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Density field in extended Lagrangian perturbation theory
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We analyze the performance of a perturbation theory for nonlinear cosmological dynamics, based on the
Lagrangian description of hydrodynamics. In our previous paper, we solved the hydrodynamic equations for a
self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method. Then
we obtained the first-order solutions in generic background universes and the second-order solutions for a
wider range of polytrope exponents. Using these results, we describe density fields with a scale-free spectrum,
SCDM, and LCDM models. Then we analyze the cross-correlation coefficient of the density field between
N-body simulation and Lagrangian linear perturbation theory, and the probability distribution of the density
fluctuations. From our analyses, for scale-free spectrum models, the case of the polytrope exponent 5/3 shows
better performance than the Zel'dovich approximation and the truncated Zel'dovich approximation in the
quasinonlinear regime. On the other hand, for SCDM and LCDM models, the improvement by including the
effect of the velocity dispersion was small.
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[. INTRODUCTION equations of hydrodynamics are obtained by integrating the
collisionless Boltzmann equation over velocity space. In past
The Lagrangian approximation for structure formation inapproximations, such as the ZA and its modified version,
cosmological fluids provides a relatively accurate modelelocity dispersion was ignored. Buchert and Doguez
even in the quasilinear regime, where the density fluctuatiofil5] argued that the effect of velocity dispersion become
becomes unity. The Zel'dovich approximati6®A) [1-4], a  important beyond the caustics. They also argued that models
linear Lagrangian approximation for a dust fluid, describesfor large-scale structure should rather be constructed for a
the evolution of density fluctuation better than the Eulerianflow which describes the average motion of a multistream
approximation5,6]. Although the ZA gives an accurate de- system. Then they showed that, when the velocity dispersion

scription until a quasilinear regime develops, it cannot deys still small and can be considered isotropic, that gives ef-

even after the formation of caustics, the fluid elements kee@ued the relation between mass dengitand pressurd®

moving in the direction set up by the initial condition. The ; e., an “equation of state.” If the relation between the den-

ZA cannot describe compact and high density structures Sucé]ty of matter and pressure seems barotropic, the equation of
as pancakes, skeletons, or clumps, whileody simulation _state should take the fOI’nPOCp5/3. Buchert et al. [16]

shows the presence of clumps with a very wide range in : . i :
mass at any given tim@]. In general, after the formation of showed how the viscosity term is generated by the effective

caustics, the hydrodynamical description becomes invalid. pressure_of a fluid under the assu_mpt|on t_ha.t the peculiar
In order to proceed with a hydrodynamical descriptionaccelerat'on_ is parallel to the pec!l"af veloc!ty, _Dugwe_z
without the formation of caustics, the qualitative pressure[g’18 clqufled thata hyd.rodynamm formulation |s_opta|ned
gradien{8] and thermal velocity scatt€®,10] in a collision-  Via @ spatial coarse graining in a many-body gravitating sys-
less medium have been discussed. After that, the “adhesiol¢M. and the viscosity term in the adhesion approximation
approximation”[11] was proposed from the consideration of can be derived by the expansion of coarse-grained equations.
nonlinear wave equations like Burgers’ equation. In the ad- Dominguez[19] also reported on a study of the spatially
hesion approximation, an artificial viscosity term is added tocoarse-grained velocity dispersion in cosmologibabody
the ZA. As another modification, a Gaussian cutoff is appliedsimulations. The analysis showed that the polytrope expo-
to the initial power spectrum of the density fluctuation andnent becomeg=5/3 in a quasinonlinear regime, and=2
then evolves with the ZA. This modified approximation is in a strongly nonlinear regime. Donguez and Melotf20]
called the “truncated Zel'dovich approximation{TZA)  discussed the polytrope exponents of velocity dispersion in
[12,13. These modified approximations successfully avoidN-body simulations. According to their results, the exponents
the formation of caustics and describe the evolution for longlepend on the model of the initial density fluctuation.
times. However, the physical origin of the modification has From these points, the extension of Lagrangian perturba-
not been clarified. tion theory to cosmological fluids with pressure has been
We reconsider the basic, fundamental equation for theonsidered. Adler and Buchei21] actually formulated the
motion of matter. The collisionless Boltzmann equatfitd]  Lagrangian perturbation theory for a barotropic fluid. Morita
describes the motion of matter in phase space. The basand Tatekawd22] and Tatekawaet al. [23] solved the La-
grangian perturbation equations for a polytropic fluid up to
second order for cases where the equations are solved easily.
*Electronic address: tatekawa@gravity.phys.waseda.ac.jp Hereafter, we call this model the “pressure model.”
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In this paper, we analyze the density field which is de-Einstein—de Sitter universe. For a generic background uni-
scribed by the Lagrangian approximations; the ZA, TZA, andverse, we obtained the perturbation solutions in our previous
first-order pressure model solutions. We calculate the crosgpaper[23].
correlation function of the density field between the La- The transverse modes can be solved easily. The first-order
grangian approximation and\-body simulation. Further- solutions become as follows:
more, we analyze the probability distribution function of the
density fluctuations for confirmation. From these results, we STxala 12 ®)
determine the polytrope exponent in the equation of state.

