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Abstract— We have developed the Simple Orchestration 
Application Framework (SOAF) on a grid infrastructure to 
control cooperative and multiple execution of simulation codes 
on remote computers from a client PC. SOAF enables 
researchers to generate a scenario of their cooperative and 
multiple executions by only describing a configuration file which 
includes the information of execution codes and file flows among 
them. SOAF does not need substantial modification of the 
simulation codes. 

We have applied SOAF to the "Burning Plasma Integrated 
Code" which consists of various plasma simulation codes. In 
order to predict and interpret the behavior of fusion burning 
plasma, it is necessary to cooperatively and concurrently execute 
various simulation codes to understand complex plasma 
phenomena with wide temporal and spatial ranges. Those codes 
exist on distributed heterogeneous computers located in different 
sites such as universities and institutes. By using SOAF, we 
succeeded to cooperatively and concurrently execute four plasma 
simulation codes without substantial modification as described in 
the configuration file. 
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I.  INTRODUCTION 
Integrating various simulation codes, we have been able to 

carry out large-scale and detailed simulations. For example, in 
nuclear field, in order to predict and interpret the behavior of 
fusion burning plasma, it is necessary to simulate complex 
plasma phenomena with wide temporal and spatial ranges. 
There has been a problem how to execute the simulation codes 
on distributed computers cooperatively and concurrently. 

A grid computing technology has been used to realize their 
cooperative and multiple executions. For example, a workflow 
tool such as Kepler [1], TME [2], and so on enables 
researchers to build and execute a scientific scenario from a 
client PC. Researchers can promote an execution of simulation 
codes and can visualize analysis processes using a graphical 
user interface (GUI). Here, researchers can construct the 
scenario by simple procedures such as drag and drop. A 
remote procedure call (RPC) enables researchers to 
cooperatively and concurrently manage various simulation 
codes by developing an application with its functions. 

GridRPC [3] is the expansion of RPC for a grid computing 
environment. An extended message passing interface (MPI) 
suitable to a grid environment (Grid-enabled MPI) enables a 
communication between simulation codes on heterogeneous 
distributed computers. Various types of grid-enabled MPI, 
STAMPI [4], MPICH-G [5], PACX MPI [6], and so on, have 
been developed. Researchers can cooperatively and 
concurrently execute simulation codes by modifying those 
codes. 

Although researchers can cooperatively and concurrently 
execute various simulation codes by using those technologies, 
those technologies have advantages and disadvantages. We 
discuss them by roughly classifying types of the cooperative 
and multiple execution of simulation codes into three; type 1 is 
the workflow type in which the codes are executed 
sequentially, type 2 is the pipeline type in which simulation 
codes are executed in parallel by sending and receiving 
input/output data during their running, type 3 is the conditional 
branch type in which simulation codes are started and data are 
transferred depending on various conditions. A workflow tool 
is useful for type 1, but is not forte for type 2 and 3, since it 
does not always have a function for a detailed control such as 
conditional branch. On the other hand, GridRPC and Grid-
enabled MPI are suitable for type 2 and 3. However, 
researchers have to make exertions to develop a grid-enabled 
application and/or to modify their simulation codes. 

The integration of plasma simulation codes, e.g. the 
"Burning Plasma Integrated Code", corresponds to type 3, 
since those codes have to be cooperatively and concurrently 
executed depending on various conditions such as plasma 
stability, timing of heating, and so on. Especially the integrated 
code is "dynamical conditional branch" type. A workflow tool 
cannot operate this type. Therefore, it is desirable to construct 
a novel grid computing technology which enables researchers 
in plasma physics field to control the type 3 execution without 
their exertions. 

As a novel technology to easily control various types of 
cooperative and multiple executions, we propose the Simple 
Orchestration Application Framework (SOAF). Using SOAF, 
researchers can control various types of cooperative and 
multiple executions of simulation codes by just describing the 
data dependency among those codes.   



We have developed SOAF by using the client application 
program interface (API) for grid applications which has been 
implemented on Atomic Energy Grid Infrastructure (AEGIS) 
[7]. And we have applied SOAF to the "Burning Plasma 
Integrated Code" to solve the current diffusion, stability of 
plasma, current drive, and so on. 

We describe SOAF in detail and its application to the 
"Burning Plasma Integrated Code" in section II and III, 
respectively. In section IV, we report the environment and 
result of our experiment. Finally in section V, we summarize 
our R&D results and describe a future work. 

II. SIMPLE ORCHESTRATION APPLICATION FRAMEWORK 
(SOAF) 

A. Overview of SOAF 
We propose a novel framework to cooperatively and 

concurrently execute simulation codes without difficulty. Here, 
we describe the concept of framework. 

