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We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian
description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure,
given by a polytropic equation of state, using a perturbation method up to second order. This perturbative
approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the
inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion.
We obtain the first-order solutions in generic background universes and the second-order solutions in a wider
range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein–de
Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions,
we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the
evolution of inhomogeneities changes for the variation of the polytropic index.
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I. INTRODUCTION

Hydrodynamics is a powerful tool to study various ast
physical phenomena, from those associated with com
objects up to large-scale structure formation. For exam
when investigating the gravitational instability of cold da
matter for structure formation, analyses are easier to ha
by adopting a hydrodynamical description, rather than
trying to solve the Boltzmann equation of a self-gravitati
N-particle system. The linear perturbation theory of a hom
geneous and isotropic universe@1–5# is a typical case, which
gives a qualitative estimate for gravitational instability. It
based on the Eulerian picture of hydrodynamics, while
proximations based on the Lagrangian hydrodynamics h
been recognized to be more useful, such as the celebr
Zel’dovich approximation@6–8#. This paper deals with an
approximation theory of gravitational instability based on t
Lagrangian hydrodynamics.

Although the Zel’dovich approximation has been found
give an accurate description up to the stage where den
perturbations grow to be unity, it involves a serious sho
coming that it cannot be applied after caustics in the den
field are formed. In the Zel’dovich approximation, the flu
elements continue to move in the directions that are de
mined by initial conditions all the time, and consequen
high density regions such as ‘‘pancakes’’ cannot stay co
pact beyond the caustic formation, while numerical simu
tions have shown the presence of clumps with a very w
range in mass at any given time@9#. Moreover, once caustic
in the density field are formed, a hydrodynamical descript
itself is not valid in general. Then, do we have to abando
hydrodynamical description and try to solve the Boltzma
equation, or tackleN-body simulations?

*Electronic address: tatekawa@gravity.phys.waseda.ac.jp
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In order to proceed with a hydrodynamical descripti
without the formation of caustics, qualitative pressure gra
ent@10# and thermal velocity scatter@11,12# in a collisionless
medium had been discussed. From the consideration b
on the model of nonlinear diffusion, the ‘‘adhesion appro
mation’’ @13# has been proposed, in which an artificial vi
cosity term is added to the Zel’dovich approximation. Th
modified approximation successfully describes the st
where the original Zel’dovich approximation breaks dow
but the physical origin of the viscosity term should be cla
fied. Some remarkable works have been done on this is
Buchert and Domı´nguez@14# argued, by beginning with the
collisionless Boltzmann equation@15#, that the effect of ve-
locity dispersion becomes important beyond the caust
They also argued that models for large-scale structure sh
rather be constructed for a flow which describes the aver
motion of a multistream system. Then they showed that
effect of velocity dispersion gives rise to pressure-like
viscosity terms of nondissipative gravitational origin. Cons
quently the Boltzmann equation yields basic equations si
lar to hydrodynamical ones; Buchertet al. @16# showed how
the viscosity term is generated by a pressure-like force o
fluid under the assumptions that the peculiar acceleratio
parallel to the peculiar velocity; Domı´nguez @17# clarified
that a hydrodynamic formulation is achieved via a spa
coarse graining in a many-body gravitating system, and
‘‘adhesion approximation’’ can be derived by the expans
of coarse-grained equations with respect to the smooth
length. ~See also Ref.@18#.! In these works, they also ob
tained implications for an ‘‘equation of state,’’ which is
phenomenological relationship between kinematical press
P and mass densityr. Buchert and Domı´nguez@14# found
that, if the effect of velocity dispersion is small and the v
locity dispersion is approximately isotropic, the equation
state should take the formP}r5/3; Buchert et al. @16#
showed that an adhesion-like equation can be derived if
©2002 The American Physical Society14-1
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equation of state is assumed asP}r2; moreover, a plausible
value of the polytropic indexg[d ln P/d lnr has been found
to be close to 5/3 from cosmologicalN-body simulations
@19#.

From these aspects, the dynamics of a collisionless s
gravitating system should be described by hydrodynam
equations with pressure-like force in the sense of coa
graining. Therefore it is of interest to extend a Lagrang
perturbation scheme to a fluid with pressure, and to exp
how the scheme works as an approximation for cosmolog
structure formation. Actually, Adler and Buchert@20# and
Morita and Tatekawa@21# have formulated perturbatio
theory in the Lagrangian hydrodynamics, taking into acco
the pressure effect under the assumption that the pressur
function of the mass density only. In our earlier work@21#,
imposing a polytropic relation as the equation of state,
solved the Lagrangian perturbation equations up to sec
order for cases where the equations are solved easily,
showed illustrative examples with the solutions in a on
dimensional system. In particular, the second-order solut
were obtained only for the case in which the polytropic ind
g is 4/3, while a plausible value ofg seems to be larger, a
was mentioned above.

In this paper, we extend our earlier work by solving t
first-order perturbation equations in generic background u
verses and the second-order perturbation equations f
wider range of a polytropic index, and by presenting illust
tions in one- and two-dimensional systems. We examine h
the behavior of the perturbation solutions, and the resul
evolution of inhomogeneities, change for the variation of
polytropic index. This enables us to discuss whether, or
what kind of the equation of state, the adhesion-type
proximation is realized in the Lagrangian perturbati
scheme.

This paper is organized as follows. In Sec. II we pres
Lagrangian hydrodynamic equations, governing the sys
we consider. In Sec. III, the first-order perturbation equatio
are derived and their solutions are shown, not only in
Einstein–de Sitter background but also in more gene
backgrounds. In Sec. IV we obtain the second-order per
bation equations and present their solutions in an appr
mate form forg.4/3. Section V provides illustrative ex
amples of our formulation in one- and two-dimension
models. In Sec. VI we discuss our results and state our c
clusions.

