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ABSTRACT

The two-point correlation function of galaxy distribution shows that structure in the present universe
is scale-free up to a certain scale (at least several tens of Mpc), which suggests that a fractal structure
may exist. If small primordial density fluctuations have a fractal structure, the present fractal-like nonlin-
ear structure below the horizon scale could be naturally explained. We analyze the time evolution of
fractal density perturbations in an Einstein—de Sitter universe, and study how the perturbation evolves
and what kind of nonlinear structure will result. We assume a one-dimensional collisionless sheet model
with initial Cantor-type fractal perturbations. The nonlinear structure seems to approach some attractor
with a unique fractal dimension, which is independent of the fractal dimensions of initial perturbations.
A discrete self-similarity in the phase space is also found when the universal nonlinear fractal structure is

reached.

Subject headings: cosmology: theory — large-scale structure of universe

1. INTRODUCTION

The present universe shows a variety of structures. Gal-
axies are not distributed randomly in the universe. Totsuji
& Kihara (1969) and Peebles (1974) showed that the ob-
served two-point correlation function &(r) is given by a
power law with respect to distance r as &(r) ~ r~7, with
y ~ 1.8. Recent galaxy surveys also agree with this result,
i.e., the power y is nearly equal to 1.8; see, e.g., the Center for
Astrophysics (CfA; Geller & Hachra 1989), Las Campanas
Redshift Survey (LCRS; Jing, Mo, & Borner 1998), and
ESO Slice Project (ESP; Guzzo et al. 1998, 2000). This may
imply that the present distribution of galaxies is fractal.
Sylos Labini, Montuori, & Pietronero (1998) have also
claimed that all available data are consistent with a fractal
structure with dimension D ~ 2 up to the deepest observed
scale (1000 A~ ' Mpc). However, observation of the cosmic
microwave background radiation (CMBR) has revealed
that the universe in the recombination era is homogeneous
and isotropic at least at very large scales. Although CMBR
observation seems to be more reliable, we should not decide
yet whether or not the large-scale structure of the universe is
really fractal up to the horizon scale. To answer this ques-
tion more definitely, we should await forthcoming galaxy
survey projects (Colless 2000; Maddox 1997; Loveday &
Pier 1998; Knapp et al. 1999).

However, since it seems true that the galaxy distribution
is really fractal up to a certain scale, one might ask how
such a structure is formed in the evolution of the universe.
One of the most plausible explanations is that the nonlinear
dynamics of the perturbations will provide such a scale-free
structure during the evolution of the universe. The pioneer-
ing work to explain the power-law behavior in the nonlin-
ear stage was done by Davis & Peebles (1977). They
assumed a self-similar evolution of density fluctuations and
some additional condition, i.e., that a physical velocity 7
vanishes in the nonlinear regime. Then they showed a rela-
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tion between the power index y of the two-point correlation
function and that of the initial power spectrum n, as
y =3(m + 3)/(n + 5). If we have n =0, then we find that
y = 1.8. Since their additional condition is not trivial and
might not be appropriate, Padmanabhan (1996) and Yano
& Gouda (1998a) extended their model to the case with
nonvanishing 7. They found that the relation between n and
y is y = [3h(n + 3)]1/[2 + h(n + 3)], where h = —alx)/ax,
which is the ratio of peculiar velocity to the Hubble expan-
sion. With this result, y can vary from 0 to 2 for n=1
(Harrison-Zeldovich spectrum) and 0 < h < 1 (where h = 1
corresponds to the Davis-Peebles solution). Since we do not
know the stability of those solutions, in order to find out
which value of y is most likely, we should study the
dynamics of density fluctuations using other methods, e.g.,
N-body simulations. Several groups in fact have showed
that a power-law behavior in two-point correlation func-
tions can be obtained by N-body simulations with appro-
priate primordial density fluctuations (Miyoshi & Kihara
1975; Efstathiou 1979; Aarseth, Gott, & Turner 1979;
Frenk, White, & Davis 1983; Davis et al. 1985; Jing 1998).

The question is whether those power-law behaviors mean
that we have a fractal structure in the present universe.
Peebles (1985) and Couchman & Peebles (1998) showed
how to proceed with a high-resolution analysis in the
N-body simulation using a kind of renormalization method.
They have used the Davis-Peebles solution as a scaling rela-
tion. Without such an Ansatz, we do not know whether the
usual N-body simulation is suitable to discussing the forma-
tion of a fractal structure. With the present state of com-
puters, it may not be possible to obtain high enough
resolution to analyze a fractal structure.

