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We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian
description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure,
given by a polytropic equation of state, using a perturbation method up to second order. This perturbative
approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the
inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion.
We obtain the first-order solutions in generic background universes and the second-order solutions in a wider
range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein—de
Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions,
we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the
evolution of inhomogeneities changes for the variation of the polytropic index.

DOI: 10.1103/PhysRevD.66.064014 PACS nunifer04.25.Nx, 95.30.Lz, 98.65.Dx

[. INTRODUCTION In order to proceed with a hydrodynamical description
without the formation of caustics, qualitative pressure gradi-
Hydrodynamics is a powerful tool to study various astro-ent[10] and thermal velocity scattgt1,12 in a collisionless
physical phenomena, from those associated with compaehedium had been discussed. From the consideration based
objects up to large-scale structure formation. For exampleon the model of nonlinear diffusion, the “adhesion approxi-
when investigating the gravitational instability of cold dark mation” [13] has been proposed, in which an artificial vis-
matter for structure formation, analyses are easier to handleosity term is added to the Zel'dovich approximation. This
by adopting a hydrodynamical description, rather than bymodified approximation successfully describes the stage
trying to solve the Boltzmann equation of a self-gravitatingwhere the original Zel'dovich approximation breaks down,
N-particle system. The linear perturbation theory of a homotut the physical origin of the viscosity term should be clari-
geneous and isotropic univerigk-5] is a typical case, which fied. Some remarkable works have been done on this issue;
gives a qualitative estimate for gravitational instability. It is Buchert and Donmguez[14] argued, by beginning with the
based on the Eulerian picture of hydrodynamics, while ap<eollisionless Boltzmann equatidi 5], that the effect of ve-
proximations based on the Lagrangian hydrodynamics haviecity dispersion becomes important beyond the caustics.
been recognized to be more useful, such as the celebratdthey also argued that models for large-scale structure should
Zel'dovich approximation{6—8]|. This paper deals with an rather be constructed for a flow which describes the average
approximation theory of gravitational instability based on themotion of a multistream system. Then they showed that the
Lagrangian hydrodynamics. effect of velocity dispersion gives rise to pressure-like or
Although the Zel'dovich approximation has been found toviscosity terms of nondissipative gravitational origin. Conse-
give an accurate description up to the stage where densiyuently the Boltzmann equation yields basic equations simi-
perturbations grow to be unity, it involves a serious short-ar to hydrodynamical ones; Buchest al. [16] showed how
coming that it cannot be applied after caustics in the densityhe viscosity term is generated by a pressure-like force of a
field are formed. In the Zel'dovich approximation, the fluid fluid under the assumptions that the peculiar acceleration is
elements continue to move in the directions that are detemparallel to the peculiar velocity; Domguez[17] clarified
mined by initial conditions all the time, and consequentlythat a hydrodynamic formulation is achieved via a spatial
high density regions such as “pancakes” cannot stay comeoarse graining in a many-body gravitating system, and the
pact beyond the caustic formation, while numerical simula“‘adhesion approximation” can be derived by the expansion
tions have shown the presence of clumps with a very widef coarse-grained equations with respect to the smoothing
range in mass at any given tiri@]. Moreover, once caustics length. (See also Ref[18].) In these works, they also ob-
in the density field are formed, a hydrodynamical descriptiontained implications for an “equation of state,” which is a
itself is not valid in general. Then, do we have to abandon ghenomenological relationship between kinematical pressure
hydrodynamical description and try to solve the BoltzmannP and mass density. Buchert and Donmguez[14] found
equation, or tackldN-body simulations? that, if the effect of velocity dispersion is small and the ve-
locity dispersion is approximately isotropic, the equation of
state should take the fornPxp®3 Buchert et al. [16]
*Electronic address: tatekawa@gravity.phys.waseda.ac.jp showed that an adhesion-like equation can be derived if the
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equation of state is assumedRs p?; moreover, a plausible

gp a 1
value of the polytropic indexy=d In P/d In p has been found —p+3—p+ =V (pv)=0, (1)
. . . at a a
to be close to 5/3 from cosmologic&l-body simulations
[19]. .

From these aspects, the dynamics of a collisionless self- ﬁ_v+ a N }( Vv =g— iV P @)
gravitating system should be described by hydrodynamical gt aball v=g pa *’
equations with pressure-like force in the sense of coarse
graining. Therefore it is of interest to extend a Lagrangian V,Xg=0, 3)

perturbation scheme to a fluid with pressure, and to explore
how the scheme works as an approximation for cosmological
structure formation. Actually, Adler and Buchdi20] and
Morita and Tatekawa21] have formulated perturbation
theory in the Lagrangian hydrodynamics, taking into accoun

the pressure effect under the assumption that the pressure i 81 from a background, homogeneous, and isotropic uni-

funcnqn of the mass densr_[y only. In our ea_rller WAEL], verse. The cosmic scale factaft) and the energy density
imposing a polytropic relation as the equation of state, we () of the background universe satisfy the Friedmann
solved the Lagrangian perturbation equations up to second\’ 9
; ; equations

order for cases where the equations are solved easily, and
showed illustrative examples with the solutions in a one- 2
dimensional system. In particular, the second-order solutions a| 87nG K A .
were obtained only for the case in which the polytropic index T3 P2 T3 ®)
v is 4/3, while a plausible value of seems to be larger, as
was mentioned above. .

