top of the bridge site) produces BH2ads + 2Hads species as shown in Fig. 5b. This 

configuration is 0.11eV and 0.02eV lower in energy than the molecular adsorption of 

borohydride at the hollow site of Mn and Fe, respectively. This structure was not found 

to be stable neither on the 4d and 5d metals previously studied [25] nor on the other 

metals presented in this paper. The dissociated hydrogen atoms (H1 and H2 in Fig. 5b) 

reside on the neighboring hollow sites. BH2ads forms a bent structure on the plane 

perpendicular to the surface with inner angle equal to 102o for both Mn and Fe. The 
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B-H1 and B-H2 distances are reported in Table I. Thus, there exists a BH4 

chemisorption situation where 2Hads are formed rather than the more commonly 

reported 3Hads case, which was previously found for Ir, Pd, and Pt [25].  

For the 2Hads configuration, our previous work [26] has revealed the 

importance of dzz state of the atom M1 and dxz,yz states of atom M2 (indexed in Fig. 5b). 

The competing dzz and dxz,yz interactions of the metal aimed at H and B of borohydride 

results in an enhanced elongation of the two B-H bonds (B-H1 and B-H2 in Fig. 5b). 

The B-H bond lengths of borohydride adsorbed at the bridge site of these surfaces is 

reported in Table I for reference.  

It may be interesting to infer why this 2Hads dissociated configuration is 

attainable at the bridge site of Mn and Fe but not on other metals. Because of the very 

strong adsorption of borohydride on these metals compared to all other metals 

considered in this paper and previous literature [25-26], borohydride gets much closer to 

Mn and Fe surfaces (Mn: 1.42Å and Fe: 1.41Å) compared to other metals (Co: 1.59Å, 

Ni: 1.54Å, and Cu: 1.86Å). This leads to a stronger competition of the dzz and dxz,yz 

states described earlier, which causes a greater B-H1 and B-H2 bond elongation. As 

shown in Table I, the B-H1 and B-H2 bond lengths increase as the distance of boron 

from the surface (z) decreases. Thus, because of the very strong adsorption of 
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borohydride on Mn and Fe metals, different adsorption structures of borohydride may 

be observed on the different sites of the same metal (i.e., molecular on hollow site or 

dissociated at bridge site). 

 Furthermore, a unique dissociated adsorption configuration was found for the 

case of the Cr surface. The adsorption of borohydride generates the dissociation of one 

B-H bond yielding BH3ads + Hads fragments on the surface. As shown in Fig. 5c, the 

dissociated H atom is at 2.28Å distance from B while the B-H bond lengths for BH3ads 

are within 1.20-1.33Å. This structure is 0.16eV lower in energy than the molecularly 

adsorbed borohydride on the hollow site (just like in Fig. 5a). We note a complex lateral 

relaxation of the top two layers of the Cr slab to accommodate this dissociated structure 

of borohydride. Such large distortion on the surface makes it difficult to analyze the 

adsorption structure electronically. The other metals that yield the dissociated structure 

for borohydride are shown in Fig. 4. 

These results pose relevant insights in the use of the metals considered in this 

paper as alloying components in the design of anode catalyst for DBFC. As discussed in 

the Introduction, high coulombic efficiency of borohydride oxidation can be achieved 

on Au but at high overpotential. To enable the oxidation activity at lower potential, it is 

reasonable to alloy Au with 3d transition metals which can promote stronger adsorption 



 
 

17 
 

interaction than pure Au and at the same time retain its molecular structure as on Au. 

Our preliminary results of such systems have shown that molecular adsorption structure 

with greater adsorption energy compared to pure Au can be achieved on these Au-based 

alloys. Recently, Au-3d metal alloys were experimentally shown to be inactive to 

hydrogen evolution and require lower overpotential compared to pure Au [71-73]. 

Detailed discussion of such systems will be published elsewhere. 