Another question arises regarding a fractal structure in
the universe. Did the universe not have any nontrivial struc-
ture, such as fractal, in the initial density fluctuations? In
the conventional approaches, initial density perturbations
are usually assumed to be given by a power-law (or a
power-law-like) spectrum with random Gaussian phase.
Although such initial conditions may provide the currently
observed nonlinear scale-free structure via nonlinear
dynamics, no one has shown whether such a structure is
fractal or not, and if so, what kind of fractal structure arises.
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To provide a fractal structure in the present universe, we
can adopt an alternative scenario, in which primordial
density fluctuations already have a fractal-like structure in
the beginning. Note that the background spacetime is
assumed to be a smooth Einstein—de Sitter universe, but not
a fractal universe. The properties of an initial fractal may be
preserved during the evolution of the universe; then nonlin-
ear fractal structure will be formed. In fact, De Gouveia dal
Pino et al. (1995) reported that the temperature fluctuation
of the CMBR has a fractal relation, and recently Pando &
Fang (1998) and Feng & Fang (2000) also reported that
non-Gaussianity was detected in the distribution of Lya
forest lines in QSO absorption spectra. In this scenario,
several natural questions arise. How does such a primordial
fractal perturbation evolve into the nonlinear regime? Will
any properties of the initial fractal be preserved during the
evolution of the universe, or not? If not, what kind of non-
linear structure will emerge at present? Is there any funda-
mental difference in the structure formation process
between a conventional density perturbation and the
present fractal one? In order to answer those questions, we
study the time evolution of initial density fluctuations with
a fractal structure in an Finstein—de Sitter universe.

Since we are interested in a fractal structure, a quite high
resolution is required in our calculation. As we discussed,
N-body simulations may not have enough resolution in the
present state of computer development, unless we develop
some skillful method. Thus, in this paper, we consider only
a very simple toy model, which is a one-dimensional sheet
model, in order to get some insight into the questions raised
above. To set up primordial fractal density perturbations,
we distribute N sheets initially by some systematic rule, i.e.,
we apply a Cantor set or a random Cantor-type set (see
below). Mathematically, in order to construct a Cantor set,
the procedure must be repeated an infinite number of times,
but it is not practically possible to set up such initial data.
We therefore stop the procedure at a certain point, i.e., the
initial set is given by removing line segments with a given
ratio (Falconer 1990) several times. This can be justified
because an infinite scale-free structure never exists in the
real universe. In order to construct the initial density per-
turbations, we set that the remaining segments have small
positive density perturbations, while the removed segments
correspond to small negative ones. Since we study a one-
dimensional sheet model, the motion of each sheet is
described by an analytic solution (Zeldovich 1970), which
guarantees enough resolution to analyze a fractal structure.

In § 2, we present our formalism and initial setting. As for
the initial data, we consider three cases: a regular Cantor
set, a random Cantor-type set, and random white noise.
Comparing those time evolutions, we show our results in
§ 3. In § 4, we focus particularly on the phase space. The
conclusion and discussion follow in § 5.

2. FORMALISM AND INITIAL DATA

2.1. Dynamical Equations

In order to study the structure formation of the expand-
ing universe, there are so far three approaches: N-body
simulations, the Eulerian perturbation approach, and the
Lagrangian one. Although the final answer on structure
formation may be obtained by N-body simulations, this
approach may not be feasible for answering questions con-
cerning fractal structure. As for the perturbation
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approaches, these are just an approximation and will break
down in the nonlinear regime, although the Lagrangian
approach would be better if we are interested in the density
perturbations. This is just because the density fluctuation ¢
and peculiar velocity v are perturbed quantities in the
Eulerian approach (Peebles 1980), while the displacement of
particles is assumed to be small in the Lagrangian approach
(Zeldovich 1970; Bouchet 1992, 1995; Coles & Lucchin
1995; Catelan 1995). Its first-order solution is the so-called
Zeldovich approximation (Zeldovich 1970). The Lagrang-
ian approach has been confirmed to be better than the
Eulerian approach by comparison of these results in several
cases (Munshi, Sahni, & Starobinsky 1994; Sahni & Shan-
darin 1996; Yoshisato, Matsubara, & Morikawa 1998).