In this paper, we extend our earlier work by solving the a_ @ I é (6)
first-order perturbation equations in generic background uni- a 3 PrT3e
verses and the second-order perturbation equations for a
wider range of a polytropic index, and by presenting illustra-with a curvature constari and a cosmological constant
tions in one- and two-dimensional systems. We examine howh order to solve the hydrodynamic equations, we must
the behavior of the perturbation solutions, and the resultardpecify an equation of state. Throughout this paper, we con-
evolution of inhomogeneities, change for the variation of thesider barotropic fluids, in which the pressiRés a function
polytropic index. This enables us to discuss whether, or fobf the energy density onlyP=P(p).
what kind of the equation of state, the adhesion-type ap- |ntroducing the Lagrangian time derivative
proximation is realized in the Lagrangian perturbation
scheme.

Vi-g=—4mGa(p—pp), (4)

herev and g are the peculiar velocity and the peculiar
ravitational field, respectively, which represent the devia-

a

This paper is organized as follows. In Sec. Il we present EE ﬁ+ E(v-VX),

Lagrangian hydrodynamic equations, governing the system dt Jt a
we consider. In Sec. lll, the first-order perturbation equations
are derived and their solutions are shown, not only in theé=ds.(1) and(2) become
Einstein—de Sitter background but also in more generic
backgrounds. In Sec. IV we obtain the second-order pertur- do a »p
bation equations and present their solutions in an approxi- o T3Pt 3 (ev)=0, (7
mate form for y>4/3. Section V provides illustrative ex-
amples of our formulation in one- and two-dimensional )
models. In Sec. VI we discuss our results and state our con- dv a 1

: —+-—v=g— —V,P. (8)
clusions. dt  a pa

In the Lagrangian hydrodynamics, the coordinatesf the
Il. BASIC EQUATIONS fluid elements are represented in terms of Lagrangian coor-

In this section we present hydrodynamic equations in théﬂlnatesq as

Lagrangian description, which our approach stands on. The

matter model we consider is a self-gravitating fluid with en- Xx=q+s(q.t), ©

ergy densityp and “pressure”P, which arises in the pres-

ence of velocity dispersion. The “pressure” we adopt here isvhereq are defined as initial values &f ands denotes the

the same as was introduced by Buchert and Douez{14], Lagrangian displacement vector due to the presence of inho-
i.e., the diagonal component of the velocity dispersion tensofogeneities. The exact form of the energy density is then
when the velocity dispersion is assumed to be isotropic in th@btained from Eq(7) as

Jeans equatiofil5]. Therefore the basic equations we start

from are p=ppd L, (10)

064014-2
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where J=det(9x;/dq;) = det(5;; + ds; /dq;) is the Jacobian ) a.

of the coordinate transformation fromto g. The peculiar ST+ 258T=0, (19

velocity is v=as, and from Eq.(8), the peculiar gravita-

tional field is written as :
. a. 1dP 5

. S+2-5-47GppS— — ——(pp) V5S=0. (20

..+28. 1 dP 3193 a a2 dp

st27s ;&(P) x

g=a ) (11)

In our previous paper, we obtained the perturbation solutions
) only for the Einstein—de Sitter background. Here we solve
where an overdot | denotes d/td Hence, from Eqs3) and  the equations for the first-order perturbations in generic
(4), we obtain the following equations far background universes. Equatittd) can be integrated easily
even in this case, although an explicit form of the solutions is
not presented here. For EQO0), the Fourier transformation

. a.
Vx| s+22s)=0, (12 \ith respect to the Lagrangian coordinatggields
: < as . 1dP -
. a. 1dp ~S— - 25—
v, S+253_—2$(p)\]lVXJ):_47Tpr(J1—1). S+2aS 47Gp,S+ 22 dp (Pb)|K| S=0, (21)
a

(13 where () denotes the Fourier transform, aidis a wave
If we find solutions of Eqs(12) and(13) for s, the dynamics number associated with the Lagrangian coordinates. Replac-
of the system considered is completely determined. Sinctd the time variablé with a and using the Friedmann equa-
these equations are highly nonlinear and hard to solve exions (5) and(6), we have
actly, we will advance a perturbative approach. Remark that,

in solving the equations fos in the Lagrangian coordinates SWpraZ—IC-f— éaz &S
g, the operatoV, will be transformed intdv, by the follow- 3 3 da?
ing rule:

ds

da

2K
J (?Xl J J &SJ J +(4’7Tpra__+Aa
S WA Wy (14) a
aq;  dq; (QX] JX;  dq; 07XJ
P .
+| = 7= (pp)|K|?>=47mGp,|S=0. (22
lll. FIRST-ORDER SOLUTIONS (az gp (PO K~ 47Cpy @2

Hereafter we develop a perturbative approach for the Lay \va assume a polytropic equation of st&e= kp?” with a

g:s:g;zgrd;%?:;mgtri‘ér\]’egggg)th:ngL("lds)et')ee?;r:]t:' Inthe  onstantc and a polytropic indexy, this equation becomes

