
Simple Orchestration Application Framework to
Control "Burning Plasma Integrated Code"

言語: English

出版者:

公開日: 2012-08-21

キーワード (Ja):

キーワード (En):

作成者: TATEKAWA, Takayuki, NAKAJIMA, Kohei,

TESHIMA, Naoya, KIM, Guehee, SUZUKI, Yosshio,

TAKEMIYA, Hiroshi, HAYASHI, Nobuhiko, IBA, Katsuyuki

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/6444URL

Simple Orchestration Application Framework to Control "Burning Plasma Integrated Code"

Takayuki Tatekawa, Kohei Nakajima, Naoya Teshima,
Guehee Kim, Yoshio Suzuki, Hiroshi Takemiya

Center for Computational Science and e-Systems,
Japan Atomic Energy Agency

6-9-3 Higashiueno, Taito-ku, Tokyo 110-0015, Japan
{tatekawa.takayuki, nakajima.kohei, teshima.naoya,

kim.guehee, suzuki.yoshio, takemiya.hiroshi}@jaea.go.jp

Nobuhiko Hayashi
Naka Fusion Institute,

Japan Atomic Energy Agency
801-1 Mukoyama, Naka-shi, Ibaraki 311-0193, Japan

Katsuyuki Iba

Research Organization for Information Science and
Technology,

2-4, Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki,
319-1106, Japan

Abstract— We have developed the Simple Orchestration
Application Framework (SOAF) on a grid infrastructure to
control cooperative and multiple execution of simulation codes
on remote computers from a client PC. SOAF enables
researchers to generate a scenario of their cooperative and
multiple executions by only describing a configuration file which
includes the information of execution codes and file flows among
them. SOAF does not need substantial modification of the
simulation codes.

We have applied SOAF to the "Burning Plasma Integrated
Code" which consists of various plasma simulation codes. In
order to predict and interpret the behavior of fusion burning
plasma, it is necessary to cooperatively and concurrently execute
various simulation codes to understand complex plasma
phenomena with wide temporal and spatial ranges. Those codes
exist on distributed heterogeneous computers located in different
sites such as universities and institutes. By using SOAF, we
succeeded to cooperatively and concurrently execute four plasma
simulation codes without substantial modification as described in
the configuration file.

Keywords- grid computing, numerical simulation,
orchestration, fusion, AEGIS

I. INTRODUCTION
Integrating various simulation codes, we have been able to

carry out large-scale and detailed simulations. For example, in
nuclear field, in order to predict and interpret the behavior of
fusion burning plasma, it is necessary to simulate complex
plasma phenomena with wide temporal and spatial ranges.
There has been a problem how to execute the simulation codes
on distributed computers cooperatively and concurrently.

A grid computing technology has been used to realize their
cooperative and multiple executions. For example, a workflow
tool such as Kepler [1], TME [2], and so on enables
researchers to build and execute a scientific scenario from a
client PC. Researchers can promote an execution of simulation
codes and can visualize analysis processes using a graphical
user interface (GUI). Here, researchers can construct the
scenario by simple procedures such as drag and drop. A
remote procedure call (RPC) enables researchers to
cooperatively and concurrently manage various simulation
codes by developing an application with its functions.

GridRPC [3] is the expansion of RPC for a grid computing
environment. An extended message passing interface (MPI)
suitable to a grid environment (Grid-enabled MPI) enables a
communication between simulation codes on heterogeneous
distributed computers. Various types of grid-enabled MPI,
STAMPI [4], MPICH-G [5], PACX MPI [6], and so on, have
been developed. Researchers can cooperatively and
concurrently execute simulation codes by modifying those
codes.

Although researchers can cooperatively and concurrently
execute various simulation codes by using those technologies,
those technologies have advantages and disadvantages. We
discuss them by roughly classifying types of the cooperative
and multiple execution of simulation codes into three; type 1 is
the workflow type in which the codes are executed
sequentially, type 2 is the pipeline type in which simulation
codes are executed in parallel by sending and receiving
input/output data during their running, type 3 is the conditional
branch type in which simulation codes are started and data are
transferred depending on various conditions. A workflow tool
is useful for type 1, but is not forte for type 2 and 3, since it
does not always have a function for a detailed control such as
conditional branch. On the other hand, GridRPC and Grid-
enabled MPI are suitable for type 2 and 3. However,
researchers have to make exertions to develop a grid-enabled
application and/or to modify their simulation codes.