The perturbation variable S in the Lagrangian approach
describes a displacement of dust particles from a uniform
distribution, and is defined as

x=q+S8g1, )

where x and ¢ are the Eulerian and Lagrangian comoving
coordinates, respectively. The density fluctuation is given by
the Jacobian, J, as

1-J
o, 1) =~ @
where J = det(0x/0q).

Even though the Lagrangian approach is better, it is still
an approximation and thus is not suitable to discussing
highly nonlinear structure formation. However, there is one
exceptional case. If the distribution is plane-symmetric, the
system is one-dimensional, and then the Zeldovich approx-
imation turns out to be an exact solution. Hereafter, we
discuss only one-dimensional problems, the Lagrangian
perturbation of which is given by

x=q+S(q,1), (3)

where x and g are the one-dimensional Eulerian and
Lagrangian comoving coordinates, respectively. For the
Einstein—de Sitter model, the solution is given by (Gouda &
Nakamura 1989; Bouchet et al. 1995)

S(g, 1) = a(t)S1(9) + a(t)~>"*Sx(q) , @)

where the scale factor a changes as a = (/t,)*>. Then we
find the position and velocity of a dust particle at a scale
factor a(t) with respect to the Lagrangian coordinate g as

x(g, a) = q + a(t)Sy(q) + at)~**S,(q) , )
(g, @) = S1(q) — 3a(t)~>?S,(q) , (6)

where we have introduced a new peculiar velocity, 7 =
0x/0a. In the following discussion, we use the scale factor
a(t) as a time coordinate instead of the physical time t.
Although the Zeldovich solution is exact, in studying the
formation of nonlinear structure a serious problem will
soon arise. As a density fluctuation grows, we find a shell
crossing. For a realistic matter fluid, pressure may prevent
such a singularity from forming. Then the solution will no
longer describe the evolution of perturbations after a shell
crossing. However, we may have another choice. If instead
of a usual matter fluid we have a collisionless particle, such
as some dark matter, we can go beyond the shell crossing.
The particles, which are described by plane-parallel sheets,
will pass through each other without collision. Then, after
this crossing, we rediscover that the Zeldovich solution is
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again exact. Therefore, we have a series of exact solutions,
which is almost analytic (Gouda & Nakamura 1989; Yano
& Gouda 1998b). We call this the one-dimensional sheet
model.

To be more precise, when a crossing by two sheets has
occurred, those two sheets exchange their numbering as
follows. Suppose there are two sheets, g; and g, (¢, < q,),
with the Eulerian coordinates x(q,, a), x(q,, a) [x(q,, a) <
x(q,, )] and with velocities #(q,, a) and ©(q,, a), respec-
tively. Assume that these sheets cross over at a., i.e.,
x(q19 across) = x(ql’ across) Wlth ﬁ(ql, acmss) > 5(q29 across)'
For the evolution after a shell crossing (a > a.,,), €exchang-
ing their numbering (¢, q,) as

Cross

x(qD across) - x(q29 across) ’ E(qla acmss) - 5(q2= acmss) s

x(an across) - x(q1, across) ’ 5(6]2, across) - 5(‘11, across) H (7)

we again find a natural ordering between the Lagrangian
and Eulerian coordinates, i.e., x(q,, a) < x(q,, a) for q; <
q,. By this exchange, we obtain a new distribution of sheets
[x(g, a), ©(q, a)] just after a shell crossing. Using this dis-
tribution as initial data, we find a next exact time evolution
of the system by the Zeldovich solution. In order to fix the
initial data, we must determine S,(g) and S,(q) in equation
(4) for the given distribution [x(q, a), (g, a)]. From equa-
tions (5) and (6) we find that the solution is

3 2 .
Sl(q)—g(x—quv,

2
S:@) =73 a*[(x — q) — ab] . t)

The new exact solution of equation (4) with equation (8)
is valid until we encounter next shell crossing, where
another two sheets will cross over.