: 2C, A \dS [3C; 2K dS
(1) a. 1) ——K+§a 2 B a d—
Vx| st+2-sM ] =0, (15) a da®> | a® @ a
. C2|K|2 3Cl '*S 0 (23)
. a. 1dpP o1 3>
Vo | s+2-s0- v E(pb)vq(vq.gn)) =47GpyVy s, a%Y a
(16 where
wheres!) denotes the first-order displacement vector in the c1§4Wpr(ain)aﬁ1/3

perturbative expansion. Decomposiy into the longitudi-
nal and the transverse modes $8=V,S+S" with V,-S"  and
=0, we have

Co=rypp(apn)? tadl b,

VX

ST+ z—sT) =0, (170 Let us consider solving E¢23). In the Einstein—de Sitter
a background, wher&C=0 and A=0, the solutions of Eq.
(23) are written in a relatively simple manner. They are, for

-0 19) v# 413,

Ny 1dP )
Vq S+258—4WprS—¥$(pb)VqS
2C;, ||

& ~1/4 (4-3y)12
These equations are reduced by imposing some adequateS(K'a)Oca J¢5/(867)< C, |4—3y|a )
boundary conditions to (24

064014-3



TATEKAWA, SUDA, MAEDA, MORITA, AND ANZAI

where 7, denotes the Bessel function of orderand fory
=4/3,

é(K a)xa YA \25/16- Co|K|%/2C; (25)

In the nonflat backgrounds witki#0 andA =0, the solu-

tions of Eq.(23) for y=1,4/3 can be written in terms of

Gauss’ hypergeometric functiafi as

o Ka
S(K,a)ocaﬂj: al,az,ag;_ y (26)
2C,
where
1 GCyK]
(al,az,a3,ﬂ)= _1+ Z+ IC y
1 /1+C2|K|z 3 3
47 K 2 2)
3+ 1+C2|K|
2 4 K
3 1+C2|K| 71 ¢ 1
2 Nzt ozt b
(27)
(8, [ C,|K|?
(alia2!a3’ﬁ)_ Z— 1_6_ 2C1 ’

1 [25  C,|K|? tor v—a/3
"4 N16 2c, | T
(28)

In the flat (C=0) backgrounds withA#0, we can also
write the solutions of Eq(23) for y=1/3,4/3 in the form

Aad
6C,

S(K,a)xalfF , (29)

al,az,ag;—

where

1 1 CKP?
(alia21a3iﬁ)_ _6+ §_ T

PHYSICAL REVIEW D 66, 064014 (2002

2 N1 CZ|K|2111 for v=1/3
3 V9 3A '6’ or y=4%

(30)
(7. ]2 C,|K|?
(eve2008)7 3" V142~ T1ec,
1 [25  C,lK[?
127 V144 18C,°
25 2C,|K|?
1+ \/onm ———
36 9C, ’
1. [25  C,|K|? o v d/3
“2- V16 2c, | T reHe

(31

Let us note the relation between the behavior of the above
solutions and the Jeans wave number, which is defined as

(4’77pr8.2 172
JE

dP/dp(pp)

The Jeans wave number, which gives a criterion whether a
density perturbation with a wave number will grow or decay
with oscillation, depends on time in general. If the polytropic
equation of statd®=«p? is assumed,

13C;
K = aGr—912
J C,

Equation(32) implies that, ify<<4/3, K;will be infinitesimal
and density perturbations with any wave number will decay
in process of time, and ify>4/3, all density perturbations
will grow to collapse. This is confirmed by the form of the
solutions, Eq(24), by rewriting it as

(32)

V6 [K]

4-3] E)' 33

S(K,a)“al/4j+5/(8—6y)(
However, this fact seems to be curious because one may
expect that, as the polytropic indexis larger, the effect of
the pressure would be stronger and consequently the growth
of density perturbations would be supressed more effectively.
The unexpected result may be caused by construction of the
first-order approximation, in which the strength of the pres-
sure effect is determined only by the coefficient
(1/a?)dP/dp(py,) in the fourth term of the left side of Eq.
(20). The square of the “sound speed,Pfdp, which is
contained in the coefficient, is originally a function @f but
now in the coefficienp is replaced withp, because of the
first-order approximation. Singe,>a ™3, the coefficient de-
cays sooner as the indexis larger, and it leads to the con-
sequence. This problem may be resolved by trying higher-
order approximations, where the pressure effect is provided
not only by the background density but also by the presence
of inhomogeneities. Let us proceed to second order, noticing
the above fact.

064014-4
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We should also note that the above curious behavior of IV. SECOND-ORDER SOLUTIONS
the perturbation solutions is seen in the Lagrangian coordi-
nates, not in the Eulerian coordinates. In order to have a In our previous paper, we derived the second-order solu-
more precise discussion, we have to transform the solutiontions only for the case/=4/3. In this section, we obtain the
into the form in the Eulerian coordinates. We will do so in asecond-order solutions for the cage 4/3 in an approximate

one-dimensional model in Sec. V. form. To second order, Eq§12) and (13) yield
|
. a. :
a
i

(2) (2) 1 (2) (1) (l) (1) 1d (1) (1) (D41 (1) (1) (1)g(1)
s +2 35 > dp (p )V Sii S s! +2 ~ +—d (pp )(s,,JV S+ S kS| ik TSI s S+ 2s07 'Sk kij)

1P (1) (1) (l 5D (2) (1y2_ (1)g(1)