We suppose that many simulation codes exist on 
distributed computers. Each code can analyze one 
phenomenon in detail. Integrating these codes, a realistic 
problem can be elucidated. To realize this, the orchestration 
including code executions and file transfers on a grid 
infrastructure is required. Here, we consider followings are the 
critical issue to design the SOAF: (1) How are various types of 
cooperative and multiple executions controlled easily? (2) 
How is each simulation executed cooperatively and 
concurrently with its minimal modification? (3) How are 
researchers' exertions for cooperative and multiple executions 
reduced? (4) Furthermore, how is the overhead due to the 
framework minimized?  

We focused on a file flow among execution codes to design 
the SOAF. Firstly, it is easier to define a file flow than a flow 
of execution codes in order to build a scientific scenario 
depending on conditional branch. Secondly, it is better to 
send/receive information by transferring files in order to have 
communications among simulation codes without modifying 
those codes. We adopted the way to manage the start of codes 
by a file flow. It is useful to identify a file flow, since a code is 
usually started after it receives a file from another code, except 
a firstly started code. SOAF manages the start of codes and the 
transfer of files under a file flow which is described in a 
configuration file. SOAF consists of a client application, 
programs to support the file transfers, and a configuration file. 
Those programs (we call this program “sentinel”) are started 
by the client application (we call this "controller") and are 
executed on distributed computers. By those ideas, researchers 
can integrate various kinds of simulation codes by just 
describing the data dependency among these codes. We 
consider that a new code is executed with the trigger of output 
files from other codes. Only a little modification about file 
output is needed. The last issue is verified by an experiment.  

B. Controller 
We developed the controller using the client API for grid 

application implemented on AEGIS. AEGIS is grid 
middleware for atomic energy research which we developed. 
The schematic diagram of AEGIS is shown in Figure 1. We 

developed the client API as a function of AEGIS to develop 
grid-enabled applications on a client PC. The client API can 
work on other grid middleware such as UNICORE, DIET, 
Globus and so on [8]. The client API is classified into low, 
middle and high level APIs due to their functions. To develop 
controller, we used the authentication API, file transfer API, 
job submission API and job information request API in low 
level APIs, and Job-script generator API in middle level APIs. 

 
Figure 1.  Schematic diagram of AEGIS. 

Low level APIs supply connection between a client PC and 
supercomputers on AEGIS, job operation to supercomputers, 
resource handling on both clients PC and supercomputers, and 
so on. When users access AEGIS, users need an authentication 
process with an IC card or an USB token (PKCS#11). Job-
script generator API generates the script corresponding to 
heterogeneous computers by reading job attributes such as 
name of computer, job class, number of CPUs, path of 
program, work directory, and so on. 

C. Sentinel 
It is needed for the controller to confirm the end of file 

output. Thus, we developed the sentinel which detects the 
output files and operates the file transfer between simulation 
codes. It works before and after job submission. 

The sentinel has three types of scripts; send, recv, and 
void. The send script detects "flag files" of output files, 
generates "sent files". The recv script detects "sent files" and 
generates "flag files". The void script is used to execute 
simulation codes without files.  

 
Figure 2.  The procedure of file transfer 

We show the procedure of file transfer using the sentinel. 
Here, we describe an example that two codes ("code A" and 
"code B") are cooperatively and concurrently executed on 
distributed computers (see Figure 2). The execution of "code 
B" requires output files from "code A". The procedure is as 
follows: 



 (1) "Code A" generates output files and their "flag files". 

 (2) The send sentinel beside "code A" detects the "flag 
files" and deletes them. Then send sentinel generates "sent 
files" of the output files. 

(3) The controller transfers the output files from work 
directory of "code A" to that of "code B". 

(4) The controller transfers "sent files" from work 
directory of "code A" to that of "code B". 

(5) The recv sentinel beside "code B" detects "sent 
files" and deletes them. Then the recv sentinel generates 
"flag files" of transferred files. 

(6) "Code B" is started by SOAF, detects "flag files" and 
read the output files.  

A little modification of simulation codes is needed to use 
SOAF. When "code A" generates output files, "code A" must 
generate their "flag files". "Code B" must detect the "flag files". 

D. Configuration file 
The configuration file in this case is described in Figure 3. The 
configuration file consists of information of codes 
(PROGRAM) and file flow (FLOW). The "type" in FLOW 
represents kinds of code. The "type 1" corresponds to the 
firstly started code. The code with "type 0" is started after it 
receives a file from another code. The "File1" in FLOW is 
output files from code A. By the SOAF, these files are 
transferred from work directory of code A to that of code B. 
After files are transferred, the controller starts code B. The 
File2 is output file from code B. After execution of code B, 
this file is transferred from work directory of code B to that of 
code A. Code A receives this file.  