We repeat this prescription every time we encounter a
shell crossing. As a result, we obtain a series of Zeldovich
exact solutions, which is regarded as an analytic solution for
the one-dimensional collisionless sheet model. Note that
this prescription is still valid in a multistream region. Using
this prescription, Gouda & Nakamura (1989) investigated a
time evolution for the density perturbations with a scale-
free initial power spectrum. They showed that the power
spectrum will approach some characteristic value indepen-
dent of the power index of the initial spectrum. This charac-
teristic power index — 1 is predicted by catastrophe theory.
Recently, Yano & Gouda (1998b) investigated the time
evolution of the density perturbations for an initial power
spectrum with a cutoff. In this case, they found that a self-
similarity in all scales is no longer valid. The spectrum is
classified into five ranges by its power index. Some spectra
coincide with the above one for some scale ranges, but
another power index, which is independent of the initial
power spectrum, appears just beyond the cutoff scale. In § 5
we show our result compared with their result.

Since this one-dimensional sheet model is powerful
enough to see the fine structure, we use this model to
analyze the time evolution of the primordial fractal density
perturbations.

2.2. Setting Up Initial Data

Since we are interested in initial density fluctuations with
a fractal distribution, we must construct such initial data.
For the sake of simplicity, we apply a Cantor set, or a
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random Cantor-type set (see below), in our construction. A
Cantor set is given by the following procedure. We first
divide a line with length L by some integer n,, and then
remove one line segment at the center. If n;, is an even
integer, not dividing a line by n,, we just remove a line
segment with the length L/n;, from the center of the line. We
then repeat this procedure for the remaining line segments.
In the pure mathematical model, the removal procedure
must be repeated infinite times. However, we believe that a
fractal structure, even if it exists in the universe, is not a
mathematical one, but that its self-similarity may end at
some scale. Thus, we stop our procedure after a finite
number of repetitions. We regard the remaining line
segment as a region of positive density fluctuations (6,
region), while the removed part corresponds to a region of
negative density fluctuations (6 - region). Here 6 . ( > 0) and
J_( < 0) are chosen to be uniform, i.e., both 6, and §_ are
some constants in all regions such that § . ~|§_| ~ 1073,
Although this is very artificial and the realistic pertur-
bations may depend on each scale just like conventional
density perturbations, we analyze only this simplest case
here (see § 5). In addition to the Cantor set, in order to see
the universality of our results we also consider a random
Cantor-type set as well as a distribution constructed by
white noise. We now describe in more detail how to con-
struct the initial data for each case.

2.2.1. Regular Cantor Set

In this case, we consider seven initial data. Each data set
is constructed by removing central line segments with a
fixed ratio (1/np, where n, = 3, 6, 8, 10, 12, 15, and 20) from
the remaining parts. Each density fluctuation has a different
fractal dimension, given by

_ log 2
Do =g C2mp/ny — 11 ®)

We assume that § . ~ | §_ |. With this Ansatz, we have fixed
the repetition number of the removal procedure (Ng).
Although the number Ny can be different for each initial
data set, in order to keep the same resolution for each
model (i.e., for the ratio of the smallest line segment [ to that
of the whole region L [our calculation space] to be almost
same), we set N = 5 ~ 7. We also fix 6, = 1073, which
determines the negative density perturbation 6_ such that
the mean of fluctuations must vanish (see Table 1).

We show one example of initial data for np, = 10 in
Figure 1. We put 2!7 sheets in our calculation space L. By

TABLE 1
Di1viSION PARAMETERS

1y D, N IJL 5_
3o 0631 5 1/243 —0.152 x 1073
6ooon... 0792 6  1/191.10  —0.504 x 1073
8. 0838 7  1/32595 —0647 x 1073
10...... 0868 7  1/267.62 —0917 x 1073
12...... 0888 7  1/23536 —1.19 x 1073
15...... 0909 7 1/20747 —1.61 x 1073
20...... 0931 7 1/18329 —231x 1073

Note—The number of the division n, its fractal dimen-
sion D,,, the repetition number of removal procedure N, the
resolution (the ratio of the length of the shortest line segment
to that of the whole system //L), and each negative density
perturbation 6 _.
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F1G. 3.—(a) Initial fractal density fluctuation for the random Cantor-type set with n;, = 10. The random Cantor-type set is defined such that the division
number 7, is fixed as that of a regular Cantor set, while its removal positions of line segments are determined by a random number. This is called model 1 in
the text. Enlarging the picture, we find a similar pattern up to the repetition number of the removal procedure N, = 7. The fractal dimension of this initial
fluctuation is 0.868, which is the same as that of the regular Cantor set with n, = 10. (b) Another initial fractal density fluctuation set up by the same
prescription as (a) (model 2).