2 d Z(Pb)P (S Vqu i +S ij) 477pr S, __(S ) S| J Sjl ) (35)

where (-) ; denotes?/dq; . As in the first-order solutions, we decompa§@ into the longitudinal and the transverse modes as
2=V, + " with V- '=0. Then these equations are rewritten as

or oA P )
VgX| € +25§ :7$(pb)6ijk5,ljvqs,kl1 (36)
i

Vel {+2- g 47Gppl — 1d ( Vil |=27G [s--s--—(vzs)z]—id—P( )(V2S.V2S . +S ., Si+2S,V3S,)
Pp 2 dp Po PolSijSij q 22 dp Pb q=,i v qoi ijkijk ij Y g2
1 dZP 2 22 2 2
<4 — (pp)pp(VGSVEVES+VESV3S)), (37)

where we have neglected the first-order transverse perturt@ititor simplicity, and used E(20). Taking the rotation of Eq.
(36), we obtain

. a.
i+ ZgéiT

2
_Vq

dp 2 22 2 2
——2E(pb)(svijquS’jk-f-S'iquVqS] \Y S V S S]jquS’ijk). (38)

The Fourier transform of Eq$37) and (38) gives

L% _as . 1dP )
= K] g+25§_4WGPb§+¥$(Pb)|K| 4

2wGpR{[K' - (K=K") ]2 = [K'[2[K—K'|}

(277)3f K’ S(K', 1) S(K—K',t)

2 KPR KPR (KK K (KK o+ 20K KK (KK )
a2 dp Po

2

20 — (po){|K' K= K'[*+[K' [P[K= K'[[K" - (K= K") T} |, (39
;-\} a;? — I 1 dP ! ! ! !
IKI? §i+25§i)— 2m)? de(pb)f d*K'S(K' ) S(K=K’ 1) - [K=K'[[K" - (K=K ][K{{K'- (K=K')
+ K=K |2} = (Ki = K ){K" - (K= K") + |K"|?}]. (40)
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Using the Green function&(K,t,t’) andG'(t,t’), Egs.(39) and(40) are solved in the form

% 1 ! ’ A ’
g(K,t)=—WJ dt’G(K,t,t")Q(K,t"), (41)
E(Kt)=iftdt'GT(tt’)fg\T(Kt’) (42)
G o

whereQ(K,t) and QiT(K,t) denote the right-hand side of Eq89) and(40), respectively.
In order to obtain an explicit form of the second-order solutions, we assume the Einstein—de Sitter background with a
normalization so thaa(t)=t?3 and the equation of state &= xp”. The first-order solutions are then

STecconst, t~13 (43
S(K 1)t 87, 556, (AlK|t™743)  for y+43, (44)
S(K, t)ort 1= V2E6BIKEfor =473, (45)
where
At PG o 2C
[4-34] V C;° 9C,”

These first-order solutions yield the Green'’s functions in the following form:

GT(t,t")=3(t'—t~ Y3'43), (46)
4\ 1
G(K,t,t’)=—Zsmw(—w§ t Y6 7 7 (AK|tT YR T (AIK|E T Y4B
—T(AIKT ) T (AIKIY 749 for y#4/3, (47)

—1/2

1/25
G(K,t,t')=— 5(@_ B|K|2) tfl/6t17/6(tf\25/3&B|K|2t/ V25/36- B|K|?

—t ZSIS&B\K\Ztrf\/25/3&B|K|2) for y=4/3, (48)

where we have assumed that=5/(8—67y) is not an integer. If we write the first-order solution &(K,t)
=D*(K,t)C*(K)+ D (K,t)C (K), whereD=(K,t) are given by the form of Eq$44) and (45), we obtain

ZiT(K,t)z — (2'—)3 #f dP*K'ET(K,K",t)(CT(K")CT(K—K')+C*(K')C (K—K")+C (K" )C*(K—K")
T —o00

+C(K)C™(K=K"))-[K=K'[Z[K"- (K=K J[K{{K"- (K=K’) +|K=K'|?}
— (Ki=K{){K' - (K=K")+[K'[?}], (49
e d*K'(CT(K")CT(K=K")+CH(K')C (K—K')+C (K')CT(K—K")
(2m)% [K|?)
+C7(K)C™(K=K"))-[E(K,K",H){[K"- (K=K")]?=|K'|?|[K—K'|?}
+F1 (KK D{|K 2 [K=K"|2K" - (K= K")+[K"- (K= K") ]34+ 2|K—K'|[K" - (K= K")]?}
+Fo(K K O{ K K= K[ * K2 K= K[ 2K" - (K= K")}], (50)

LK t)=—

where the time-dependent factors are given as

064014-6
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ET(K,K’ t)=ftd— d—P[pb(t’)]GT(t ') (DT (K’ ,t")D* (K=K’ ,t")+ D" (K',t")D ™ (K—K',t")
Y a2(t') dp ’ ' ' ’ ’

+D (K, t") DY (K=K, t")+D (K',t")D (K—K',t")), (51)
E(K,K’,t)=Jtdt’qupr(t’)G(K,t,t’)(D+(K’,t’)D+(K—K’,t’)+D+(K’,t’)D_(K—K’,t’)
+D (K',t")D"(K—K’,t")+D (K',t") D (K—K',t")), (52
F.(K,K’' t)—ftid—P (t"]G(K,t,t" ) (DT (K',t") DT (K=K',t")+ D" (K',t") D (K—K',t")
1( ’ L) az(t’) dp[pb ] 1Ly ’ ’ ’ ( ’
+D (K',t") D" (K=K’ ,t")+D (K',t") D (K—K',t")), (53)
F,(K,K’ t)—ftidz—P (t")]pp(tG(K,t,t" (DKt ) DT (K=K’ ,t")+ D" (K',t") D~ (K—K’,t")
2( ’ L) az(t’) dp2 [pb ]pb( by ’ ’ ’ ( ’
+D (K',t") D" (K—K’,t")+ D (K',t") D (K=K',t"))=(y—1)F(K,K’ ). (54)