II. BASIC EQUATIONS

In this section we present hydrodynamic equations in
Lagrangian description, which our approach stands on.
matter model we consider is a self-gravitating fluid with e
ergy densityr and ‘‘pressure’’P, which arises in the pres
ence of velocity dispersion. The ‘‘pressure’’ we adopt here
the same as was introduced by Buchert and Domı´nguez@14#,
i.e., the diagonal component of the velocity dispersion ten
when the velocity dispersion is assumed to be isotropic in
Jeans equation@15#. Therefore the basic equations we st
from are
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]r

]t
13

ȧ

a
r1

1

a
¹x•~rv !50, ~1!

]v
]t

1
ȧ

a
v1

1

a
~v•¹x!v5g2

1

ra
¹xP, ~2!

¹x3g50, ~3!

¹x•g524pGa~r2rb!, ~4!

where v and g are the peculiar velocity and the peculi
gravitational field, respectively, which represent the dev
tion from a background, homogeneous, and isotropic u
verse. The cosmic scale factora(t) and the energy density
rb(t) of the background universe satisfy the Friedma
equations

S ȧ

a
D 2

5
8pG

3
rb2

K
a2

1
L

3
, ~5!

ä

a
52

4pG

3
rb1

L

3
, ~6!

with a curvature constantK and a cosmological constantL.
In order to solve the hydrodynamic equations, we m
specify an equation of state. Throughout this paper, we c
sider barotropic fluids, in which the pressureP is a function
of the energy density only,P5P(r).

Introducing the Lagrangian time derivative

d

dt
[

]

]t
1

1

a
~v•¹x!,

Eqs.~1! and ~2! become

dr

dt
13

ȧ

a
r1

r

a
~¹x•v !50, ~7!

dv
dt

1
ȧ

a
v5g2

1

ra
¹xP. ~8!

In the Lagrangian hydrodynamics, the coordinatesx of the
fluid elements are represented in terms of Lagrangian c
dinatesq as

x5q1s~q,t !, ~9!

whereq are defined as initial values ofx, ands denotes the
Lagrangian displacement vector due to the presence of in
mogeneities. The exact form of the energy density is th
obtained from Eq.~7! as

r5rbJ
21, ~10!
4-2
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PERTURBATION THEORY IN LAGRANGIAN . . . PHYSICAL REVIEW D66, 064014 ~2002!
where J[det(]xi /]qj )5det(d i j 1]si /]qj ) is the Jacobian
of the coordinate transformation fromx to q. The peculiar
velocity is v5aṡ, and from Eq.~8!, the peculiar gravita-
tional field is written as

g5aS s̈12
ȧ

a
ṡ2

1

a2

dP

dr
~r!J21¹xJD , ~11!

where an overdot (˙) denotes d/dt. Hence, from Eqs.~3! and
~4!, we obtain the following equations fors:

¹x3S s̈12
ȧ

a
ṡD 50, ~12!

¹x•S s̈12
ȧ

a
ṡ2

1

a2

dP

dr
~r!J21¹xJD 524pGrb~J2121!.

~13!

If we find solutions of Eqs.~12! and~13! for s, the dynamics
of the system considered is completely determined. Si
these equations are highly nonlinear and hard to solve
actly, we will advance a perturbative approach. Remark t
in solving the equations fors in the Lagrangian coordinate
q, the operator¹x will be transformed into¹q by the follow-
ing rule:

]

]qi
5

]xj

]qi

]

]xj
5

]

]xi
1

]sj

]qi

]

]xj
. ~14!

III. FIRST-ORDER SOLUTIONS

Hereafter we develop a perturbative approach for the
grangian displacement vectors of the fluid elements. In the
first-order approximation, Eqs.~12! and ~13! become

¹q3S s̈(1)12
ȧ

a
ṡ(1)D 50, ~15!

¹q•S s̈(1)12
ȧ

a
ṡ(1)2

1

a2

dP

dr
~rb!¹q~¹q•s(1)!D 54pGrb¹q•s(1),

~16!

wheres(1) denotes the first-order displacement vector in
perturbative expansion. Decomposings(1) into the longitudi-
nal and the transverse modes ass(1)5¹qS1ST with ¹q•ST

50, we have

¹q3S S̈T12
ȧ

a
ṠTD 50, ~17!

¹q
2S S̈12

ȧ

a
Ṡ24pGrbS2

1

a2

dP

dr
~rb!¹q

2SD 50. ~18!

These equations are reduced by imposing some adeq
boundary conditions to
06401
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S̈T12
ȧ

a
ṠT50, ~19!

S̈12
ȧ

a
Ṡ24pGrbS2

1

a2

dP

dr
~rb!¹q

2S50. ~20!

In our previous paper, we obtained the perturbation soluti
only for the Einstein–de Sitter background. Here we so
the equations for the first-order perturbations in gene
background universes. Equation~19! can be integrated easil
even in this case, although an explicit form of the solutions
not presented here. For Eq.~20!, the Fourier transformation
with respect to the Lagrangian coordinatesq yields

S̈̂12
ȧ

a
Ṡ̂24pGrbŜ1

1

a2

dP

dr
~rb!uKu2Ŝ50, ~21!

where (•̂) denotes the Fourier transform, andK is a wave
number associated with the Lagrangian coordinates. Rep
ing the time variablet with a and using the Friedmann equa
tions ~5! and ~6!, we have

S 8pGrb

3
a22K1

L

3
a2Dd2Ŝ

da2

1S 4pGrba2
2K
a

1LaDdŜ

da

1S 1

a2

dP

dr
~rb!uKu224pGrbD Ŝ50. ~22!