From our analyses of the cross-correlation coefficient angsecause the solutions do not depend on “pressure,” the so-
probability distribution function of the density fluctuations, |ytions of this mode in the ZA become the same in form. The
we find that the value of the polytrope exponent seems to bgansverse modes do not have a growing solution in a first-
5/3 for quasinonlinear evolution, as Buchert and Doguez — grder approximation.
argued[15]. However, for the determination of the propor-  For the longitudinal modes, we carry out a Fourier trans-
tional constant in the equation of state, we must consideformation with respect to the Lagrangian coordinagesf
further p_hysica_l processes or carry out a high-resolutiofye gssume a polytropic equation of st&e= xp? with a
N-body simulation. constantk and a polytrope exponent, we can write the
This paper is organized as follows. In Sec. Il, we presengypiicit form of the first-order perturbative solutions. In the

Lagrangian perturbative solutions. In Sec. Il A, we show theginstein—de Sitte(EdS background, the solutions are writ-
first-order solution of the pressure model in the Einstein—dggp, in a relatively simple form. They are, for# 4/3,

Sitter background. For comparison, in Secs. Il B and Il C, we

show the solution of the ZA and the procedure of the TZA. 2C, K|
In Sec. Ill, we compare the density field between the La-  §(K,a)ca Y47, 55 c=2 ad-3»12
N ) ) . . ’ +5/(8—67y) C |4_ 3 | ’
grangian approximations and-body simulation. In Sec. 1 Y

[l A, we calculate the cross-correlation coefficient of the (4)
density field. Although it seems that we can reach a conclu- _

sion in this analysis, it is insufficient. Therefore in Sec. Ill B, Where J, denotes the Bessel function of ordey and for
we analyze the probability distribution function of the den- y=4/3

sity fluctuations. In Sec. IV, we discuss our results and state

conclusions. &(K,a)ca= 4= \/25/16- CZ\K|2/201, (5)
Il. LAGRANGIAN APPROXIMATIONS where C15477pr(am)ai,?/3 and Cy=«vypy(ai) r-1
IN GRAVITATIONAL INSTABILITY THEORY xair?(y’l). pp, andK are the background mass density and

Lagrangian wave number, respectivedy, is the scale factor
_ _ _ _ _ when the initial condition was given.
In this section, we present perturbative solutions in the Here we notice the relation between the behaviors of the

