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For the evolution of density fluctuation in nonlinear cosmological dynamics, adhesion approximation
(AA) is proposed as a phenomenological model, which is especially useful for describing nonlinear
evolution. However, the origin of the artificial viscosity in AA is not clarified. Recently, Buchert and
Dominguez report if the velocity dispersion of the dust fluid is regarded as isotropic, it works on a
principle similar to viscosity or effective pressure, and they consider isotropic velocity dispersion as the
origin of the artificial viscosity in AA. They name their model the Euler-Jeans-Newton (EJN) model. In
this paper, we focus on the velocity distribution in AA and the EJN model and examine the time evolution
in both models. We find the behavior of AA differs from that of the EJN model, i.e., although the peculiar
velocity in the EJN model oscillates, that in AA is monotonically decelerated due to viscosity without

oscillation. Therefore it is hard to regard viscosity in AA as effective pressure in the EJN model.

DOI: 10.1103/PhysRevD.73.024024

I. INTRODUCTION

The Lagrangian description for the cosmological fluid
can be usefully applied to the structure formation scenario.
This description provides a relatively accurate model even
in a quasilinear regime. Zel’dovich [1] proposed a linear
Lagrangian approximation for dust fluid. This approxima-
tion is called the Zel’dovich approximation (ZA) [1-10].
ZA describes the evolution of density fluctuation better
than the Eulerian approximation [11-14]. Although ZA
gives an accurate description until the quasilinear stage,
ZA cannot describe the model after the formation of caus-
tics. In ZA, even after the formation of caustics, the fluid
elements keep moving in the direction set up by the initial
condition.

In order to proceed with a hydrodynamical description
in which caustics do not form, a qualitative pressure gra-
dient [15] and thermal velocity scatter [3,16] in a collision-
less matter have been discussed. Similarly, adhesion
approximation (AA) [17] has been proposed, which is a
model based on a nonlinear diffusion equation (i.e.,
Burgers’s equation [18]). In AA, an artificial viscosity
term is added to ZA; thus we can avoid caustics formation.
The problem of structure formation has been discussed
from the standpoint of AA [3,19-22], where it is shown
that the density divergence does not occur in AA and that a
density distribution close to the N-body simulation can be
produced. However, the origin of the viscosity in AA has
not yet been clarified.

Buchert and Dominguez [23] discussed the effect of
velocity dispersion using the collisionless Boltzmann
equation [24]. They argued that models of a large-scale
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structure should be constructed by a flow describing the
average motion of a multistream system. Then they showed
that, when the velocity dispersion is regarded as small and
isotropic, it produces effective pressure or viscosity terms,
and they consider that the isotropic velocity dispersion
corresponds to the origin of the artificial viscosity in AA.
Furthermore, in consideration of kinematic theory, they
derived the relation between mass density p and pressure
P, i.e., an equation of state. Buchert et al. [25] also showed
how the viscosity term or the effective pressure of a fluid is
generated, assuming that the peculiar acceleration is par-
allel to the peculiar velocity. Recently Buchert and
Dominguez [26] provided an evaluation of the current
status of adhesive gravitational clustering, which includes
the above discussion, and they tried to improve past mod-
els. In their paper, they named their approach the Euler-
Jeans-Newton (EJN) model. On the other hand,
Dominguez [27,28] proposed another approach. In these
papers he clarified that a hydrodynamic formulation is
obtained via a spatial coarse graining in a many-body
gravitating system, and that the viscosity term in AA can
be derived by the expansion of coarse-grained equations.
This model is named the small-size expansion (SSE) model
[26].

So far, with respect to the correspondence of the viscos-
ity term with the effective pressure, and with regard to the
extension of the Lagrangian description to various matter,
the EJN model has been considered. Actually, Adler and
Buchert [29] have formulated the Lagrangian perturbation
theory for a barotropic fluid. Morita and Tatekawa [30],
Tatekawa et al. [31], and Tatekawa [32,33] solved the
Lagrangian perturbation equations for a polytropic fluid.
However, it is still an open problem whether AA could
realize the behavior of the EJN model in the proper way. It
is known that the viscosity in AA decelerates the peculiar

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.73.024024

HAJIME SOTANI AND TAKAYUKI TATEKAWA

velocity in a dense region and avoids the formation of the
caustic, while the effective pressure in the EJN model also
decelerates the motion of the fluid. But the fluid in the EJN
model not only would decelerate but also might bounce in
a dense region due to the effective pressure, which is
known as the Jeans instability for cosmological fluid. In
other words, we consider that AA would not realize the
behavior of the EJN model.