If we assume a polytropic equation of stateP5krg with a
constantk and a polytropic indexg, this equation becomes

S 2C1

a
2K1

L

3
a2Dd2Ŝ

da2
1S 3C1

a2
2

2K
a

1LaD dŜ

da

1S C2uKu2

a3g21
2

3C1

a3 D Ŝ50, ~23!

where

C1[4pGrb~ain!ain
3 /3

and

C2[kgrb~ain!g21ain
3(g21) .

Let us consider solving Eq.~23!. In the Einstein–de Sitter
background, whereK50 and L50, the solutions of Eq.
~23! are written in a relatively simple manner. They are, f
gÞ4/3,

Ŝ~K,a!}a21/4J65/(826g)SA2C2

C1

uKu
u423gu

a(423g)/2D ,

~24!
4-3
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whereJn denotes the Bessel function of ordern, and forg
54/3,

Ŝ~K,a!}a21/46A25/162C2uKu2/2C1. ~25!

In the nonflat backgrounds withKÞ0 andL50, the solu-
tions of Eq. ~23! for g51,4/3 can be written in terms o
Gauss’ hypergeometric functionF as

Ŝ~K,a!}abF S a1 ,a2 ,a3 ;
Ka

2C1
D , ~26!

where

~a1 ,a2 ,a3 ,b!5S 211A1

4
1

C2uKu2

K ,

212A1

4
1

C2uKu2

K ,2
3

2
,2

3

2D ,

S 3

2
1A1

4
1

C2uKu2

K ,

3

2
2A1

4
1

C2uKu2

K ,
7

2
,1D for g51,

~27!

~a1 ,a2 ,a3 ,b!5S 3

4
6A25

16
2

C2uKu2

2C1
,

2
1

4
6A25

16
2

C2uKu2

2C1
,

16A25

4
2

2C2uKu2

C1
,

2
1

4
6A25

16
2

C2uKu2

2C1
D for g54/3.

~28!

In the flat (K50) backgrounds withLÞ0, we can also
write the solutions of Eq.~23! for g51/3,4/3 in the form

Ŝ~K,a!}abF S a1 ,a2 ,a3 ;2
La3

6C1
D , ~29!

where

~a1 ,a2 ,a3 ,b!5S 2
1

6
1A1

9
2

C2uKu2

3L
,

2
1

6
2A1

9
2

C2uKu2

3L
,
1

6
,2

3

2D ,

S 2

3
1A1

9
2

C2uKu2

3L
,

06401
2

3
2A1

9
2

C2uKu2

3L
,
11

6
,1D for g51/3,

~30!

~a1 ,a2 ,a3 ,b!5S 7

12
6A 25

144
2

C2uKu2

18C1
,

2
1

12
6A 25

144
2

C2uKu2

18C1
,

16A25

36
2

2C2uKu2

9C1
,

2
1

4
6A25

16
2

C2uKu2

2C1
D for g54/3.

~31!

Let us note the relation between the behavior of the ab
solutions and the Jeans wave number, which is defined

KJ[S 4pGrba
2

dP/dr~rb!
D 1/2

.

The Jeans wave number, which gives a criterion whethe
density perturbation with a wave number will grow or dec
with oscillation, depends on time in general. If the polytrop
equation of stateP5krg is assumed,

KJ5A3C1

C2
a(3g24)/2. ~32!

Equation~32! implies that, ifg,4/3, KJ will be infinitesimal
and density perturbations with any wave number will dec
in process of time, and ifg.4/3, all density perturbations
will grow to collapse. This is confirmed by the form of th
solutions, Eq.~24!, by rewriting it as

Ŝ~K,a!}a21/4J65/(826g)S A6

u423gu
uKu
KJ

D . ~33!

However, this fact seems to be curious because one
expect that, as the polytropic indexg is larger, the effect of
the pressure would be stronger and consequently the gro
of density perturbations would be supressed more effectiv
The unexpected result may be caused by construction of
first-order approximation, in which the strength of the pre
sure effect is determined only by the coefficie
(1/a2)dP/dr(rb) in the fourth term of the left side of Eq
~20!. The square of the ‘‘sound speed,’’ dP/dr, which is
contained in the coefficient, is originally a function ofr, but
now in the coefficientr is replaced withrb because of the
first-order approximation. Sincerb}a23, the coefficient de-
cays sooner as the indexg is larger, and it leads to the con
sequence. This problem may be resolved by trying high
order approximations, where the pressure effect is provi
not only by the background density but also by the prese
of inhomogeneities. Let us proceed to second order, notic
the above fact.
4-4
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We should also note that the above curious behavio
the perturbation solutions is seen in the Lagrangian coo
nates, not in the Eulerian coordinates. In order to hav
more precise discussion, we have to transform the solut
into the form in the Eulerian coordinates. We will do so in
one-dimensional model in Sec. V.
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IV. SECOND-ORDER SOLUTIONS

In our previous paper, we derived the second-order so
tions only for the caseg54/3. In this section, we obtain th
second-order solutions for the caseg.4/3 in an approximate
form. To second order, Eqs.~12! and ~13! yield
as
F¹q3S s̈(2)12
ȧ

a
ṡ(2)D G

i

5e i jksl , j
(1)S s̈k,l

(1)12
ȧ

a
ṡk,l

(1)D , ~34!

s̈i ,i
(2)12

ȧ

a
ṡi ,i

(2)2
1

a2

dP

dr
~rb!¹q

2si ,i
(2)2sj ,i

(1)S s̈i , j
(1)12

ȧ

a
ṡi , j

(1)D 1
1

a2

dP

dr
~rb!~si ,i j

(1)¹q
2sj

(1)1si , jk
(1) sj ,ik

(1) 1si , j
(1)¹q

2sj ,i
(1)12si , j

(1)sk,ki j
(1) !