It is cumbersome to perform the integration of E¢s1)—
(54) in a complete form unlesy=4/3. (See Ref[21] for

v=4/3.) However, we can obtain the temporal factors in an
approximate form in the following way. By the definition of

the Bessel function,

©

(="
—y+4/3y _
TedAKICT 0= 2 e D

*py+2n
(A|K|) ' tt(5/6)+(876y)n/3

(55)
and thus ifA|K|t™7**3<1, we can utilize the following
approximation formulas:

e (AK[t 743 = (A[K|/2)~" +5/6.

T I(xv+1) (56)
Note that these formulas are useful in the cased/3, be-
cause they give the leading term with respect twhen y
>4/3. Substituting these formulas into Eq51)—(54), we
have

A%(4—3y)2
ET(K,K’,t)= (4-3)
3(4—27y)(13—6y)['(v+1)?
AZ[K'|[K=K'[\"
x(—' ||4 |> t=274 for y#2,
(57
4A2 A2|Kr||K_Kr| —5/4
ET(K,K',t)=
3r(—1/4)? 4
X(Int—=3) for y=2, (58)

1
E(K,K' t)= -
( )= 28 sinvm (4-3y)(v+1)°T(—v+1)
A?|K'|[K—K'|\"”
PR 9
4
F]_(KyK,rt)
5 A2(4_37)
6 sinvm (5—2y)(10-6y)T(v+1)°T(—v+1)
A?|K'|[K—K'|\”

X(#) t=27"4%  for y#5/2,5/3, (60)

Fi(K,K',t) i r

BT 12 sin57/7) (2173 (12/7)

A2|K7||K_KI| —5/7 . I 3
X f t nt+§
for y=5/2, (61)
I 3A2 A2|K;||K_Kl| —5/2
Fi(K,K ,t)=—@ -
3

X t2/3 g—Int] for y=5/3. (62

Let us reexamine the relation between the perturbative
solutions and the polytropic index, which seems curious in
the first-order level, as we mentioned at the end of the pre-
vious section. In the second-order level, the ratio of
E(K,K’,t) to the other temporal factof®.g., F;(K,K’,1)]
can be taken as a measure of the pressure effect because
E(K,K’,t) is of gravitational origin and the others are of
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pressure origin, and thus the ratio is similar to the Jeansvhich is the Lagrangian first-order approximation for a dust
wave numbekK <a®?~4/2n the first order. The ratio reads fluid. The Zel'dovich approximation in a one-dimensional

system is written as
E(K,K',t C
¥~A_2t27_8/3~—1a37_4. (63) X; =01 +t2PW o(01), Xo=0z, X3=0s, (66)
Fi(K.K' 1) C,

(67)

This means that the curious tendency of the first-order solu- 6(dy,t)= W_l
tions is, unfortunately, unchanged at second order, contrary tt 11(0a)
to our expectation. This result may be a consequence of thghere (q,) is an arbitrary spatial function, describing ini-
perturbation scheme we adopt. See Sec. VI for a detailegy, inhomogeneities. Then we have
discussion on this point.
1
Sp= 1=V , 68
V. ILLUSTRATION IN SOME MODELS 14+ () EECHY (68)
In this section we illustrate the perturbation theory formu- 2

lated in the previous sections with examples in one- and vin=(vin,0,00= gtls‘l’,l((h),O,O
two-dimensional systems. In our previous pap2t], we
computed the power spectra of density perturbations in a
one-dimensional model for the case-4/3. Here we calcu- =
late the power spectra for the cage=5/3, and discuss the
d|ffe_re_nce of the power spectra for the variation of the IC’Oly'where we define an initial tim&,=1. As for the caseP
tropic indexvy. It is of significance to compute and compare _ kp%3, the first-order solution gives
the power spectra in the Eulerian coordinates because the P

=1,

2
§\P’1(q1),0,0) ' (69)

evolution of density perturbations has to be discussed in the Sn(K) =K J_g AIK[)CH(K)

physical Eulerian coordinates, and it is nontrivial how a

physical variable is rewritten due to the transformation be- +Tsd AIK)C™ (K) ], (70
tween the Lagrangian and the Eulerian coordinates. More- 1

over, we present the density field in a two-dimensional K =ikl = =3 AlK

model, and clarify how the pressure effect appears in a spa- vin(K) =1 6 ~sAAlK])

tial pattern of the density field by comparison with the dust
case. In this section, we assume the Einstein—de Sitter back- d _y
ground with the scale factoa(t)=t%3 for simplicity. The + g ) s AlK]t )
power spectrum of density perturbations is defined as

P(k,t)={|8(k,1)|?), wherek is a wave vector associated 1

with the Eulerian coordinates 6= (p— py,)/py, is the density +{ - €J5,2(A| K|)
contrast, and- ) denotes an ensemble average over the entire

distribution.