In this paper, to compare AA and the EJN model, we
especially analyze the peculiar velocity in a cylindrical
collapse model. Although we already compared AA with
the EJN model with respect to density fluctuation in a past
paper [34], because we used an explicit method for solving
partial differential equations, the accuracy of the numerical
calculation in the dense region was not good. Therefore we
could not observe the Jeans instability but, rather, the
numerical instability. In this paper, instead of the explicit
method, we apply the iterated Crank-Nicholson method
[35]. This method resolves the difficulty of solving the
resulting implicit algebraic equations in the original
Crank-Nicholson method and preserves the good stability
properties.

As our analyses show, although the peculiar velocity in
AA decelerates due to the viscosity, the velocity does not
oscillate. On the other hand, as a preliminary expectation,
the peculiar velocity in the EIN model decelerates and also
oscillates. Although the tendency of the evolution of the
peculiar velocity would depend on the viscous parameter
or the Jeans length, the behavior of AA is obviously differ-
ent from that of the EIN model. We notice that, while both
AA and the EJN model certainly describe the quasinon-
linear evolution well, the detail of the evolution is different.
When we take a large value for the Jeans length, the fluid
bounces to the outside. On the other hand, when we take a
small value for the Jeans length, although the collapse of
the cylindrical matter decelerates, a caustic might finally
form at the center. Therefore it is problematic that the
viscous term in AA is explained as an effect similar to
the effective pressure term in the EJN model. For an
explanation of the viscous term in AA, we will have to
analyze more Lagrangian models.

This paper is organized as follows. In Sec. II, we present
Lagrangian perturbative solutions in the Einstein-de Sitter
(E-dS) universe. First, we show linear perturbative solu-
tions for dust fluid in Sec. I A, and in Sec. II B we mention
the problem of ZA and show the solution of AA. Then we
explain the EJN model in Sec. IIC. In Sec. III we compare
the evolution of the peculiar velocity in AA with that in the
EJN model. Finally in Sec. IV we discuss our results and
state our conclusions.

II. THE LAGRANGIAN DESCRIPTION FOR THE
COSMOLOGICAL FLUID

In this section, we briefly present perturbative solutions
in the Lagrangian description. In Newtonian cosmology, to
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introduce cosmic expansion, we adopt the coordinate trans-
formation from physical coordinates r to comoving coor-
dinates x, such as x = r/a(t), where a(t) is a scale factor.
In Lagrangian hydrodynamics, the comoving coordinates x
of the fluid elements are represented in terms of
Lagrangian coordinates q as

r =ax=ualq+s(q1), (D

where s denotes the Lagrangian displacement vector due to
the presence of inhomogeneities. With the Jacobian of the
coordinate  transformation from x to ¢q, J=
det(dx;/dq;) = det(d;; + ds;/dq;), the mass density is
described exactly as

p=pyJ7", ()

where p, means background average density. Furthermore
we can decompose s into the longitudinal and the trans-
verse modes, i.e., s = V,§ + ST with V,, - ST = 0. In this
paper, we consider only the longitudinal mode for simplic-
ity. The evolution equation for the longitudinal mode is
written as follows [29,30]:

. y—1
vx<s' +2% - %J‘VVXO — —47Gp,(J = 1),
a

a
3)

where the dot above the variables denotes the partial
derivative with respect to . In general, it is very difficult
to solve this equation for such reasons as the coordinate
transformation or nonlocality. In order to avoid this diffi-
culty, we apply the perturbative approach and impose
symmetry in Eq. (3). Particularly in this paper we consider
cylindrical symmetry, and the evolution equation in a
cylindrical-symmetric model is given in the appendix.