No. 2, 2001

0.001 —————

00005 [ |1

-00005 L IR L
i I\

20001

0.001 —————————————————

0.0005 |

-0.0005 ||

0001 L ‘
0 0.02 0.04 0.06 0.08 01
X [IL]

(b)

F1G. 4—(a) Initial density fluctuation created by white noise (model 1
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prescription as (a) (model 2).

is almost the same as that of a regular Cantor set for the
same ny. In this paper, we analyze three random Cantor-
type set models: two models with n;, = 10 and one with
np = 12. One initial distribution for n, = 10 is shown in
Figure 3.

2.2.3. White Noise

In order to see whether or not our primordial fractal
fluctuations play an important role in structure formation,
in particular the formation of fractal structure in the nonlin-
ear regime, we also study the time evolution of primordial
fluctuations with white noise. The distribution of initial
density fluctuations is given by a random number in the
range —1073 <6 <1073 We analyze two models; the
initial data for one is shown in Figure 4.

3. TIME EVOLUTION OF PRIMORDIAL FRACTAL DENSITY
PERTURBATIONS

In order to see how structures are formed, we must
describe the distribution by the Eulerian coordinate. It is
convenient to compare the distribution at each time using
the comoving coordinate x. We set the initial scale factor
a, = 1. Since our initial density fluctuation is ~1073, we
find a first shell crossing at a = a.,,,, ~ 103. We perform our
calculation untila = (2 ~ 3) x 10%.
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In order to see the detail to resolve a fractal structure, we
put 217 sheets in our calculation scale L. Using a box-
counting method, i.e., counting the number of boxes that
contain the region with density perturbation ¢ larger than 1,
we determine the fractal dimension of the nonlinear struc-
tures. The size of the box ranges from 27 L to 107 'L

We now present our results for the three types of initial
data, in order.

3.1. Regular Cantor Set

First, we show the results for the regular Cantor set with
np = 10. The time evolution is depicted in Figure 5. Because
we set 6, ~ |6_| ~ 1073, a nonlinear structure appears at
a ~ 5 x 10% (Fig. 5a). Before a shell crossing, the pattern of
density fluctuations remains similar to that of the initial
distributions, although each separation will change through
gravitational interaction. We then find a shell crossing at
a = Ao ~ 103 (Fig. 5b). After the shell crossing, the trace
of the initial Cantor set gradually disappears, because of the
exchange of the shells by the crossing (Figs. 5b-5f).
Although many sheets cross each other, the peculiar veloci-
ties do not vanish immediately because of collisionless
sheets, and then the pattern of nonlinear structure will
change continuously. After sufficient evolution of the non-
linear structure, we find a self-similarity in the structure,
which seems to be fractal. In fact, enlarging some regions,
we find similar density distributions (Fig. 6).

In order to judge whether such a structure is fractal or
not, we use a box-counting method, which gives a fractal
dimension Dj. Before a shell crossing, we find that the
dimension Dy decreases in time from the initial value D, =
0.868, but the error in the estimation increases with time
(Fig. 7a). This is because although the pattern of initial
density fluctuations remains even in a nonlinear stage
before a shell crossing, the change of each separation breaks
the initial fractal distribution. Then, the initial fractal dis-
tribution seems to disappear.

However, after a shell crossing, the fractal dimension
starts to increase again and the error in the estimation
becomes much smaller. The fractal structure seems to
recover. More surprisingly, the dimension D, approaches
some constant (D,g,,, ~ 0.9) after a ~ 1.5 x 10*, which is a
little bit different from the initial fractal dimension D, =
0.868 (Fig. 7b). In fact, D = 0.889 + 0.009 at a = 1.5 x 10%,
and Dy = 0.890 4+ 0.002 at a =2 x 10*. Although D, =
0.868 is out of the error bar of Dy, the difference is very
small. However, we will see later that Dy is really indepen-
dent of the initial fractal dimension D,, in the case of differ-
ent initial distributions (see Fig. 10, below).