1
1

a2

d2P

dr2
~rb!rb~si ,i

(1)¹q
2sj , j

(1)1si ,ik
(1) sj , jk

(1) !54pGrbS si ,i
(2)2

1

2
~si ,i

(1)!22
1

2
si , j

(1)sj ,i
(1)D , ~35!

where (•) ,i denotes]/]qi . As in the first-order solutions, we decomposes(2) into the longitudinal and the transverse modes
s(2)5¹qz1zT with ¹q•zT50. Then these equations are rewritten as

F¹q3S z̈ T12
ȧ

a
żTD G

i

5
1

a2

dP

dr
~rb!e i jkS,l j ¹q

2S,kl , ~36!

¹q
2S z̈12

ȧ

a
ż24pGrbz2

1

a2

dP

dr
~rb!¹q

2z D 52pGrb@S,i j S,i j 2~¹q
2S!2#2

1

a2

dP

dr
~rb!~¹q

2S,i¹q
2S,i1S,i jkS,i jk12S,i j ¹q

2S,i j !

2
1

a2

d2P

dr2
~rb!rb~¹q

2S¹q
2¹q

2S1¹q
2S,i¹q

2S,i !, ~37!

where we have neglected the first-order transverse perturbationST for simplicity, and used Eq.~20!. Taking the rotation of Eq.
~36!, we obtain

2¹q
2S z̈ i

T12
ȧ

a
ż i

TD 5
1

a2

dP

dr
~rb!~S,i jk¹q

2S, jk1S,i j ¹q
2¹q

2S, j2¹q
2S, j¹q

2S,i j 2S, jk¹q
2S,i jk !. ~38!

The Fourier transform of Eqs.~37! and ~38! gives

2uKu2S z̈̂12
ȧ

a
ż̂24pGrbẑ1

1

a2

dP

dr
~rb!uKu2ẑ D

5
1

~2p!3E2`

`

d3K8Ŝ~K8,t !Ŝ~K2K8,t !F2pGrb$@K8•~K2K8!#22uK8u2uK2K8u2%

1
1

a2

dP

dr
~rb!$uK8u2uK2K8u2@K8•~K2K8!#1@K8•~K2K8!#312uK2K8u2@K8•~K2K8!#2%

1
1

a2

d2P

dr2
~rb!$uK8u2uK2K8u41uK8u2uK2K8u2@K8•~K2K8!#%G , ~39!

uKu2S z i
T̈̂12

ȧ

a
z i

Ṫ̂D 52
i

~2p!3

1

a2

dP

dr
~rb!E

2`

`

d3K8Ŝ~K8,t !Ŝ~K2K8,t !•uK2K8u2@K8•~K2K8!#@Ki8$K8•~K2K8!

1uK2K8u2%2~Ki2Ki8!$K8•~K2K8!1uK8u2%#. ~40!
4-5
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Using the Green functionsG(K,t,t8) andGT(t,t8), Eqs.~39! and ~40! are solved in the form

ẑ~K,t !52
1

uKu2E t

dt8G~K,t,t8!Q̂~K,t8!, ~41!

z i
T̂~K,t !5

1

uKu2
E t

dt8GT~ t,t8!Qi
T̂~K,t8!, ~42!

whereQ̂(K,t) andQi
T̂(K,t) denote the right-hand side of Eqs.~39! and ~40!, respectively.

In order to obtain an explicit form of the second-order solutions, we assume the Einstein–de Sitter background
normalization so thata(t)5t2/3, and the equation of state asP5krg. The first-order solutions are then

ST}const, t21/3, ~43!

Ŝ~K,t !}t21/6J65/(826g)~AuKut2g14/3! for gÞ4/3, ~44!

Ŝ~K,t !}t21/66A25/362BuKu2 for g54/3, ~45!

where

A[
1

u423guA
2C2

C1
, B[

2C2

9C1
.

These first-order solutions yield the Green’s functions in the following form:

GT~ t,t8!53~ t82t21/3t84/3!, ~46!

G~K,t,t8!52
p

2 sinnp S 2g1
4

3D 21

t21/6t87/6@J2n~AuKut2g14/3!Jn~AuKut82g14/3!

2Jn~AuKut2g14/3!J2n~AuKut82g14/3!# for gÞ4/3, ~47!

G~K,t,t8!52
1

2 S 25

36
2BuKu2D 21/2

t21/6t87/6~ t2A25/362BuKu2t8
A25/362BuKu2

2tA25/362BuKu2t82A25/362BuKu2! for g54/3, ~48!

where we have assumed thatn[5/(826g) is not an integer. If we write the first-order solution asŜ(K,t)
5D1(K,t)C1(K)1D2(K,t)C2(K), whereD6(K,t) are given by the form of Eqs.~44! and ~45!, we obtain

z i
T̂~K,t !52

i

~2p!3

1

uKu2E2`

`

d3K8ET~K,K8,t !„C1~K8!C1~K2K8!1C1~K8!C2~K2K8!1C2~K8!C1~K2K8!

1C2~K8!C2~K2K8!…•uK2K8u2@K8•~K2K8!#@Ki8$K8•~K2K8!1uK2K8u2%

2~Ki2Ki8!$K8•~K2K8!1uK8u2%#, ~49!

ẑ~K,t !52
1

~2p!3

1

uKu2
E

2`

`

d3K8„C1~K8!C1~K2K8!1C1~K8!C2~K2K8!1C2~K8!C1~K2K8!