A. The Lagrangian perturbation for dust fluid

Zel’dovich derived a first-order solution of the longitu-
dinal mode for dust fluid [1]. In the Friedmann Universe
model, the solutions are formally written as follows:

S(g.1) = D, (S (g) + D_(1)S_(g), 4

where D, (z) and D_(r) mean the growing factor and the
decaying factor, respectively. This first-order approxima-
tion is called the Zel’dovich approximation (ZA). In the
case of the Einstein-de Sitter Universe, D, (f) and D_(z)
are described as

D, (1) < 13, ©))

D_(t) <t 1. (6)

Especially when we consider the plane-symmetric case,
ZA gives exact solutions [2,36].

024024-2
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B. Adhesion approximation (AA)

Although the Lagrangian approximation gives an accu-
rate description until a quasilinear regime develops, it
cannot describe the model after the formation of caustics.
After that, the nonlinear structure diffuses because the fluid
elements keep moving in the direction set up by the initial
condition. In order to avoid caustics formation, the adhe-
sion approximation (AA) [17] was proposed, which is a
model based on a nonlinear diffusion equation (Burgers’s
equation [18]). In AA, an artificial viscosity term is added
to ZA. In ZA, the equation for ““peculiar velocity’ u is
written as follows:

Ju

D, +@-V)u=0, @)
_ox &
9D, D, ®

where D is the growing factor in ZA. To avoid caustics
formation, in AA we add an artificial viscosity term to the
right side of Eq. (7), i.e.,

ou

+ - Vu = vVu. )

Now we introduce the Hopf-Cole transformation [37,38]
such as

u = —vV,(logh(x, D.)); (10)
then Eq. (9) is changed to a diffusion equation:
a0
= vV20. 11
oD, 7 0 (1

Meanwhile, by using the inverse Hopf-Cole transforma-
tion, we obtain the solution of Eq. (9):

x =q+ f P u(x(q, D'), D')dD', (12)

Dy

[ &x' E G, x')

“= [&x'Gx,x) '

13)

N2
Gx, x') = exp[— 2—11/(\I’O(x’) + (xZDx)ﬂ (14)

where
V. Wy(x) = so. (15)

We consider the case when the viscosity coefficient is
quite small [¥ — +0 (v # 0)]. Within the limits of a small
v, the analytic solution of Eq. (9) is given by

> (51) jo exp(— 52)
ux ==

: (16)
Sjaexp(— )
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where ¢, is the Lagrangian points that minimize the action

Ia = I(x’ a;qa) = SO(qa) +

928, -1/2
Ju= [m(a,, + _Oﬂ
aCliaqj

So = S(q, to), (19)

considered as a function of ¢ for fixed x [21], where the
Roman character index denotes the Cartesian coordinate.
In this paper, we consider the cylindrical-symmetric case.
For this case, we have to change the evolution equation,
Eq. (9), slightly (see Sec. IIT A).

— 2
o~ ga)” 2‘-’“) —min, (17)
a

, (18)

9=9a

C. The EJN model

Although AA seems a good model for avoiding the
formation of caustics, the origin of the modification (or
artificial viscosity) is not clarified. Buchert and Dominguez
[23] argued that the effect of velocity dispersion is impor-
tant in hindering caustics formation. They showed that,
when the velocity dispersion is still small and can be
regarded as isotropic, it behaves as effective pressure or
viscosity terms. Under the consideration of fluid kinemat-
ics, they proposed the effective equation of state as p «
p3/3. Also Buchert er al. [25] showed how the viscosity
term is generated by the effective pressure of a fluid under
the assumption that the peculiar acceleration is parallel to
the peculiar velocity. Moreover, Buchert and Dominguez
[26] recently provided an evaluation of the current status of
adhesive gravitational clustering, which is included in the
above discussion. In their paper, they named their approach
the Euler-Jeans-Newton (EJN) model.

When we consider the polytropic equation of state P =
kp?, the first-order solutions for the longitudinal mode can
be written in Fourier space as follows [30]: for vy # 4/3,

2C, K|

S(K, a) o a_1/4jt5/(8767)< C—1ma(4_37)/2>’

(20)

where § is the Fourier transformation of S, K is Lagrangian
wave number, and _J, denotes the Bessel function of order
v, and for y = 4/3,

$(K, a) o« q~1/4=3/25/16-CIKP2€, 21)
where C, = 47Gpy(ai,)a, /3, C, = kypy(ay)? " ap’ "
and a;, means the scale factor given as an initial condition.
When we take the limit « — 0, these solutions agree with
Eq. (4).