t=t,

}C+(K)

. (7D

+§J5/2<AIKIF1’% Jcm

A. Power spectra in a one-dimensional model

We calculate the power spectra of density perturbations isomparing Eqs(68) and (70), and Egs.(69) and (71), we
a one-dimensional model for the cage-5/3. We did thisin g

our previous papdr21] for the casey=4/3. Here we choose

another value ofy and see the difference of the results for A
the variation ofy. The first-order solution is then written as C (K=~ TE cogA[K])

t=ti,

S(K,t)=D*(K,t)C*(K)+D (K,t)C~(K), (64)

1 —
- msin(AlKD) Sin(K), (72
whereK is a component of the direction of inhomogeneities
in the Lagrangian wave vectdt, and A
ar.
. _ _ C (K)=—1/ (si AlK
D (K, )=t Y87 g AIK[t™13). (65) (K) 2|K |3 nCAIKD
The Jeans wave number is found to Kg= /6tY3A from . 1 cos AlK]) | B(K) 73

We consider how to determin€*(K) from the initial _ _
conditions for an illustration. Here we set the initial density The initial density perturbatios;,(K) = | 5i,(K)|exp(¢x) is
contrasts;, and the initial peculiar velocity;, so that they chosen so thatd,,(K)|?«|K|" with the spectral index
coincide with those given by the Zel'dovich approximation, n=0,=1, and the phasesk are randomly distributed on the
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FIG. 1. The “transfer function” of density perturbations at FIG. 2. The “transfer function” of density perturbations at

=1000 computed by the Eulerian linear theory and Lagrangiar=1000 computed by the Lagrangian first-order approximation in
first-order approximations. It does not depend on the initial condithe y=4/3 and 5/3 cases. Small-scale perturbations inythe/3
tions in the Eulerian linear theory, but does in the Lagrangian apcase are developed more effectively than in jhe4/3 case.
proximation.

Jeans wave number. On the other hand, in the Lagrangian
interval[ 0,27]. We set the constarit so that the Jeans wave approximations, small-scale perturbations are developed by
numberK; is 80 at the initial timet=t;,, wherea=1. the nonlinear effect, and as a result, the difference between

To compute the power spectra within the Lagrangian apthe Eulerian and the Lagrangian approximations becomes
proximations, we have to be cautious about the differencéarge especially at high-frequency regig¢See Fig. 2 of Ref.
between the Lagrangian and the Eulerian wave vectors, [21].)
andk. The Lagrangian solutions are obtained in term& of Now we observe the results of the=5/3 case, Fig. 1. In
while the power spectra are presented by usinghus we this case, the Jeans wave number depends on time, and it
have to transform the Lagrangian solutions into the form inbecomes about 2500 at= 1000 whereas it is set as 80 at the
the Eulerian space. The way of the transformation is deinitial time. This means that the Eulerian linear density per-
scribed in, e.g., subsection 4.3 of REZ1]. turbations with wave numbers between 80 and 2500 are ini-

In Fig. 1 we show the power spectf¥k,t) ata=1000, tially oscillating, but become growing modes later. Actually
wherek is a component of the direction of inhomogeneitieswe can see this tendency at high-frequency region in Fig. 1.
in the Eulerian wave vectok, using the Eulerian linear As for the Lagrangian approximation, small-scale perturba-
theory and the Lagrangian first-order approximation. Insteadions are enhanced because of the nonlinear effect, as in the
of the power spectrum itself, we present the “transfer func-y=4/3 case. The difference between the Eulerian and the
tion,” P(k,t)/P(k,t;,), for convenience because it does notLagrangian approximations is, however, not so large because
depend on the initial conditions in the Eulerian linear theoryof the behavior of the Eulerian density perturbations men-
but does in the Lagrangian approximations generally. Théioned above.
spectra by the Lagrangian second-order approximation are For comparison of they=4/3 and 5/3 cases in the La-
not presented because they are almost coincident with thoggangian first-order approximation, we show in Fig. 2 the
by the first-order approximation, as in the=4/3 case. In- transfer function for both cases, using the same initial con-
deed the difference between the Lagrangian first-order anditions. This figure tells us that the growth of density pertur-
second-order approximations in the=4/3 case is less than bations computed by the Lagrangian approximation is sup-
10% at|k|=150, and that in they=5/3 case becomes still pressed by the pressure more weakly in#¥e5/3 case. This
smaller, less than 1% dk|<150 within our illustrations. implies that the curious behavior of the Lagrangian perturba-
(See Sec. VI for the reason. tion solutions is preserved even if we observe it in the Eule-

In our previous paper, we compared the Eulerian lineafian coordinates.
theory and the Lagrangian approximations in the 4/3
case, where the Jeans wave numkegis a constant. In this
case, the Eulerian linear density perturbations with wave
numbers smaller than a constant wave number always grow, Next we consider an illustration in a two-dimensional
while those with wave numbers larger than that always decaynodel. In a dust model, Buchert and EhlIg28] showed the
with acoustic oscillation because of the constancy of thelensity field with the Zel'dovich and the “post-Zel’dovich”

B. Density field in a two-dimensional model
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approximations. Following their illustrations, we present a dust Lst dust Znd
realization of the density fieldmapped by 128 particles i e
with our approximations in order to see how the pressure
effect appears in a spatial pattern. We set the initial condi-.
tions for the scalar functio(qg,t) as