1C2~K8!C2~K2K8!…•@E~K,K8,t !$@K8•~K2K8!#22uK8u2uK2K8u2%

1F1~K,K8,t !$uK8u2uK2K8u2K8•~K2K8!1@K8•~K2K8!#312uK2K8u2@K8•~K2K8!#2%

1F2~K,K8,t !$uK8u2uK2K8u41uK8u2uK2K8u2K8•~K2K8!%#, ~50!

where the time-dependent factors are given as
064014-6
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ET~K,K8,t !5E t dt8

a2~ t8!

dP

dr
@rb~ t8!#GT~ t,t8!„D1~K8,t8!D1~K2K8,t8!1D1~K8,t8!D2~K2K8,t8!

1D2~K8,t8!D1~K2K8,t8!1D2~K8,t8!D2~K2K8,t8!…, ~51!

E~K,K8,t !5E t

dt82pGrb~ t8!G~K,t,t8!„D1~K8,t8!D1~K2K8,t8!1D1~K8,t8!D2~K2K8,t8!

1D2~K8,t8!D1~K2K8,t8!1D2~K8,t8!D2~K2K8,t8!…, ~52!

F1~K,K8,t !5E t dt8

a2~ t8!

dP

dr
@rb~ t8!#G~K,t,t8!„D1~K8,t8!D1~K2K8,t8!1D1~K8,t8!D2~K2K8,t8!

1D2~K8,t8!D1~K2K8,t8!1D2~K8,t8!D2~K2K8,t8!…, ~53!

F2~K,K8,t !5E t dt8

a2~ t8!

d2P

dr2
@rb~ t8!#rb~ t8!G~K,t,t8!„D1~K8,t8!D1~K2K8,t8!1D1~K8,t8!D2~K2K8,t8!

1D2~K8,t8!D1~K2K8,t8!1D2~K8,t8!D2~K2K8,t8!…5~g21!F1~K,K8,t !. ~54!
an
f

tive
in
re-
of

ause
of
It is cumbersome to perform the integration of Eqs.~51!–
~54! in a complete form unlessg54/3. ~See Ref.@21# for
g54/3.! However, we can obtain the temporal factors in
approximate form in the following way. By the definition o
the Bessel function,

J6n~AuKut2g14/3!5 (
n50

`
~21!n

n!G~6n1n11!

3S AuKu
2 D 6n12n

t6(5/6)1(826g)n/3,

~55!

and thus if AuKut2g14/3!1, we can utilize the following
approximation formulas:

J6n~AuKut2g14/3!.
~AuKu/2!6n

G~6n11!
t65/6. ~56!

Note that these formulas are useful in the caseg.4/3, be-
cause they give the leading term with respect tot when g
.4/3. Substituting these formulas into Eqs.~51!–~54!, we
have

ET~K,K8,t !.
A2~423g!2

3~422g!~1326g!G~n11!2

3S A2uK8uuK2K8u
4 D n

t22g14 for gÞ2,

~57!

ET~K,K8,t !.
4A2

3G~21/4!2 S A2uK8uuK2K8u
4 D 25/4

3~ ln t23! for g52, ~58!
06401
E~K,K8,t !.
15p

28 sinnp

1

~423g!G~n11!3G~2n11!

3S A2uK8uuK2K8u
4 D n

t4/3, ~59!

F1~K,K8,t !

.
5p

6 sinnp

A2~423g!

~522g!~1026g!G~n11!3G~2n11!

3S A2uK8uuK2K8u
4 D n

t22g14 for gÞ5/2,5/3, ~60!

F1~K,K8,t !.2
7p

12 sin~5p/7!

A2

G~2/7!3G~12/7!

3S A2uK8uuK2K8u
4 D 25/7

t21S ln t1
3

5D
for g55/2, ~61!

F1~K,K8,t !.2
3A2

80p S A2uK8uuK2K8u
4 D 25/2

3t2/3S 3

5
2 ln t D for g55/3. ~62!

Let us reexamine the relation between the perturba
solutions and the polytropic index, which seems curious
the first-order level, as we mentioned at the end of the p
vious section. In the second-order level, the ratio
E(K,K8,t) to the other temporal factors@e.g., F1(K,K8,t)]
can be taken as a measure of the pressure effect bec
E(K,K8,t) is of gravitational origin and the others are
4-7
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pressure origin, and thus the ratio is similar to the Je
wave numberKJ}a(3g24)/2 in the first order. The ratio read

E~K,K8,t !

F1~K,K8,t !
;A22t2g28/3;

C1

C2
a3g24. ~63!

This means that the curious tendency of the first-order s
tions is, unfortunately, unchanged at second order, cont
to our expectation. This result may be a consequence of
perturbation scheme we adopt. See Sec. VI for a deta
discussion on this point.

V. ILLUSTRATION IN SOME MODELS

In this section we illustrate the perturbation theory form
lated in the previous sections with examples in one- a
two-dimensional systems. In our previous paper@21#, we
computed the power spectra of density perturbations i
one-dimensional model for the caseg54/3. Here we calcu-
late the power spectra for the caseg55/3, and discuss the
difference of the power spectra for the variation of the po
tropic indexg. It is of significance to compute and compa
the power spectra in the Eulerian coordinates because
evolution of density perturbations has to be discussed in
physical Eulerian coordinates, and it is nontrivial how
physical variable is rewritten due to the transformation
tween the Lagrangian and the Eulerian coordinates. Mo
over, we present the density field in a two-dimensio
model, and clarify how the pressure effect appears in a s
tial pattern of the density field by comparison with the du
case. In this section, we assume the Einstein–de Sitter b
ground with the scale factora(t)5t2/3 for simplicity. The
power spectrum of density perturbations is defined
P(k,t)[^ud(k,t)u2&, where k is a wave vector associate
with the Eulerian coordinatesx,d[(r2rb)/rb is the density
contrast, and̂•& denotes an ensemble average over the en
distribution.