We also calculate the two-point spatial correlation func-
tion of nonlinear structures. If the structure is fractal, we
have a relation between a fractal dimension and a power
index of the correlation function (Falconer 1990). The corre-
lation function here is evaluated for the nonlinear regions in
which the density fluctuation 6 becomes larger than 1. At
a = 103, just after a first shell crossing, the correlation func-
tion shows a rapid oscillation between positive and negative
values because of the periodic pattern of the Cantor set.
After a shell crossing, the pattern of the Cantor set disap-
pears, and then such an oscillation also vanishes. After
enough time passes, i.e., when the stable fractal structure is
found, the correlation function also becomes stable (Fig. 8).
The function is positive for the distance of x < 5 x 10 2L,
beyond which it becomes negative, because a shell crossing
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F16. 5—Time evolution of density fluctuations for the case with nj, = 10; snapshots are at (@) a = 5 x 107, when the positive fluctuation §, grows just to
anonlinear scale (6, = 1); (b) a ~ a,, ~ 10°, which is just after a first shell crossing; (c)a = 6 x 10%;(d)a = 10*;(¢)a = 1.5 x 10*;and (f)a = 2 x 10%

does not yet occur for such a scale, and the largest nonlinear
structure is about 5 x 10~ 2L. The trace of the initial Cantor
set still remains. If the structure is fractal, the correlation
function must show a power-law behavior. In fact, from
Figure 8, we find a power-law relation in the range of
107*L <x < 107%L as &ocx~7 with y = 0.130 £ 0.005.
When the fractal dimension is Dy and the correlation func-
tion is given as

g(x) oc x~470P (10)
then we find y = 1 — Dy. The evaluated fractal dimension

from the two-point correlation is Dy = 0.870 + 0.005 at
a = 10000, which is close to the value obtained by a box-

counting Dy = 0.862 + 0.009. We show the time evolution
of two “fractal” dimensions D, obtained from two-point
correlations and by a box-counting method in Figure 9.
From Figure 9, we confirm that the power index y is well
correlated with the fractal dimension Dy.

We find a fractal structure after a shell crossing. The
fractal dimension is close to the fractal dimension of the
initial density distributions. Does this dimension reflect that
of the initial distributions? If so, why does it disappear
around the first shell-crossing time and recover at a very
late time? In order to answer these question, we have
looked for other initial conditions with different n,, ie.,
np =3,6,8,12, 15, and 20. The fractal dimensions D, of the
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initial density distributions are given in Table 1. As for the
time evolution, we find similar behavior for all models. The
evolution of the fractal dimension D is shown in Figure 10.
Surprisingly, for all models, all D approach about 0.9 at
a = (2 ~ 3) x 10*, which is the end of our calculation. To
confirm our result, we have checked the size-number [x-
N(x)] relation by a box-counting method, which shows
almost a straight line, as in Figure 2. Since the initial dimen-
sions of primordial fluctuations were different, we conclude
that the fractal dimension obtained after nonlinear evolu-
tion is universal within our numerical accuracy.

3.2. Random Cantor-Type Set

Since the Cantor set is highly systematically constructed,
one might ask whether the present result strongly depends
on such a special initial setting. Is the universal dimension
of nonlinear fractal structures due to the primordial density
fluctuations defined by the regular Cantor set? In order to
answer this question, we analyze a different model with
randomness, which we call a random Cantor-type set,
defined in § 3.1.

We analyze three models: two models with nj, = 10
(model 1 and model 2), and one model with n;, = 12. We
find that just as in the case of regular Cantor sets, the fractal
dimension for nonlinear structures always approaches
about 0.9 (Fig. 11). We have also checked the size-number
[x-N(x)] relation in a box-counting method, finding the
same result as in the case of a regular Cantor set. Because
we remove a line segment at a random position, we usually
expect that the smallest segment will be smaller than that of
the regular Cantor set, as we show in the previous sub-
section. As a result, the stable fractal structure will be
formed later than in the case with a regular Cantor set. In
fact, in the case of ny, = 12, we find the stable dimension
(0.9) around a ~ 2.3 x 10* (Fig. 11c¢).

3.3. White Noise Case

Another question then arises. Is the universal fractal
dimension obtained above via nonlinear dynamics indepen-
dent of the initial distribution? In order to answer this ques-
tion, we also analyze a model with white noise fluctuation.
We analyze two models. Neither model shows the above
universal fractal dimension, although we find some different
stable asymptotic dimension (~0.7; Fig. 12). The error in
estimating the dimension is larger than that of the Cantor
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set model, and the box counting shows some deviation from
the power-law relation (Fig. 13). Hence, it would not be a
fractal. We discuss this in § 5.