1
S(q,tin)zﬂ% % Ki+K§{CO§LK1q1+K2q2
+ (K1, KT}, 74 i .

T=4/3 1st ¥=4/3 2nd

KI+K3#0, K;,=0,1,...,5,

where the phase#(K,,K,) are random numbers between O
and 27, and the amplitudeu is chosen so thatu

=3.0x 10 3. The periodic boundary condition is imposed.
We consider the cases in which the equation of state is give

asP=kp*®andP= kp®?, assuming the Jeans wave number _
K,=8. ] ]

Setting the initial conditions a=1, the time evolution © d
of the density field is shown in Figs. 3 and 4. In the i3 12

=4/3 case, the evolution obviously proceeds slowly because:=
of the pressure effect. In Fig. 3, shell crossings just arise i
the dust case, while the evolution remains still quasi-
nonlinear regime in they=4/3 case [6|<1.0). In Fig. 4,
shell crossings are being formed in the 4/3 case, while in
the dust case high-density structures are being dissolved. |
these figures, the difference between the first- and second
order approximations seems still small on large scidem-
pare(a) and(b), and(c) and(d)], although the second-order ' 1
solutions should compensate shortcomings of the first-orde ©

approximation on small scales, as was discussed by Buchert
and Ehlerd22] for the dust case. FIG. 3. The particular density field of a two-dimensional model

Above we have mentioned the=4/3 case, but what will at a=1000. Shell crossings just occur in the dust cdag First-
happen if we take a larger value gfsuch as 5/3? To answer order approximation without pressufthe Zel'dovich approxima-
this question, we show in Figs(63 and 4e) the results com- tion). (b) Second-order approximation without press(the “post-
puted by the Lagrangian first-order approximation in the Zel'dovich” approximation. (c) First-order approximation with
=5/3 case(The results by the Lagrangian second-order appressure,y=4/3. (d) Second-order approximation with pressure,
proximation are omitted because we may presume them eag=4/3. (¢) First-order approximation with pressure=5/3.
ily from other results presentgdAs we stated in Secs. lll
and 1V, the pressure effect in this case becomes weaker than v, DISCUSSION AND CONCLUDING REMARKS
in the y=4/3 case. Indeed we see that the spatial density
pattern resembles that in the dust case, rather than that in the e have developed a perturbation theory in the Lagrang-
y=4I3 case. ian hydrodynamics for a cosmological fluid with pressure.

In our perturbation scheme, shell crossings arise in thélydrodynamic equations in the Lagrangian coordinates have
v=4/3 and 5/3 cases in spite of the presence of the pressubeen solved perturbatively up to second order, extending our
effect, but the features of first collapsing objects are maniearlier work. In our earlier work21], we solved the first-
festly different from those in the dust cag€ompare, e.g., order perturbation equations in the Einstein—de Sitter back-
Figs. 3a) and 4c).] The growth of small-scale structures is ground, and the second-order ones explicitly for the case
particularly suppressed because of the pressure effect, ard4/3. In this paper we have obtained the first-order solutions
therefore the size of the overdense region becomes larger, asnonflat backgrounds and flat backgrounds whitk 0, and
if the density field was spatially coarse-grainf@ompare, the approximate second-order solutions for the case
e.g., Figs. 48 and 4c).] Consequently our perturbation >4/3. We have found that in several cases, the first-order
scheme may work like the “truncated Zel'dovich approxima- solutions are written in terms of Gauss’ hypergeometric func-
tion” [23—25, which yields a coarse-grained density field of tion. We have also presented illustrations in one- and two-
the original Zel'dovich approximation. dimensional systems, showing how our approximation
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dust Ist dust 2nd

S<q1,t>=%Ret(c+<K>D+<K,t>

+c (K)D (K, t)expiKgy)], (75

wheree is the amplitude of the initial density perturbations,
¢~ (K) denote constants @(1), andD*(K,t) are given by
Eq. (44). Then, from Eq.(50), the second-order solution be-
comes

(@ (b) 5
€
403 15t _ v ﬁqlmrv—Z;RQFﬂzKJgUemﬁqup] (76)

For a concrete estimation, we assuii |t~ 7" #3<1 and

use the approximation formulas, E(6), for the casesy
>4/3. This assumption is reasonable because this is equiva-
lent to taking into account perturbation modes whose La-
grangian wave numbers are smaller than the Jeans wave
number. The first-order and second-order solutions are then

reduced to
e [AIK\ ]
s 10 Stau)~ 3| | *RdexmiKayl, (77
AlK 2v
§<q1,t)~—e2A2(%) t 27" Reexpli2Kay)],
(78)
wherev=>5/(8—6v), and thus we find
| _ (AIK[ 2
0 L] A1) oy
FIG. 4. The particular density field of a two-dimensional model K\ 2 AIK|\"
ata=3000. Shell crossings just occur in thye=4/3 case(a) First- ~ E(E) (T) 213 (79

order approximation without pressutthe Zel'dovich approxima-
tion). (b) Second-order approximation without press(tree “post-
Zel'dovich” approximation. (c) First-order approximation with Note that the factoe(A|K|/2)"t?® corresponds to the Eule-
pressure,y=4/3. (d) Second-order approximation with pressure, rian linear density perturbation and is of order unity at most
y=4/3. (e) First-order approximation with pressurg=5/3. in our case. Then we can show tH&tS|<1, since the as-

sumptionA|K |t~ 7*#3<1 is equivalent tdK|/K <1.