In this model, the behavior of the solutions strongly
depends on the relation between the scale of fluctuation
and the Jeans scale. Here we define the Jeans wave number
as

>
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_ ( 47Gpya® )1/2
' \dP/dp(p,)

The Jeans wave number, which gives a criterion for
whether a density perturbation with a wave number will
grow or decay with oscillation, depends on time in general.
If the polytropic index 7 is smaller than 4/3, all modes
become decaying modes and the fluctuation will disappear.
On the other hand, if y > 4/3, all density perturbations
will grow to collapse. In the case where y = 4/3, the
growing and decaying modes coexist at all times. We can
rewrite the first-order solution Eq. (20) with the Jeans wave
number, i.e.,

(22)

NG |K|>. 23)

S —1/4 - -
S(K; a) < a JtS/(8*67)(|4 — 37| K

In this paper, we analyze the first-order perturbation.
When we consider cylindrical-symmetric models, even if
we deal with only the first-order perturbation, they cannot
be analyzed in Fourier space, and we need to solve partial
differential equations in real space with a numerical
method (also see the appendix).

III. TIME EVOLUTION IN CYLINDRICAL MODEL

For the cylindrical-symmetric case, dust collapse has
been analyzed [14]. Here we consider the evolution with
ZA, AA, and the EJN models in the E-dS Universe.
Hereafter, we define R and r as Eulerian and Lagrangian
radial coordinates, respectively. At the initial time, we can
identify the Lagrangian coordinate with the Eulerian one,
i.e., R = r. Previous studies considered the collapse and/or
evolution with the top-hat density distribution as the initial
condition. Although the evolution of this model is easy to
compute, the boundary condition becomes discontinuous.
To avoid a discontinuity of the pressure gradient, we adopt
the Mexican-hat-type model (Fig. 1):

8(R) = e(2 — RY)e R /2, (24)

0.03
0.025
0.02
0.015
0.01
0.005

2 3% 4 s*®

-0.005

FIG. 1. Mexican-hat-type model. The average of density fluc-
tuation over the whole space becomes zero.
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where R is the Eulerian comoving radial coordinate. This
model has several merits, for example, the fluctuation is
derived by the 2 times differential calculus of Gaussian,
1.€.,

1 a

_vz(sefRz/Z) — E a_R<RaiR(8€R2/2)>

=&(2 — RY)e K/2, (25)

and the average of density fluctuation over the whole space
becomes zero:

f " 27RS(R)AR = 0. (26)
0

For this model, from Eq. (4) the solution of ZA is given
as follows:

S(a, r) = —age "2 27

In our analysis, we set € = 1 due to an advantage of linear
analysis, and the initial scale factor is set a, = 0.0167(=
1/60) as the initial condition, where the initial density
fluctuation at » = 0 becomes 8 = 1/30 and the caustic
appears at @ = 1. On the other hand, for AA and the EJN
model we can determine the initial longitudinal mode §
and the initial peculiar velocity by preference as the initial
conditions. In this paper they are made equal with those of
the growing mode in ZA. Thus, the initial conditions for
AA and the EJN model are given by

S(ag, r) = —agee "2, (28)
9S(a, r) = —ge "2 (29)
da a=a

A. The adhesion approximation

First we consider the evolution in the AA model. The
evolution of the fluctuation is described by Eq. (9). For the
cylindrical case, we slightly change the evolution equation.
When we introduce cylindrical coordinates and assume the
cylindrical symmetry, Burgers’s equation is described as
follows [39]:

d.u+ ud [la(a ) —u} a(lé( ))
Jutud u=vl—0a, (yo,u — =vd, [—0d,(xu))

o x CTNT 4 Ax ¥
(30)

where 7 and y are the time variable and the radial coor-
dinate, respectively. Under a transformation such as

2v 00
- -2, (31)
0 oy
Eq. (30) is rewritten as
9,0 =—0,(x0,0). (32)
X

The generic solution for Eq. (32) is described by the

024024-4
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integral form:

0(x, 7) = k(1) exp(— 2—11/ LX u(w, T)d(u), (33)

k(1) = 6(0, 7), (34)

0(0, 7) = 6,y(x) = k(0) exp<— % ﬁ ¥ o, T)dm). (35)

In this paper we apply the cylindrical Burgers’s equation
(30) for the adhesion model. In the E-dS Universe model,
the evolution equation is given as

ou  ou ol o
P2y 22 (R |
ga  "oR VGR[R iR ”)} (36)

Now we introduce Lagrangian displacement for the radial
coordinate from Eq. (1):

R=r+9,51, (37)

where R and r mean Eulerian and Lagrangian radial coor-
dinate, respectively, and S means Lagrangian displacement
potential. Because we assume cylindrical symmetry and
irrotational motion, the Lagrangian perturbation includes
only the longitudinal mode. Also the peculiar velocity
[Eq. (8)] is rewritten as

9 708
w = 5(3) (38)

0.7 AL L R L R LI B BB

0.6

0.5

0.4

0.2

0.1

FIG. 2. The evolution of the peculiar velocity in the AA model.
Here we show the velocity distribution at a = 1/60 (initial, solid
line) and a = 0.2,0.4, ..., 1.0. During evolution, the velocity
decelerates because the viscosity resists the motion of the fluid.
In AA, although the velocity decelerates, it does not oscillate.
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Using this peculiar velocity, the evolution equation of the
adhesion model is described by Eq. (36), and we examine
the evolution of the peculiar velocity. For comparison, we
calculate cylindrical models with the viscous parameter .
Figure 2 shows the evolution of the peculiar velocity with
v = 1/5, where we show the relation between Eulerian
coordinates R and the peculiar velocity U. If we take a
limit v — 0, i.e., for the case of dust (ZA), the distribution
of the peculiar velocity at any given time is the same as the
initial distribution. On the other hand, from Fig. 2 we can
see that the peculiar velocity decelerates monotonically
due to the viscosity.

We notice that Eq. (36) is described with Eulerian
comoving coordinates. Thus it is complicated in a degree
if we obtain the Lagrangian displacement [cf. Eq. (12)]. In
fact, for evolution of the fluctuation we need to consider
the correspondence between Eulerian coordinates x and
Lagrangian coordinates ¢ for every grid at every time step.

B. The EJN model

Next, we analyze evolution in the EJN model. If we
consider a cylindrical model, because of mode coupling in
Laplacian, we cannot separate the perturbation to the
spacial-dependent and the time-dependent term.
Therefore we adopt numerical calculation for the evolution
of the EIN model. In a previous paper [34], we apply an
explicit method for solving partial differential equations
[40]. However, this method tends to produce numerical
instability. To avoid the numerical instability, we adopt
another method. Teukolsky [35] discussed the iterated
Crank-Nicholson method, which is one implicit scheme
for numerical calculation. The method resolves the diffi-
culty of solving the resulting implicit algebraic equations
in the original Crank-Nicholson method and preserves the
good stability properties.

The peculiar velocity in comoving coordinates is de-
scribed as

o)
v(a q) = Sa (V,S(a, ). (39)

Because we consider a cylindrical-symmetric model, we
compute only radial velocity, i.e.,

_ 9 (dS(a, 1)
V ,(a, r)—£< oy ) (40)

where r is the Lagrangian radial coordinate. From the
definition of the peculiar velocity, we notice it does not
change in the dust model (ZA). Because the solution in the
dust model can be decomposed in time and spacial com-
ponents, the peculiar velocity at any time is the same as the
initial peculiar velocity. Furthermore, the growing factor of
the dust model is given by Eq. (5). Therefore the longitu-
dinal mode S in ZA monotonously increases [Eq. (27)].
Correspondingly, we analyze the peculiar velocity in the
EJN model. For the numerical calculation, we set the
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boundary condition at » = 0 and r = 10 such as

aS(a, r)

=0, “4n
ar

r=0

aS8(a, r)