The integration of plasma simulation codes, e.g. the
"Burning Plasma Integrated Code", corresponds to type 3,
since those codes have to be cooperatively and concurrently
executed depending on various conditions such as plasma
stability, timing of heating, and so on. Especially the integrated
code is "dynamical conditional branch" type. A workflow tool
cannot operate this type. Therefore, it is desirable to construct
a novel grid computing technology which enables researchers
in plasma physics field to control the type 3 execution without
their exertions.

As a novel technology to easily control various types of
cooperative and multiple executions, we propose the Simple
Orchestration Application Framework (SOAF). Using SOAF,
researchers can control various types of cooperative and
multiple executions of simulation codes by just describing the
data dependency among those codes.

We have developed SOAF by using the client application
program interface (API) for grid applications which has been
implemented on Atomic Energy Grid Infrastructure (AEGIS)
[7]. And we have applied SOAF to the "Burning Plasma
Integrated Code" to solve the current diffusion, stability of
plasma, current drive, and so on.

We describe SOAF in detail and its application to the
"Burning Plasma Integrated Code" in section II and III,
respectively. In section IV, we report the environment and
result of our experiment. Finally in section V, we summarize
our R&D results and describe a future work.

II. SIMPLE ORCHESTRATION APPLICATION FRAMEWORK
(SOAF)

A. Overview of SOAF
We propose a novel framework to cooperatively and

concurrently execute simulation codes without difficulty. Here,
we describe the concept of framework.

We suppose that many simulation codes exist on
distributed computers. Each code can analyze one
phenomenon in detail. Integrating these codes, a realistic
problem can be elucidated. To realize this, the orchestration
including code executions and file transfers on a grid
infrastructure is required. Here, we consider followings are the
critical issue to design the SOAF: (1) How are various types of
cooperative and multiple executions controlled easily? (2)
How is each simulation executed cooperatively and
concurrently with its minimal modification? (3) How are
researchers' exertions for cooperative and multiple executions
reduced? (4) Furthermore, how is the overhead due to the
framework minimized?

We focused on a file flow among execution codes to design
the SOAF. Firstly, it is easier to define a file flow than a flow
of execution codes in order to build a scientific scenario
depending on conditional branch. Secondly, it is better to
send/receive information by transferring files in order to have
communications among simulation codes without modifying
those codes. We adopted the way to manage the start of codes
by a file flow. It is useful to identify a file flow, since a code is
usually started after it receives a file from another code, except
a firstly started code. SOAF manages the start of codes and the
transfer of files under a file flow which is described in a
configuration file. SOAF consists of a client application,
programs to support the file transfers, and a configuration file.
Those programs (we call this program “sentinel”) are started
by the client application (we call this "controller") and are
executed on distributed computers. By those ideas, researchers
can integrate various kinds of simulation codes by just
describing the data dependency among these codes. We
consider that a new code is executed with the trigger of output
files from other codes. Only a little modification about file
output is needed. The last issue is verified by an experiment.

B. Controller
We developed the controller using the client API for grid

application implemented on AEGIS. AEGIS is grid
middleware for atomic energy research which we developed.
The schematic diagram of AEGIS is shown in Figure 1. We

developed the client API as a function of AEGIS to develop
grid-enabled applications on a client PC. The client API can
work on other grid middleware such as UNICORE, DIET,
Globus and so on [8]. The client API is classified into low,
middle and high level APIs due to their functions. To develop
controller, we used the authentication API, file transfer API,
job submission API and job information request API in low
level APIs, and Job-script generator API in middle level APIs.

Figure 1. Schematic diagram of AEGIS.

Low level APIs supply connection between a client PC and
supercomputers on AEGIS, job operation to supercomputers,
resource handling on both clients PC and supercomputers, and
so on. When users access AEGIS, users need an authentication
process with an IC card or an USB token (PKCS#11). Job-
script generator API generates the script corresponding to
heterogeneous computers by reading job attributes such as
name of computer, job class, number of CPUs, path of
program, work directory, and so on.

C. Sentinel
It is needed for the controller to confirm the end of file

output. Thus, we developed the sentinel which detects the
output files and operates the file transfer between simulation
codes. It works before and after job submission.

The sentinel has three types of scripts; send, recv, and
void. The send script detects "flag files" of output files,
generates "sent files". The recv script detects "sent files" and
generates "flag files". The void script is used to execute
simulation codes without files.

Figure 2. The procedure of file transfer

We show the procedure of file transfer using the sentinel.
Here, we describe an example that two codes ("code A" and
"code B") are cooperatively and concurrently executed on
distributed computers (see Figure 2). The execution of "code
B" requires output files from "code A". The procedure is as
follows:

 (1) "Code A" generates output files and their "flag files".