In the above estimation, the second-order solugi@m ,t)

theory describes the evolution of cosmological inhomogenelS Of purely pressure origin because of the one-
ities. dimensionality, and thus can be regarded as a measure of the

In Sec. V we have computed the power spectra of densit)‘}second-order pressure effect.” Manifestly the effect of

perturbations in a one-dimensional model for the case £(01.1) F’eco”.‘es Wea"?r in time as we take the larger value
—5/3 with the Eulerian linear theory and the LagrangianOf v. This curious fact is exactly the same as what we have

first-order approximation. and have Shown Some amount o ddressed at the end of Secs. Ill and IV. Now let us examine
. PP ' ; .__the cause of the fact. We remark the terms of pressure origin
the difference between them. Our numerical calculation

$n the perturbation equations, Eq80), (37), and(38). Then
have also shown the difference between the Lagrangian firsf, se% that all theq terms ,of qpre)s’,s(urz’ origi(n )have time-

order and second-order approximations, smaller than that iHependent coefficients such as P/dp(p,) and
the y=4/3 case. Let us investigate the reason of the smalldzpldpz(pb)pb, which behave as

ness by considering single-wavemode perturbations and
evaluating the ratio of the second- to the first-order solution,
as we did in subsection 4.4 of R¢21]. We assume that the
first-order solution is written as

dpP P

— o —— oca*3y+3,
dp (Pp) i (o) P
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under the assumptioxp?”. These coefficients originate In our earlier work, and also in this work, we have expe-
from the perturbation scheme, and we can safely claim thatenced the shell-crossing problem in spite of taking into
these coefficients yield the curious behavior of the perturbaaccount the pressure effect. However, we can expect that this
tion solutions. In addition, these coefficients will appear atproblem will also be avoided in the exact level because the
any order in the perturbation scheme, and therefore the curfourth term of the left-hand side of Eq81) will become

ous behavior will arise, i.e., the Iarger value ‘ijVVl” pro- very |arge near shell Crossingﬂ-:sl l_>0' and will Stop the
duce the weaker effect of pressure at any order, as far as Wgtowth of density enhancemer(fsdme implication may be
consider the Lagrangian perturbation scheme. Our twogptained by Gtz [26], who solved the one-dimensional ex-
dimensional illustration also indicates how the evolution of ;. equation for the casg=1 without cosmic expansion.
inhomogeneities is sensitive to the variationygfthe pres- The above discussion implies that we have to admit that
sure works effectively n the=4/3 case, but dqes notinthe o perturbation scheme yields some artificial results. This is
7=5/3 case, although it depends on the choice of values 0[%ue, but the Lagrangian perturbation scheme is a natural way
giazrameters n genergl. Bucﬁ@ltzlh[lﬁ] argued that they to solve the hydrodynamic equations in cosmology, and our
=2 case corresponds to the adhesion approximaidii formulation will give a useful tool for large-scale structure

but, considering our illustration, it seems difficult to realize o . Co Y .

the adhesion-like approximation in the=2 case within the formation in a practical sense. Itis, in principle, applicable to

Lagrangian perturbation scheme any cosmological situation in which velocity dispersion
' @rises and is written as a function of the density only. Actu-

However, there should be no such curious matter in th >
exact level of hydrodynamic equations. To see this, let u&lly Fig. 4 has shown that our scheme works better than the

consider the one-dimensional case, where the relation béel'dovich approximation beyond shell crossing, giving

tween the Eulerian and the Lagrangian coordinates are give?PMe kind of spatial coarse graining of the density field, as is
as given by the truncated Zel'dovich approximatipa3—25.

Detailed analyses of comparison of our scheme and the trun-
X1=01+S1(d1,t), Xo=0z, X3=0s. (80)  cated Zel'dovich approximatiotand also the adhesion ap-
proximation will be provided in a separate publication.

Under the assumptioR = «p”, the exact equation s is As for the shell-crossing problem, Matarrese and Mo-

[20,21 hayaee[27] have treated it in the Lagrangian perturbative
yo1 approach for two-component fluid. They also experienced
KYPb S1,11 shell crossing in the usual perturbative Lagrangian approach,

él'f' ZE.S:L_4’7Tpr51_ ’ . . .
a and introduced the “stochastic adhesion” model to overcome
(81)  the problem. It will be interesting to probe how to treat the
, dynamics when shell crossing is occurring, or how to avoid
where the fourth term of the left-hand side holds the pressurgpg| crossing by taking account of the pressure effect in a

effect. This term also has the time-dependent coefficieniggppisticated manner.
dP/dp(pp), but simultaneously includes the effect of inho-
mogeneities by (*+ 51,1)1*7 in the denominator. As long as
|s11<1, the results of the perturbation theory are repro-
duced, but once the flow lines of the fluid approach the shell-
crossing singularities, 4 s, ;—0, the effect of inhomogene- We would like to thank Yasuhide Sota for useful discus-
ities becomes strong. In this situation, the larger values of sions in the early stage of the work. M.M. also thanks Tho-
gives the stronger effect of pressure, and thus no curiousias Buchert for the hospitality during his stay in Munich,
matter will arise. where the final part of the work was done.

a? (1+sl,])1+7_
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