4. PHASE-SPACE ANALYSIS

Although the analysis by box counting suggests that a
nonlinear fractal structure with a universal dimension
appears from primordial fractal fluctuations, we may get
more information from a detailed study of the nonlinear
structures obtained. For this purpose, we analyze our result
in a phase space.

We show the time evolution of the structures for the
regular Cantor set with n;, = 10 in the phase space. Initially,
the sheet distribution in the phase space is given by a
notched curve, because 6 . and 6_ are constant (Fig. 14). If
we enlarge the pictures, we find a similar notched curve due
to the present initial setting. These notches reflect a self-
similarity in the initial Cantor set. This behavior does not
change before a shell crossing (Figs. 14a and 14b). Only the
slopes of the line segments become steeper as a result of the
concentration of sheets. After a shell crossing, the curve in
the phase space shows very complicated behavior. Two
sheets exchanged by a shell crossing are decelerated by
mutual gravitational interaction, and then the curve will
swirl (Gouda & Nakamura 1989). As the structure evolves,
some vortices are combined and form a larger vortex (Fig.
14). When the “fractal” dimension becomes stable around
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0.9, we find that the large vortex consists of some similar
small vortices. These small vortices also consist of similar
but much smaller vortices (Fig. 15). This discrete self-
similarity in the phase space is found in all models. As the
structure evolves, some vortices are combined and form a
larger vortex (Fig. 14). Although the initial fractal distribu-
tion seems to disappear, some trace remains in the phase
space.

One may wonder why the centers of the vortices appear
in the § > 0 region (or the # < 0 region). The formation of a
vortex in the phase space can be easily understood in the
case of a single wave (S; = € sin g; see Gouda & Nakamura
1989). In that case, the velocity at the center of the vortex
vanishes. Then the appearance of the vortex in the © > 0
region (or the # > 0 region) seems inconsistent. If we pursue
each particle motion, nothing strange happens. They move
without swirling except at the & =0 point, as shown in
Figure 16.

As was the case with a regular Cantor-type set, we also
find similar results in the phase space (Fig. 17). However, a
discrete self-similarity is difficult to find, although the larger
vortices contain smaller vortices, as in the case of the
regular Cantor-type set. In the case with white noise fluc-
tuations, we cannot find any hierarchical vortex structure in
the phase space (Fig. 18).

5. CONCLUSIONS AND DISCUSSION

We have studied the nonlinear evolution of primordial
fractal fluctuations by using a one-dimensional sheet model.
We have analyzed seven models with initial fluctuations
constructed by a regular Cantor set, three models with
initial fluctuations constructed by a random Cantor-type
set, and two models with white noise fluctuations. For all
models except the case with white noise, we find a kind of
attractor with a universal fractal dimension (~0.9) as the
fluctuations evolve into the nonlinear regime. In the case
with white noise fluctuations, the estimated dimension
becomes stable around 0.7, but the error in the estimation is
larger than in the other cases, and the power-law behavior
in a box-counting method is also not completely fitted.
Thus, it may not contain a fractal structure. From the
phase-space analysis, we find a hierarchical structure; that
is, the large vortex consists of some similar small vortices,
and such small vortices again consist of similar but much
smaller vortices. In particular, we find a discrete self-
similarity for the model with a regular Cantor set.

Why is the fractal dimension close to 0.9? Is it really
universal? Is the present fractal structure really an attrac-
tor? Although we need more analysis to answer this ques-
tion, we find some hints in previous work. Gouda &
Nakamura studied the present one-dimensional sheet
model for the initial power-law spectrum. They found two
types of generic singularities when we have a shell crossing
(Gouda & Nakamura 1988, 1989). When a first shell cross-
ing appears, the relation between Eulerian and Lagrangian
coordinates must be

X=q.+Bq—aq)+ -, (11)
while the relation after a shell crossing turns out to be
X=q.+Ba—q)+ . (12)

Following Arnold’s classification, the former and latter
cases are classified into A3 and A2, respectively: A3 is struc-
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turally unstable and may appear transiently in the expand-
ing universe, while A2 is structurally stable and appears
universally for the initial power-law spectrum. The latter
case gives