 

Conclusion 

 

The structure and stability of borohydride on 3d transition metals (Cr, Mn, Fe, 

Co, Ni and Cu) was studied using first principles calculations within spin-polarized 

density functional theory. The adsorption energy was highest on Cr, followed by Fe, Mn, 

Co, Ni and Cu, in decreasing order of magnitude. Magnetic effect on the stability of 

borohydride is noted. The forward shifting of the spin-up and conversely the backward 

shifting of the spin-down components of the d-band, before and after the adsorption of 

borohydride, was most pronounced for the case of Fe substrate. This had a stabilizing 

effect on the adsorption of borohydride. Molecular adsorption was favorable on Co, Ni 

and Cu, which is characterized by strong s-dzz hybridization of the adsorbate-substrate 
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states. Dissociated adsorption structures yielding one or two H adatom fragments on the 

surface, was observed for Cr (generating BH3,ads + Hads), and Mn, Fe (generating BH2,ads 

+ 2Hads). These results pose relevant insights in the use of these alloying metals in the 

design of anode catalysts for direct borohydride fuel cell. 
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Table I: Change in the d-band fractional occupancy, △nd, B-H bond lengths and height z 

of boron from the surface to the bridge site on Cr, Mn, Fe, Co, Ni, and Cu. 

 

Metal 
△nd 

z (Å) 
B-H1 bond 
length (Å) 

B-H2 bond 
length (Å) Spin up Spin down 

Cr -0.01 0.01 --* --* --* 
Mn -0.12 0.14 1.42 2.26 2.28 
Fe -0.26 0.27 1.41 2.19 2.18 
Co -0.04 0.03 1.59 1.49 1.46 
Ni -0.03 0.10 1.54 1.44 1.43 
Cu -0.01 -0.01 1.86 1.29 1.28 

 

*Adsorption of borohydride at the bridge site of Cr surface results in a translation to the 

hollow site because of a negligible energy barrier. Compared to the case of Mn, the 

energy barrier for translation from the bridge to hollow site is 1.35eV, calculated using 

climbing image nudge elastic band method (CI-NEB) [74-75]. 
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Fig. 1: The stable configuration of adsorbed borohydride (BH4ads) was determined by 

initially placing the tetragonal borohydride in H-up and H-down orientations with B at 

the high symmetry sites on the surface (top, bridge, hcp hollow and fcc hollow sites) 

and rotating the molecule on the xy plane.  
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Fig. 2: The adsorption energy, Eads of borohydride on Cr, Mn, Fe, Co, Ni, Cu. A 

trendline shown by the dashed curved was obtained by logarithmic curve fitting. 
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Fig. 3: A schematic diagram of the shifting of spin-up and spin-down components of the 

metal d-band before (dashed line) and after (solid line) the adsorption of borohydride.  
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Fig. 4: A comparison of adsorption energies (in absolute values) and B-H bond lengths 

of borohydride on different metals.  
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a)  

b)  

c)   

Fig. 5: The adsorption structure of borohydride: a) molecular adsorption for Co, Ni and 

Cu and dissociative adsorption for b) Mn and Fe; and c) Cr.  
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Fig. 6: Density of states projected on the dzz state of the surface metal atom directly 

bonded to borohydride for Cu when borohydride is adsorbed at the hollow site. The red 

and black curves are for the clean and adsorbed states respectively. The inset figure 

shows the partial charge density distribution projected using 0.01 electron/ao isosurface 

level on the bonding state shown by the arrow. 
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Figure Captions 

 

Figure 1: The stable configuration of adsorbed borohydride (BH4ads) was determined by 

initially placing the tetragonal borohydride in H-up and H-down orientations with B at 

the high symmetry sites on the surface (top, bridge, hcp hollow and fcc hollow sites) 

and rotating the molecule on the xy plane.  

 

Figure 2: The adsorption energy, Eads of borohydride on Cr, Mn, Fe, Co, Ni, Cu. 

 

Figure 3: A schematic diagram of the shifting of the spin-up and spin-down components 

of the metal d-band before (dashed line) and after (solid line) the adsorption of 

borohydride.  

 

Figure 4: A comparison of adsorption energies (in absolute values) and B-H bond 

lengths of borohydride on different metals.  

 

Figure 5: The adsorption structure of borohydride: a) molecular adsorption for Co, Ni 

and Cu and dissociative adsorption for b) Mn and Fe; and c) Cr.  

 

Figure 6: Density of states projected on the dzz state of the surface metal atom directly 

bonded to borohydride for Cu when borohydride is adsorbed at the hollow site. The red 

and black curves are for the clean and adsorbed states respectively. The inset figure 

shows the partial charge density distribution projected using 0.01 electron/ao isosurface 

level on the bonding state shown by the arrow. 
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Table Caption 

 

Table I: Change in the d-band fractional occupancy, △nd, B-H bond lengths and height z 

of boron from the surface to the bridge site on Cr, Mn, Fe, Co, Ni, and Cu. 

 