S(a, 10) = 5
P

=0. 42)
r=10

Because the distribution is asymptotically homogeneous,
we set that the fluid does not move at the outside. The
behavior of the EJN model strongly depends on the pa-
rameters « and 7y. If « is very small, the solution is similar
to that in ZA. On the other hand, if « is very large, the
fluctuation oscillates and disappears. Following our pre-
vious method [34], we choose a reasonable value of the
parameter vy, i.e., y = 4/3 and 5/3. In the case of y =
4/3, as we showed in Eq. (21), the solutions can be
described simply and have both growing and decaying
modes. In the case of y = 5/3, Buchert and Dominguez
[23] claimed that the isotropic velocity dispersion corre-
sponds to the origin of the artificial viscosity in AA.
Further, instead of k, we set the value of the Jeans wave
number Kj [Eq. (22)].

Figures 3 and 4 show the peculiar velocity in the EJN
model with linear approximation. We can see that the
solution has both growing and decaying modes in the early
stage, and that the position where the peculiar velocity is

0.7 LLAL L L B L LR LR B ELEL N BN B

- gamma =4/3, KI=1.0 [ —— initial
0.6 a=0.02 |
a=004 |
- a=0.06 |

0.5 C =008

a=0.10
0.4 a= 0.12 |7
a=0.14 J

- a=0.16
0.3 ::0.18 )

— a=0.20
> 02 -

1
0.1 4
0

-0.1 i
-0.2 4

03 -.. P PRI BRI RS PR R |- 1

0 1 2 3 4 5 6 7 8

r

FIG. 3. The evolution of the peculiar velocity in the EJN
model (y = 4/3,K; = 1.0). We show the time slices at a =
0.02,0.04, ...,0.2. We also show the velocity distribution at a =
1/60 (initial, solid line). During time evolution, the peak of the
peculiar velocity moves to the outside. Because of the effect of
the pressure, the form of the distribution of the peculiar velocity
changes from the initial one. The velocity decelerates and the
falling fluid at the initial time bounces to the outside.
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0.7 L L B B BN BN LR LR
- gamma = 5/3, KI = 6.0 [ —— nitial

0.6 | a=002 |7

a=004 |

a=0.06 | |
0.5 a=0.08
a=0.10

0.4 a= 012 |-
a=0.14

a=0.16 ||
0.3 a=0.18
a=0.20

0.2

-Vr

0.1

0.1
02 F 7 §

-0.3 |||||||

FIG. 4. The evolution of the peculiar velocity in the EJN
model (y =5/3,K; = 6.0). We show the time slices at a =
0.02,0.04, ..., 0.2. We also show the velocity distribution at a =
1/60 (initial, solid line). Similar to the case where y = 4/3,
during time evolution, the peak of the peculiar velocity moves to
the outside. Because of the effect of the pressure, the distribution
of the peculiar velocity oscillates at 0.02 < a <0.2.

the fastest moves outward. Then the distribution of the
peculiar velocity changes by the effect of the pressure.
Moreover, it is known that in Cartesian coordinates the
solution for y = 4/3 always has a growing mode, and that
the peculiar velocity is not zero at any time (especially in
the case where y = 5/3 the perturbative solutions asymp-
totically approach those of the dust model). Therefore as
seen Figs. 3 and 4, the distribution of the peculiar velocity
slightly oscillates, and the peak of the peculiar velocity
moves to the outside at the early stage. Then, finally,
caustics would form in the EJN model as in the case of
the dust model (ZA).

IV. DISCUSSION AND CONCLUDING REMARKS

With respect to the distribution of the peculiar velocity,
we examine the correspondence between AA and the EJN
model with cylindrical symmetry. In this analysis, even if
we consider linear perturbation, it is hard to describe the
solution with explicit form. Therefore we carried out nu-
merical calculation, where to avoid numerical instability
we adopted the iterated Crank-Nicholson method. From
our calculation, when we take small value for the Jeans
wave number, the peculiar velocity in the EJN model
oscillates due to the pressure. For the cosmological fluid,
such oscillation is known as the Jeans instability. On the
other hand, the peculiar velocity in AA is decelerated due

024024-6
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to the viscosity, where there is no oscillation. Thus we can
see that the behavior of AA is different from that of the
EJN model.