 (2) The send sentinel beside "code A" detects the "flag
files" and deletes them. Then send sentinel generates "sent
files" of the output files.

(3) The controller transfers the output files from work
directory of "code A" to that of "code B".

(4) The controller transfers "sent files" from work
directory of "code A" to that of "code B".

(5) The recv sentinel beside "code B" detects "sent
files" and deletes them. Then the recv sentinel generates
"flag files" of transferred files.

(6) "Code B" is started by SOAF, detects "flag files" and
read the output files.

A little modification of simulation codes is needed to use
SOAF. When "code A" generates output files, "code A" must
generate their "flag files". "Code B" must detect the "flag files".

D. Configuration file
The configuration file in this case is described in Figure 3. The
configuration file consists of information of codes
(PROGRAM) and file flow (FLOW). The "type" in FLOW
represents kinds of code. The "type 1" corresponds to the
firstly started code. The code with "type 0" is started after it
receives a file from another code. The "File1" in FLOW is
output files from code A. By the SOAF, these files are
transferred from work directory of code A to that of code B.
After files are transferred, the controller starts code B. The
File2 is output file from code B. After execution of code B,
this file is transferred from work directory of code B to that of
code A. Code A receives this file.

Figure 3. An example of the configuration file. The overhead of the sentinel

is almost negligible

Figure 4. Temporal and spatial scales on physical processes of plasma

III. BURNING PLASMA INTEGRATED CODE
The "Burning Plasma Integrated Code" has been

researched and developed mainly by Naka Fusion Institute of
Japan Atomic Energy Agency (JAEA) to integratedly predict
and interpret the plasma behavior. It consists of various plasma
simulation codes to solve the current diffusion, stability of
plasma, current drive, and so on. A quite realistic simulation is
expected by integrating those codes.

It is indispensable to understand the controllability of
plasma toward the continuous operation of tokamak reactor
especially for ITER [9]. To control the burning plasma and

achieve high performance, it has an important role to simulate
behavior of burning plasma in tokamak reactor.

For simulation of burning plasma in tokamak reactor, it is
not realistic to handle whole physical processes by one
simulation code. One of the reasons is that burning plasma has
very wide temporal and spatial ranges in the steady state
(Figure 4).

The burning plasma has complex physics. Each physical
process with different temporal and spatial scales is modeled
and calculated by separated simulation codes. The respective
simulation codes can be integrated for the burning plasma
analysis. The integrated simulation system covers both

microscopic and macroscopic physical processes and simulates
long-time behavior considering short-time behavior.

For integrated simulation, we need a grid computing
technology to combine loosely coupling existing codes on the
Grid. Therefore, we have applied SOAF to manage those
codes in the "Burning Plasma Integrated Code" on our grid
infrastructure AEGIS. In the current application, we use four
plasma simulation codes; tokamak prediction and
interpretation code system (TOPICS) [10], two-dimensional
magnetic stability analysis code (MARG2D) [11], electron-
cyclotron current drive code (ECCD) [12], and lower-hybrid
current drive code (LHCD).

TOPICS solves the 1D transport and current diffusion
equations and the Grad-Shafranov equation of the MHD
equilibrium on the 2D plane. The transport code solves the
current diffusion equation, including EC and LH current
profiles. TOPICS investigates specific characteristics of
burning plasma such as behavior of edge localized modes
(ELMs) [13] and neoclassical tearing modes (NTM) stability.

MARG2D is 2-D Newcomb equation solver which solves
an eigenvalue problem associated with the two-dimensional
Newcomb equation in axisymmetric toroidal plasma such as
tokamak by using a finite element method. Using this code, we
can analyze stability of ideal MHD modes from low to high
toroidal mode numbers. Furthermore we obtain eigenfunctions
numerically which show the singular behavior. Using
MARG2D, the MHD property of JT-60SA, the complemented
device of ITER, is investigated [14].

ECCD and LHCD codes simulate control and stabilization
of the burning plasma and thus are executed for control of
burning plasma simulated by TOPICS.

MARG2D, ECCD, and LHCD are started depending on the
requirement arising from TOPICS during the burning plasma
simulation. When the plasma is found to be close to the
unstable region by MARG2D, TOPICS requests to start ECCD
or LHCD for stabilization of the burning plasma. Therefore the
"Burning Plasma Integrated Code" belongs to the conditional
branch type. Total length of the simulation codes is about
300,000 lines.

IV. EXPERIMENT
In this section, we mention our experiment about the

application of SOAF to those four codes in "Burning Plasma
Integrated Code".