  

 
Figure 3.  An example of the configuration file. The overhead of the sentinel 

is almost negligible 

 
Figure 4.  Temporal and spatial scales on physical processes of plasma

III. BURNING PLASMA INTEGRATED CODE 
The "Burning Plasma Integrated Code" has been 

researched and developed mainly by Naka Fusion Institute of 
Japan Atomic Energy Agency (JAEA) to integratedly predict 
and interpret the plasma behavior. It consists of various plasma 
simulation codes to solve the current diffusion, stability of 
plasma, current drive, and so on. A quite realistic simulation is 
expected by integrating those codes.  

It is indispensable to understand the controllability of 
plasma toward the continuous operation of tokamak reactor 
especially for ITER [9]. To control the burning plasma and 

achieve high performance, it has an important role to simulate 
behavior of burning plasma in tokamak reactor.  

For simulation of burning plasma in tokamak reactor, it is 
not realistic to handle whole physical processes by one 
simulation code. One of the reasons is that burning plasma has 
very wide temporal and spatial ranges in the steady state 
(Figure 4). 

The burning plasma has complex physics. Each physical 
process with different temporal and spatial scales is modeled 
and calculated by separated simulation codes. The respective 
simulation codes can be integrated for the burning plasma 
analysis. The integrated simulation system covers both 



microscopic and macroscopic physical processes and simulates 
long-time behavior considering short-time behavior. 

For integrated simulation, we need a grid computing 
technology to combine loosely coupling existing codes on the 
Grid. Therefore, we have applied SOAF to manage those 
codes in the "Burning Plasma Integrated Code" on our grid 
infrastructure AEGIS. In the current application, we use four 
plasma simulation codes; tokamak prediction and 
interpretation code system (TOPICS) [10], two-dimensional 
magnetic stability analysis code (MARG2D) [11], electron-
cyclotron current drive code (ECCD) [12], and lower-hybrid 
current drive code (LHCD). 

TOPICS solves the 1D transport and current diffusion 
equations and the Grad-Shafranov equation of the MHD 
equilibrium on the 2D plane. The transport code solves the 
current diffusion equation, including EC and LH current 
profiles. TOPICS investigates specific characteristics of 
burning plasma such as behavior of edge localized modes 
(ELMs) [13] and neoclassical tearing modes (NTM) stability. 

MARG2D is 2-D Newcomb equation solver which solves 
an eigenvalue problem associated with the two-dimensional 
Newcomb equation in axisymmetric toroidal plasma such as 
tokamak by using a finite element method. Using this code, we 
can analyze stability of ideal MHD modes from low to high 
toroidal mode numbers. Furthermore we obtain eigenfunctions 
numerically which show the singular behavior. Using 
MARG2D, the MHD property of JT-60SA, the complemented 
device of ITER, is investigated [14]. 

ECCD and LHCD codes simulate control and stabilization 
of the burning plasma and thus are executed for control of 
burning plasma simulated by TOPICS.  

MARG2D, ECCD, and LHCD are started depending on the 
requirement arising from TOPICS during the burning plasma 
simulation. When the plasma is found to be close to the 
unstable region by MARG2D, TOPICS requests to start ECCD 
or LHCD for stabilization of the burning plasma. Therefore the 
"Burning Plasma Integrated Code" belongs to the conditional 
branch type. Total length of the simulation codes is about 
300,000 lines. 

IV. EXPERIMENT  
In this section, we mention our experiment about the 

application of SOAF to those four codes in "Burning Plasma 
Integrated Code".  

The client PC where the controller is executed is Ubuntu 
Linux 8.04 located in Center for Computational Science and e-
Systems of Japan Atomic Energy Agency (CCSE/JAEA) 
(Tokyo/Japan). The C compiler is gcc-4.2.4 (multithread 
enabled). We used USB token (PKCS#11) for authentication 
to AEGIS. The numerical simulations are submitted to three 
computers located in Tokai Research and Development Center 
of JAEA (Ibaraki/Japan); Altix3700Bx2, Altix350, and PC 
cluster. In this experiment, we fix the computers in which 
simulation codes are executed as shown in Table I. In this 
experiment, TOPICS, LHCD, and ECCD are executed on TSS 
mode (serial execution). MARG2D is submitted to job queuing 
system (class of 32CPUs and 3hours). When we start the 

controller, not only TOPICS but also each sentinel script 
beside simulation code is executed. All sentinel scripts are 
executed on TSS mode. 