A. Power spectra in a one-dimensional model

We calculate the power spectra of density perturbation
a one-dimensional model for the caseg55/3. We did this in
our previous paper@21# for the caseg54/3. Here we choose
another value ofg and see the difference of the results f
the variation ofg. The first-order solution is then written a

Ŝ~K,t !5D1~K,t !C1~K !1D2~K,t !C2~K !, ~64!

whereK is a component of the direction of inhomogeneiti
in the Lagrangian wave vectorK, and

D6~K,t !5t21/6J75/2~AuKut21/3!. ~65!

The Jeans wave number is found to beKJ5A6t1/3/A from
Eq. ~32!.

We consider how to determineC6(K) from the initial
conditions for an illustration. Here we set the initial dens
contrastd in and the initial peculiar velocityv in so that they
coincide with those given by the Zel’dovich approximatio
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which is the Lagrangian first-order approximation for a du
fluid. The Zel’dovich approximation in a one-dimension
system is written as

x15q11t2/3C ,1~q1!, x25q2 , x35q3 , ~66!

d~q1 ,t !5
1

11t2/3C ,11~q1!
21, ~67!

whereC(q1) is an arbitrary spatial function, describing in
tial inhomogeneities. Then we have

d in5
1

11C ,11~q1!
21.2C ,11~q1!, ~68!

v in5~v in ,0,0!5S 2

3
t1/3C ,1~q1!,0,0D U

t5t in

5S 2

3
C ,1~q1!,0,0D , ~69!

where we define an initial timet in[1. As for the caseP
5kr5/3, the first-order solution gives

d in̂~K !5K2@J25/2~AuKu!C1~K !

1J5/2~AuKu!C2~K !#, ~70!

v in̂~K !5 iK F H 2
1

6
J25/2(AuKu)

1
d

dt
J25/2~AuKut21/3)U

t5t in
J C1~K !

1H 2
1

6
J5/2(AuKu)

1
d

dt
J5/2~AuKut21/3)U

t5t in
J C2~K !G . ~71!

Comparing Eqs.~68! and ~70!, and Eqs.~69! and ~71!, we
find

C1~K !52A pA

2uKu3S cos~AuKu!

2
1

AuKu
sin~AuKu! D d in̂~K !, ~72!

C2~K !52A pA

2uKu3
S sin~AuKu!

1
1

AuKu
cos~AuKu! D d in̂~K !. ~73!

The initial density perturbationd in̂(K)5ud in̂(K)uexp(ifK) is
chosen so thatud in̂(K)u2}uKun with the spectral index
n50,61, and the phasesfK are randomly distributed on th
4-8
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PERTURBATION THEORY IN LAGRANGIAN . . . PHYSICAL REVIEW D66, 064014 ~2002!
interval@0,2p#. We set the constantA so that the Jeans wav
numberKJ is 80 at the initial time,t5t in , wherea51.

To compute the power spectra within the Lagrangian
proximations, we have to be cautious about the differe
between the Lagrangian and the Eulerian wave vectorsK
andk. The Lagrangian solutions are obtained in terms ofK,
while the power spectra are presented by usingk. Thus we
have to transform the Lagrangian solutions into the form
the Eulerian space. The way of the transformation is
scribed in, e.g., subsection 4.3 of Ref.@21#.

In Fig. 1 we show the power spectraP(k,t) at a51000,
wherek is a component of the direction of inhomogeneiti
in the Eulerian wave vectork, using the Eulerian linea
theory and the Lagrangian first-order approximation. Inst
of the power spectrum itself, we present the ‘‘transfer fun
tion,’’ P(k,t)/P(k,t in), for convenience because it does n
depend on the initial conditions in the Eulerian linear theo
but does in the Lagrangian approximations generally. T
spectra by the Lagrangian second-order approximation
not presented because they are almost coincident with t
by the first-order approximation, as in theg54/3 case. In-
deed the difference between the Lagrangian first-order
second-order approximations in theg54/3 case is less tha
10% at uku&150, and that in theg55/3 case becomes sti
smaller, less than 1% atuku&150 within our illustrations.
~See Sec. VI for the reason.!

In our previous paper, we compared the Eulerian lin
theory and the Lagrangian approximations in theg54/3
case, where the Jeans wave numberkJ is a constant. In this
case, the Eulerian linear density perturbations with wa
numbers smaller than a constant wave number always g
while those with wave numbers larger than that always de
with acoustic oscillation because of the constancy of

FIG. 1. The ‘‘transfer function’’ of density perturbations ata
51000 computed by the Eulerian linear theory and Lagrang
first-order approximations. It does not depend on the initial con
tions in the Eulerian linear theory, but does in the Lagrangian
proximation.
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Jeans wave number. On the other hand, in the Lagran
approximations, small-scale perturbations are developed
the nonlinear effect, and as a result, the difference betw
the Eulerian and the Lagrangian approximations becom
large especially at high-frequency region.~See Fig. 2 of Ref.
@21#.!

Now we observe the results of theg55/3 case, Fig. 1. In
this case, the Jeans wave number depends on time, a
becomes about 2500 ata51000 whereas it is set as 80 at th
initial time. This means that the Eulerian linear density p
turbations with wave numbers between 80 and 2500 are
tially oscillating, but become growing modes later. Actua
we can see this tendency at high-frequency region in Fig
As for the Lagrangian approximation, small-scale pertur
tions are enhanced because of the nonlinear effect, as in
g54/3 case. The difference between the Eulerian and
Lagrangian approximations is, however, not so large beca
of the behavior of the Eulerian density perturbations m
tioned above.

For comparison of theg54/3 and 5/3 cases in the La
grangian first-order approximation, we show in Fig. 2 t
transfer function for both cases, using the same initial c
ditions. This figure tells us that the growth of density pert
bations computed by the Lagrangian approximation is s
pressed by the pressure more weakly in theg55/3 case. This
implies that the curious behavior of the Lagrangian pertur
tion solutions is preserved even if we observe it in the Eu
rian coordinates.