The client PC where the controller is executed is Ubuntu
Linux 8.04 located in Center for Computational Science and e-
Systems of Japan Atomic Energy Agency (CCSE/JAEA)
(Tokyo/Japan). The C compiler is gcc-4.2.4 (multithread
enabled). We used USB token (PKCS#11) for authentication
to AEGIS. The numerical simulations are submitted to three
computers located in Tokai Research and Development Center
of JAEA (Ibaraki/Japan); Altix3700Bx2, Altix350, and PC
cluster. In this experiment, we fix the computers in which
simulation codes are executed as shown in Table I. In this
experiment, TOPICS, LHCD, and ECCD are executed on TSS
mode (serial execution). MARG2D is submitted to job queuing
system (class of 32CPUs and 3hours). When we start the

controller, not only TOPICS but also each sentinel script
beside simulation code is executed. All sentinel scripts are
executed on TSS mode.

TABLE I. CODES AND COMPUTERS.

Codes Computers
TOPICS Altix350

MARG2D Altix3700Bx2
LHCD Altix350
ECCD PC Cluster

Figure 5. The diagram of the simulations. The solid line and dashed line

mean code execution and file transfer, respectively.

The diagram of the simulations is shown in Figure 5. Those
simulation codes are executed by the following procedure. At
first, TOPICS is started. In this experiment, the simulation
time (not CPU time) is set to 5 seconds (t=5). During the
running of TOPICS, TOPICS requests to start MARG2D,
LHCD, and ECCD. In the configuration file of controller,
TOPICS corresponds to "type 1" code. MARG2D, LHCD, and
ECCD correspond to "type 0” codes. During simulation by
MARG2D, LHCD, and ECCD, TOPICS suspends. Then
TOPICS reflects the analyses results by other codes and
restarts.

The file flow is shown in Figure 6. The files are transferred
between TOPICS and other 3 codes. MARG2D, LHCD, and
ECCD receive the input files from TOPICS and return results
of analyses.

Figure 6. The file flow between simulation codes. The number beside arrow

means the number of file.

We prepared the configuration file for four simulation
codes (about 120 lines) to execute the controller. We
confirmed that the controller executes those simulation codes
as scheduled. SOAF successfully controls the cooperative and
multiple executions of four simulation codes and file transfers
between those codes.

The performance of our experiment is shown in Table II.
The whole execution time is about 40 minutes without job
queuing time of MARG2D. The overhead of controller is
about 2 minutes and does not almost influence to the total
execution time. Because the most of overhead is the
authentication to AEGIS, the overhead is not considered to

increase substantially even if a cooperative and multiple
executions of codes become complicated.

The timing of start for ECCD and LHCD is scheduled by
the conditional branch implemented in TOPICS. Because the
start of ECCD and LHCD is decided by only the existence of
output files from TOPICS, SOAF is applicable for any
conditional branch.

By using SOAF, we can execute cooperatively and
concurrently various simulation codes on remote computers
from a client PC without difficulty. The overhead for
controller is much less than execution time of simulations. We
can achieve the orchestration of simulations with minimal
modification. For the he "Burning Plasma Integrated Code",
the length of the modification is about 200 lines. We have
verified that all of our issues are solved.

TABLE II. THE PERFORMANCE OF OUR EXPERIMENT. WALL-
CLOCK TIME DOES NOT INCLUDE JOB QUEUING TIME.

Wall-clock time [min.] Action
0 SOAF start

TOPICS start
4 MARG2D start
5 MARG2D finish

25 LHCD start
26 LHCD finish
33 ECCD start
36 LHCD finish
40 TOPICS finish

SOAF finish

V. SUMMARY
We have developed a framework of SOAF which supports

the development of large-scale and detailed simulation codes
by loosely coupling existing codes on the Grid. In order to
notify the timing of file transfer to SOAF, only a few SOAF
library calls are inserted in the applications. We have
confirmed the usefulness of SOAF by applying it to the
"Burning Plasma Integrated Code". In the current experiment,
we use four simulation codes on distributed computers. SOAF
can control cooperative and multiple executions of these four
simulation codes and file transfers between them. We have
solved four issues described in Section II. Although we show
an example for the conditional branch type, researcher can
integrate various kinds of simulation codes by just describing
the data dependency among these codes. Therefore, the first
issue is solved. In order to notify the timing of file transfer to
SOAF, only a few SOAF library calls are inserted in the
applications. The second and third issues are solved. In our
experiment, the overhead for SOAF is much less than that for
simulations. Thus, the fourth issue is solved.