Furthermore, when we take a large value for the Jeans
wave number in the EJN model, the evolution of the
peculiar velocity is similar to that in AA (see Fig. 5).
However, it is well known that in Cartesian coordinates
the linear perturbative solutions for y = 4/3 in the EJN
model have a growing solution. Therefore the perturbation
in the EJN model would eventually diverge. In other
words, we can predict that, even if we take a large value
for the Jeans wave number in the EJN model, the radial
motion of the fluid does not stop and finally collapses.
Thus, there also exists an essential difference between
AA and the EJN model on this point, because it is known
that the formation of caustic does not occur in AA. Hence,
AA cannot express the EJN model with propriety and, in
order to clarify the origin of the viscosity term in AA, we
should consider other effects besides isotropic velocity
dispersion or isotropic effective pressure.

Recently, Buchert and Dominguez [26] discussed adhe-
sive gravitational clustering and tried to provide a clear
explanation of the assumptions for adhesion approxima-
tion. They applied the Eulerian and Lagrangian expansions
to the nonperturbative regime and proposed a new non-
perturbative approximation. When we analyze this new
approach with both analytic and numerical methods, we

0.7

—e— initial

- gamma =4/3, KJ =5.0 |
0.6 Ff

0.5

0.4

0.3

-Vr

0.2

0.1

FIG. 5. The evolution of the peculiar velocity in the EJN
model (y =4/3,K; = 5.0). We show the time slices at a =
0.2,04, ..., 1.0. We also show the velocity distribution at a =
1/60 (initial, solid line). During time evolution, the peak of the
peculiar velocity slightly moves to the outside. In this case, the
peculiar velocity does not oscillate. However, the cylindrical
dust would collapse, because the deceleration of the peculiar
velocity is gentle.
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may be able to explicate the origin of the artificial viscosity
in AA. Also, as a future work, we would describe the
evolution of the density fluctuation in a nonlinear regime
with a semianalytic method.
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APPENDIX: THE EVOLUTION EQUATION IN
CYLINDRICAL MODEL

In Sec. IIC, we noticed that Eq. (3) is hard to solve
because of the coordinate transformation or nonlocality. In
this appendix we rewrite the equation with cylindrical
symmetry. We can introduce Lagrangian displacement
for the radial coordinate by Eq. (37). The spacial derivative
is rewritten with the Lagrangian coordinate, such as

0 JdR 0 d
== (14 025)—. Al
or Jr oR ( S) OR (AD
Therefore, the derivative is changed as
1 0
i (A2)

9R 1+ 928 or
The divergence of the peculiar velocity with a Eulerian
coordinate becomes a little complicated:
1 a
R OR

1 1
S Fas 1T s ar TS (A

V,u= (Rogu)

We decompose the Jacobian of the coordinate trans-

formation to the order of the perturbation.
J=1+J0 +J@ 4+ jO (Ad)

where

1
JO =925 = 925 + - 9,5, (AS)
r
1 1
J@ = E[(ags)(aﬁs) —(0;0;8)(9;9:5)] = —(9,9)(3%5),
: - r
(A6)

J® = det(9;9;5) = 0. (A7)

Most of the above changes affect only higher-order ap-
proximation. In the EJN model, we must consider the
change of Laplacian in Lagrangian space, i.e.,
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af(r)
ar

Vif) = 1o (P D) = L o) a8)
ror r

where the prime denotes the partial derivative with respect

to r. Using the above deformations, we obtain the evolution

equation for the EIN model with cylindrical symmetry.

The linear perturbative equation for the EJN model is

written as

. y—1
1 i[r{s'/ n zgs/ _KYLzbiGi(rS/))H

;Br a ar\r or

19
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When we choose an appropriate boundary condition, we
can rewrite Eq. (A9) as

. y—1
§+295 - %(5" + lS’) — —47Gp,S. (A10)
a a r
When we treat the EIN model in Cartesian coordinates, we
can apply a Fourier transformation to the perturbative
equations easily. However, with the cylindrical symmetry,
because the fourth term on the left-hand side in Eq. (A10)
derives convolution, even if we take only linear perturba-
tion, we cannot obtain analytic solutions and we have to
solve by numerical calculation.
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