B. Density field in a two-dimensional model

Next we consider an illustration in a two-dimension
model. In a dust model, Buchert and Ehlers@22# showed the
density field with the Zel’dovich and the ‘‘post-Zel’dovich

n
i-
-

FIG. 2. The ‘‘transfer function’’ of density perturbations ata
51000 computed by the Lagrangian first-order approximation
the g54/3 and 5/3 cases. Small-scale perturbations in theg55/3
case are developed more effectively than in theg54/3 case.
4-9
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TATEKAWA, SUDA, MAEDA, MORITA, AND ANZAI PHYSICAL REVIEW D 66, 064014 ~2002!
approximations. Following their illustrations, we presen
realization of the density field~mapped by 1282 particles!
with our approximations in order to see how the press
effect appears in a spatial pattern. We set the initial con
tions for the scalar functionS(q,t) as

S~q,t in!5m(
K1

(
K2

1

K1
21K2

2 $cos@K1q11K2q2

1f~K1 ,K2!#%, ~74!

K1
21K2

2Þ0, K1,250,1, . . . ,5,

where the phasesf(K1 ,K2) are random numbers between
and 2p, and the amplitudem is chosen so thatm
53.031023. The periodic boundary condition is impose
We consider the cases in which the equation of state is g
asP5kr4/3 andP5kr5/3, assuming the Jeans wave numb
KJ.8.

Setting the initial conditions ata51, the time evolution
of the density field is shown in Figs. 3 and 4. In theg
54/3 case, the evolution obviously proceeds slowly beca
of the pressure effect. In Fig. 3, shell crossings just arise
the dust case, while the evolution remains still qua
nonlinear regime in theg54/3 case (udu<1.0). In Fig. 4,
shell crossings are being formed in theg54/3 case, while in
the dust case high-density structures are being dissolve
these figures, the difference between the first- and sec
order approximations seems still small on large scales@com-
pare~a! and~b!, and~c! and~d!#, although the second-orde
solutions should compensate shortcomings of the first-o
approximation on small scales, as was discussed by Buc
and Ehlers@22# for the dust case.

Above we have mentioned theg54/3 case, but what will
happen if we take a larger value ofg such as 5/3? To answe
this question, we show in Figs. 3~e! and 4~e! the results com-
puted by the Lagrangian first-order approximation in theg
55/3 case.~The results by the Lagrangian second-order
proximation are omitted because we may presume them
ily from other results presented.! As we stated in Secs. II
and IV, the pressure effect in this case becomes weaker
in the g54/3 case. Indeed we see that the spatial den
pattern resembles that in the dust case, rather than that i
g54/3 case.

In our perturbation scheme, shell crossings arise in
g54/3 and 5/3 cases in spite of the presence of the pres
effect, but the features of first collapsing objects are ma
festly different from those in the dust case.@Compare, e.g.,
Figs. 3~a! and 4~c!.# The growth of small-scale structures
particularly suppressed because of the pressure effect,
therefore the size of the overdense region becomes large
if the density field was spatially coarse-grained.@Compare,
e.g., Figs. 4~a! and 4~c!.# Consequently our perturbatio
scheme may work like the ‘‘truncated Zel’dovich approxim
tion’’ @23–25#, which yields a coarse-grained density field
the original Zel’dovich approximation.
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VI. DISCUSSION AND CONCLUDING REMARKS

We have developed a perturbation theory in the Lagra
ian hydrodynamics for a cosmological fluid with pressu
Hydrodynamic equations in the Lagrangian coordinates h
been solved perturbatively up to second order, extending
earlier work. In our earlier work@21#, we solved the first-
order perturbation equations in the Einstein–de Sitter ba
ground, and the second-order ones explicitly for the casg
54/3. In this paper we have obtained the first-order solutio
in nonflat backgrounds and flat backgrounds withLÞ0, and
the approximate second-order solutions for the caseg
.4/3. We have found that in several cases, the first-or
solutions are written in terms of Gauss’ hypergeometric fu
tion. We have also presented illustrations in one- and tw
dimensional systems, showing how our approximat

FIG. 3. The particular density field of a two-dimensional mod
at a51000. Shell crossings just occur in the dust case.~a! First-
order approximation without pressure~the Zel’dovich approxima-
tion!. ~b! Second-order approximation without pressure~the ‘‘post-
Zel’dovich’’ approximation!. ~c! First-order approximation with
pressure,g54/3. ~d! Second-order approximation with pressur
g54/3. ~e! First-order approximation with pressure,g55/3.
4-10
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PERTURBATION THEORY IN LAGRANGIAN . . . PHYSICAL REVIEW D66, 064014 ~2002!
theory describes the evolution of cosmological inhomoge
ities.

In Sec. V we have computed the power spectra of den
perturbations in a one-dimensional model for the caseg
55/3 with the Eulerian linear theory and the Lagrangi
first-order approximation, and have shown some amoun
the difference between them. Our numerical calculatio
have also shown the difference between the Lagrangian fi
order and second-order approximations, smaller than tha
the g54/3 case. Let us investigate the reason of the sm
ness by considering single-wavemode perturbations
evaluating the ratio of the second- to the first-order soluti
as we did in subsection 4.4 of Ref.@21#. We assume that the
first-order solution is written as

FIG. 4. The particular density field of a two-dimensional mod
at a53000. Shell crossings just occur in theg54/3 case.~a! First-
order approximation without pressure~the Zel’dovich approxima-
tion!. ~b! Second-order approximation without pressure~the ‘‘post-
Zel’dovich’’ approximation!. ~c! First-order approximation with
pressure,g54/3. ~d! Second-order approximation with pressur
g54/3. ~e! First-order approximation with pressure,g55/3.
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S~q1 ,t !5
e

K2
Re@„c1~K !D1~K,t !