For consideration of the realistic situation, we need longer-
time simulation. In the current experiment, the simulation time
of burning plasma is only 5 seconds. For example, the burn
duration in ITER project is designed as more than 1000
seconds [9]. When burning plasma in such a situation is
simulated, we would require several weeks or several months.
To achieve this, we need to consider the continuity of
execution. The longer time simulation may suffers from
various unexpected stop which is caused by execution time

excess, queuing timeout, outage of computers and so on. To
avoid the stop of the simulation, we now try to implement the
fault-tolerant mechanism to SOAF. For example, even if the
simulation code exhausts execution time, SOAF detects error
of execution time excess and resubmits the code to restart.
When this mechanism is implemented, a long-time simulation
can be executed automatically.

ACKNOWLEDGMENT
We would like to thank Dr. T. Ozeki for fruitful discussion

and support and Mr. I. Kamata for modification of the
simulation codes.

REFERENCES
[1] B. Ludäscher et al., “Scientific workflow management and the Kepler

system”, Concurrency and Computation: Practice and Experience,
vol.18, pp. 1039-1065, 2005.

[2] T. Imamura, Y. Hasegawa, N. Yamagishi, and H. Takemiya, “TME: A
Distributed resource handling tool.", Recent Advances in Computational
Science & Engineering, International Conference on Scientific &
Engineering Computation (IC-SEC) (3-5 December 2002, Raffles City
Convention Centre, Singapore), pp. 789-792, 2002.

[3] K. Seymour et al., “Overview of GridRPC: A Remote Procedure Call
API for Grid Computing”, Proceedings of 3rd International Workshop
on Grid Computing (M. Parashar eds.), pp 274-278, 2002.

[4] T. Imamura, Y. Tsujita, H. Koide, and H. Takemiya, “An Architecture
of Stampi: MPI Library on a Cluster of Parallel Computers”,
Proceedings of the 7th European PVM/MPI Users' Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Lecture Notes in Computer Science, vol. 1908, pp. 200-207,
January 2000.

[5] I. Foster and N. T. Karonis, “A grid-enabled MPI: message passing in
heterogeneous distributed computing systems”, Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), pp.1-11, 1998.

[6] T. Beisel, E. Gabriel, and M. Resch, "An extension to MPI for
distributed computing on MPPs", Recent Advances in Parallel Virtual
Machine and Message Passing Interface, Lecture Notes in Computer
Science, vol. 1332, pp.75-82, November 1997

[7] Y. Suzuki et al., “Research and development of fusion grid
infrastructure based on atomic energy grid infrastructure (AEGIS)”,
Sixth IAEA Technical Meeting on Control, Data Acquisition, and
Remote Participation for Fusion Research (4-8 June 2007, Inuyama,
Japan), Fusion Engineering and Design, Vol.83, pp.511-515, 2008.

[8] Y. Suzuki et al., “Atomic Energy Grid Infrastructure (AEGIS) and
Interoperation with Other Grids”, High Performance Computing on
Vector Systems 2008, Springer-Verlag Berlin Heidelberg, pp. 65-77,
2008.

[9] ITER Physics Basis Editors et al., “Chapter 1: Overview and summary”,
Nucl. Fusion, vol. 39, pp.2137-2174, 1999.

[10] N. Hayashi, A. Isayama, K. Nagasaki, and T. Ozeki, “Numerical
Analysis of Neoclassical Tearing Mode Stabilization by Electron
Cyclotron Current Drive”, J. Plasma Fusion Res., vol. 80, pp.605-613,
2004.

[11] N. Hayashi, T. Takizawa, T. Ozeki, N. Aiba, and N. Oyama, “Integrated
Simulation of ELM Energy Loss Determined by Pedestal MHD and
SOL Transport”, Nucl. Fusion, vol. 47, pp. 682-688, 2007.

[12] K. Hamamatsu, “Numerical Study for Positional Control of ECCD by
the Ordinary Wave in a Tokamak Plasma”, J. Plasma Fusion Res., vol.
75, pp.143-150, 1999.

[13] S. Tokuda and T. Watanabe, “A new eigenvalue problem associated
with the two-dimensional Newcomb equation without continuous
spectra”, Phys. of Plasmas, vol. 6, pp.3012-3026, 1999.

[14] N. Aiba et al., “Numerical Method for the Stability Analysis of Ideal
MHD Modes with a Wide Range of Toroidal Mode Numbers in
Tokamaks”, Plasma Fusion Res., vol. 2, 010, 2007.

.