TABLE I.  CODES AND COMPUTERS. 

Codes Computers 
TOPICS Altix350 

MARG2D Altix3700Bx2 
LHCD Altix350 
ECCD PC Cluster 

 

  
Figure 5.  The diagram of the simulations. The solid line and dashed line 

mean code execution and file transfer, respectively. 

The diagram of the simulations is shown in Figure 5. Those 
simulation codes are executed by the following procedure. At 
first, TOPICS is started. In this experiment, the simulation 
time (not CPU time) is set to 5 seconds (t=5). During the 
running of TOPICS, TOPICS requests to start MARG2D, 
LHCD, and ECCD. In the configuration file of controller, 
TOPICS corresponds to "type 1" code. MARG2D, LHCD, and 
ECCD correspond to "type 0” codes. During simulation by 
MARG2D, LHCD, and ECCD, TOPICS suspends. Then 
TOPICS reflects the analyses results by other codes and 
restarts. 

The file flow is shown in Figure 6. The files are transferred 
between TOPICS and other 3 codes. MARG2D, LHCD, and 
ECCD receive the input files from TOPICS and return results 
of analyses.  

 
Figure 6.  The file flow between simulation codes. The number beside arrow 

means the number of file. 

We prepared the configuration file for four simulation 
codes (about 120 lines) to execute the controller. We 
confirmed that the controller executes those simulation codes 
as scheduled. SOAF successfully controls the cooperative and 
multiple executions of four simulation codes and file transfers 
between those codes. 

The performance of our experiment is shown in Table II. 
The whole execution time is about 40 minutes without job 
queuing time of MARG2D. The overhead of controller is 
about 2 minutes and does not almost influence to the total 
execution time. Because the most of overhead is the 
authentication to AEGIS, the overhead is not considered to 



increase substantially even if a cooperative and multiple 
executions of codes become complicated. 

The timing of start for ECCD and LHCD is scheduled by 
the conditional branch implemented in TOPICS. Because the 
start of ECCD and LHCD is decided by only the existence of 
output files from TOPICS, SOAF is applicable for any 
conditional branch. 

By using SOAF, we can execute cooperatively and 
concurrently various simulation codes on remote computers 
from a client PC without difficulty. The overhead for 
controller is much less than execution time of simulations. We 
can achieve the orchestration of simulations with minimal 
modification. For the he "Burning Plasma Integrated Code", 
the length of the modification is about 200 lines. We have 
verified that all of our issues are solved. 

TABLE II.  THE PERFORMANCE OF OUR EXPERIMENT. WALL-
CLOCK TIME DOES NOT INCLUDE JOB QUEUING TIME. 

Wall-clock time [min.] Action 
0 SOAF start 

TOPICS start 
4 MARG2D start 
5 MARG2D finish 

25 LHCD start 
26 LHCD finish 
33 ECCD start 
36 LHCD finish 
40 TOPICS finish 

SOAF finish 
 

V. SUMMARY 
We have developed a framework of SOAF which supports 

the development of large-scale and detailed simulation codes 
by loosely coupling existing codes on the Grid. In order to 
notify the timing of file transfer to SOAF, only a few SOAF 
library calls are inserted in the applications. We have 
confirmed the usefulness of SOAF by applying it to the 
"Burning Plasma Integrated Code". In the current experiment, 
we use four simulation codes on distributed computers. SOAF 
can control cooperative and multiple executions of these four 
simulation codes and file transfers between them. We have 
solved four issues described in Section II. Although we show 
an example for the conditional branch type, researcher can 
integrate various kinds of simulation codes by just describing 
the data dependency among these codes.  Therefore, the first 
issue is solved. In order to notify the timing of file transfer to 
SOAF, only a few SOAF library calls are inserted in the 
applications. The second and third issues are solved. In our 
experiment, the overhead for SOAF is much less than that for 
simulations. Thus, the fourth issue is solved. 

For consideration of the realistic situation, we need longer-
time simulation. In the current experiment, the simulation time 
of burning plasma is only 5 seconds. For example, the burn 
duration in ITER project is designed as more than 1000 
seconds [9]. When burning plasma in such a situation is 
simulated, we would require several weeks or several months. 
To achieve this, we need to consider the continuity of 
execution. The longer time simulation may suffers from 
various unexpected stop which is caused by execution time 

excess, queuing timeout, outage of computers and so on. To 
avoid the stop of the simulation, we now try to implement the 
fault-tolerant mechanism to SOAF. For example, even if the 
simulation code exhausts execution time, SOAF detects error 
of execution time excess and resubmits the code to restart. 
When this mechanism is implemented, a long-time simulation 
can be executed automatically. 
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