O = f&(x)e“‘x dx
oc f(ﬁx)_l/zeikx dx

= (ﬁk)‘”zjn_”ze"" dn , (13)

i€, P(k) ~ k1. This predicts y = 0, i.e., Dr = 1, which is
rather close to our “universal” dimension 0.9. Although
one may wonder whether these are essentially the same, we
have another result that suggests that there seems to exist a
new type of stable phase. Recently, Yano & Gouda
analyzed a more realistic case, i.e., the initial power-law
spectrum with a cutoff, and found five characteristic regions
in Fourier space (Yano & Gouda 1998a, 1998b). Regime 1 is
the linear one, and is just an initial power spectrum. In
regime 2, they found P(k) ~ k™!, which is the single-caustic
regime (Gouda & Nakamura 1989). Regime 3 is called the
multicaustic regime, in which the power spectrum depends
on the initial power-law index. Beyond the cutoff scale, two
regimes appear. The first gives P(k) ~ k™! (regime 5), which
may correspond to the A2 type stable solution. In the inter-
mediate wavenumber k between the regime 3 and regime 5,
they find k’, where v is independent of the initial power
index and close to 1, but a little less. They called this the
virialized regime. This seems to be a new transient region,
which may appear in some specific initial conditions. We
would conjecture that the fractal structure with a universal
dimension 0.9 corresponds to this virialized regime (regime
4), and the dimension 0.7 found in the case with white noise
would be regime 3. By reanalyzing the Yano-Gauda model
in the case of k = 0, we have confirmed that v = ~ 0.9. We
also find a small tail with index 0.7 in the size-number rela-
tion in the Cantor set model with n;, = 15 and 20 (Fig. 19).
This conjecture is also supported by analysis for a self-
gravitating one-dimensional sheet model without back-
ground expansion of the universe (Tsuchiya, Konishi, &
Gouda 1994). They found two timescales: the first is a
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micro relaxation time (f,;., = Nt.), while the other is a
global relaxation time (fyq, =4 x 10*Nt,), where t, =
(L/AnGNm)'/? is a crossing time. After t;.,, Some equi-
librium state is reached by exchanging particle energy, but
the global relaxation is not achieved, i.e., the partition func-
tion is not yet described by an equilibrium state such as an
ergodic state (Tsuchiya et al. 1994). In the present model, we
can speculate that the fractal structure is obtained after this
micro relaxation time but before the global relaxation time.
In fact, if we estimate the above timescales in the present
models, we find that ¢, corresponds to a =35 x 103,
while £, corresponds to a = 5 x 10°. The time at which
we find a stable fractal structure [a = (1 ~ 3) x 10*] is
between these two timescales. If this speculation is true, our
fractal structure is temporal. In the future of the universe, it
will evolve into a more relaxed and ergodic state.

Since we analyze the simplest case, we must extend our
analysis to more generic cases. First, we should study differ-
ent types of fractals in order to check whether the present
results are universal for any fractal distributions. Second,
we need to analyze the case with scale-dependent fluctua-
tions. In the present analysis, we set 6 . = const. and 6 _ =
const. In the realistic case, there must be a scale dependence
to the fluctuations. In the conventional perturbations, we
usually assume a power-law spectrum with some cutoff.
Even if the primordial fluctuations contain a fractal struc-
ture, their amplitude may depend on the scale. Its depen-
dence may change the present results. In particular, in the
present model, the scenario of structure formation could be
different from either top-down or bottom-up for some scale
dependence. The primordial fractal fluctuations will evolve
directly into a hierarchical nonlinear structure. However, it
will definitely depend on the scale dependence of the fluc-
tuations. Second, we need to extend the present analysis to
other cosmological models, i.e., the open universe model
and the A # 0 flat universe model. For the one-dimensional
sheet model, the solutions are still exact, and the growth
and decay rates in these models are different from those in
the Einstein—de Sitter universe model. We expect that the
structure formation after a shell crossing is not the same as
that in the present cosmological model, and then the fractal
dimension would be different.

For more realistic cases, we must study either a two- or
three-dimensional model. Since the Zeldovich solution is no
longer exact, we must explore a new method. In order to
preserve a high resolution, we may develop a kind of renor-
malization method in N-body simulations, as in Couchman
& Peebles (1998).

Finally, it would also be interesting to look for the origin
of such a primordial fractal density perturbation. The infla-
tionary scenario may provide the origin of primordial fluc-
tuations. One may wonder whether such a fractal
primordial fluctuation is expected in some inflationary
models. If we have more than two scalar fields, then the
system is not integrable and may show a chaotic behavior
or a fractal property (Easther & Maeda 1999). Such a model
might show some kind of fractal density perturbation.
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