1c2~K !D2~K,t !…exp~ iKq1!#, ~75!

wheree is the amplitude of the initial density perturbation
c6(K) denote constants ofO(1), andD6(K,t) are given by
Eq. ~44!. Then, from Eq.~50!, the second-order solution be
comes

z~q1 ,t !;2
e2

4p
Re@F1~2K,K,t !exp~ i2Kq1!#. ~76!

For a concrete estimation, we assumeAuKut2g14/3!1 and
use the approximation formulas, Eq.~56!, for the casesg
.4/3. This assumption is reasonable because this is equ
lent to taking into account perturbation modes whose
grangian wave numbers are smaller than the Jeans w
number. The first-order and second-order solutions are t
reduced to

S~q1 ,t !;
e

K2 S AuKu
2 D n

t2/3Re@exp~ iKq1!#, ~77!

z~q1 ,t !;2e2A2S AuKu
2 D 2n

t22g14 Re@exp~ i2Kq1!#,

~78!

wheren55/(826g), and thus we find

Uz~q1 ,t !

S~q1 ,t !U&eS AuKu
2 D n12

t22g110/3

;eS K

KJ
D 2S AuKu

2 D n

t2/3. ~79!

Note that the factore(AuKu/2)nt2/3 corresponds to the Eule
rian linear density perturbation and is of order unity at m
in our case. Then we can show thatuz/Su!1, since the as-
sumptionAuKut2g14/3!1 is equivalent touKu/KJ!1.

In the above estimation, the second-order solutionz(q1 ,t)
is of purely pressure origin because of the on
dimensionality, and thus can be regarded as a measure o
‘‘second-order pressure effect.’’ Manifestly the effect
z(q1 ,t) becomes weaker in time as we take the larger va
of g. This curious fact is exactly the same as what we ha
addressed at the end of Secs. III and IV. Now let us exam
the cause of the fact. We remark the terms of pressure or
in the perturbation equations, Eqs.~20!, ~37!, and~38!. Then
we see that all the terms of pressure origin have tim
dependent coefficients such as dP/dr(rb) and
d2P/dr2(rb)rb , which behave as

dP

dr
~rb!}

d2P

dr2
~rb!rb}a23g13,

l

4-11
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under the assumptionP}rg. These coefficients originat
from the perturbation scheme, and we can safely claim
these coefficients yield the curious behavior of the pertur
tion solutions. In addition, these coefficients will appear
any order in the perturbation scheme, and therefore the c
ous behavior will arise, i.e., the larger value ofg will pro-
duce the weaker effect of pressure at any order, as far a
consider the Lagrangian perturbation scheme. Our t
dimensional illustration also indicates how the evolution
inhomogeneities is sensitive to the variation ofg; the pres-
sure works effectively in theg54/3 case, but does not in th
g55/3 case, although it depends on the choice of value
parameters in general. Buchertet al. @16# argued that theg
52 case corresponds to the adhesion approximation@13#,
but, considering our illustration, it seems difficult to reali
the adhesion-like approximation in theg52 case within the
Lagrangian perturbation scheme.

However, there should be no such curious matter in
exact level of hydrodynamic equations. To see this, let
consider the one-dimensional case, where the relation
tween the Eulerian and the Lagrangian coordinates are g
as

x15q11s1~q1 ,t !, x25q2 , x35q3 . ~80!

Under the assumptionP5krg, the exact equation fors1 is
@20,21#

s̈112
ȧ

a
ṡ124pGrbs12

kgrb
g21

a2

s1,11

~11s1,1!
11g

50,

~81!

where the fourth term of the left-hand side holds the press
effect. This term also has the time-dependent coeffici
dP/dr(rb), but simultaneously includes the effect of inh
mogeneities by (11s1,1)

11g in the denominator. As long a
us1,1u!1, the results of the perturbation theory are rep
duced, but once the flow lines of the fluid approach the sh
crossing singularities, 11s1,1→0, the effect of inhomogene
ities becomes strong. In this situation, the larger value og
gives the stronger effect of pressure, and thus no cur
matter will arise.
se
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In our earlier work, and also in this work, we have exp
rienced the shell-crossing problem in spite of taking in
account the pressure effect. However, we can expect that
problem will also be avoided in the exact level because
fourth term of the left-hand side of Eq.~81! will become
very large near shell crossing, 11s1,1→0, and will stop the
growth of density enhancement.~Some implication may be
obtained by Go¨tz @26#, who solved the one-dimensional ex
act equation for the caseg51 without cosmic expansion.!

The above discussion implies that we have to admit t
our perturbation scheme yields some artificial results. Thi
true, but the Lagrangian perturbation scheme is a natural
to solve the hydrodynamic equations in cosmology, and
formulation will give a useful tool for large-scale structu
formation in a practical sense. It is, in principle, applicable
any cosmological situation in which velocity dispersio
arises and is written as a function of the density only. Ac
ally Fig. 4 has shown that our scheme works better than
Zel’dovich approximation beyond shell crossing, givin
some kind of spatial coarse graining of the density field, a
given by the truncated Zel’dovich approximation@23–25#.
Detailed analyses of comparison of our scheme and the t
cated Zel’dovich approximation~and also the adhesion ap
proximation! will be provided in a separate publication.

As for the shell-crossing problem, Matarrese and M
hayaee@27# have treated it in the Lagrangian perturbati
approach for two-component fluid. They also experienc
shell crossing in the usual perturbative Lagrangian approa
and introduced the ‘‘stochastic adhesion’’ model to overco
the problem. It will be interesting to probe how to treat t
dynamics when shell crossing is occurring, or how to av
shell crossing by taking account of the pressure effect i
sophisticated manner.
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