Lagrangian description. The matter model we consider is @bove solutions and the Jeans wave number, which is defined
self-gravitating fluid with mass densigy and “pressure’P, as

which is given by the presence of velocity dispersion. The

“pressure” we adopt here is the same as was introduced by 47Gp,a2
Buchert and Donmguez[15], i.e., the diagonal component JE(W()
of the velocity dispersion tensor when the velocity dispersion PiPb
is assumed to be isotropic in the Jeans equafibf. In
Lagrangian hydrodynamics, the comoving coordinatesf
the fluid elements are represented in terms of Lagrangia
coordinateq as

A. First-order solutions of the pressure model

1/2

The Jeans wave number, which gives a criterion for whether
A density perturbation with a wave number will grow or de-
cay with oscillation, depends on time in general. If the poly-
tropic equation of stat® = kp” is assumed,

x=q+s(qt), (1)

_ 3C, (By-4)/2
whereq are defined as initial values a&f ands denotes the K=V C_za : (6)
Lagrangian displacement vector due to the presence of inho-
mogeneities. From the Jacobian of the coordinate transfo
mation fromx to g, J=det(dx;/dq;)=det(s;; + Js;/q;),
the mass density is given exactly as

rEquation(fi) implies that, if y<4/3, K; will be decreased
and density perturbations with any scale will decay and dis-
appear in evolution, and i>4/3, all density perturbations
R will grow to collapse. We rewrite the first-order solution Eq.
p=ppl . (2) (4) with the Jeans wave number:

We decomposs into the longitudinal and the transverse J6 IK|
modes as=V,S+ S" with V- S"™=0. In this paper, we show 3(K,a)xa Y47 _vo ™ @
.. q a . . . ( a a +5/(8-6%) 4—13 K .
the explicit form of the perturbative solutions only in the | vl Ky

084020-2
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B. Zel'dovich approximation SCDM: Q,=1.0,0,=0.0,04=0.84,
The ZA was obtained as the first-order solution with a ) _ _ _
dust fluid in the Lagrangian descriptiph]. The solutions are LCDM: 2,=0.27, 2, =0.73, 75=0.84.
obtained from solutions of the pressure model at the limit of |n the pressure model, we choose the polytrope exponent

weak pressure. For example, in the EdS model, when wg=4/3,5/3. In the case of=4/3, we obtain the simplest
take the limitk—0 in Eqgs.(4) and (5), the solutions con- perturbative solution given by E¢p), which is described by

verge to those of the ZA: a power law of the time variabley=>5/3 is obtained from
) theoretical arguments by Buchert and Daguez[15]. They
S(K,a)xa,a %2 (8) argued kinematic considerations using the collisionless

_ _ _ _ Boltzmann equation and deriveg=5/3. The exponent is
The ZA is a perturbative solution that describes the strucequivalent to the adiabatic process of an ideal gas. Because
ture well on a quasilinear scale. However, if caustics appeatwe cannot decide on a proportionality constarih the equa-

the solutions no longer have physical meaning. tion of state from past discussion, we choose several values.
In this paper, instead of, we write an initial @=10"3, i.e.,
C. Truncated Zel'dovich approximation z=1000) Jeans wave number, given by ).

Here we show how we set up the initial condition in the

During evolution, a small-scale structure contracts anthressyre model. We adjust the initial condition in the pres-
forms caustics. Therefore if we introduce some cutoff in thegre model to be the same as that in the ZA: the initial

small scale, we will be able to avoid the formation of caus-peculiar velocity in the pressure model is the same as that in

tics [12,13. In the TZA, to avoid caustics, we introduce a the ZA. The procedure for setting up the initial condition was
Gaussian cutoff to the initial density spectrum as follows: shown in our previous papef&2,23.

P(K, tin) = P(K, tin) exp( — k?/kyy), 9 A. Cross-correlation coefficient

whereky, is the “nonlinear wave number,” defined by First we calculate the cross-correlation coefficient of the
density fields. The cross-correlation coefficient was used for

Knw the comparison of the resulting density fie[d2,13,25-28
— 2 i) 1
1=a(t) fko P(kitin)dk. (10 The cross-correlation coefficient is defined by
The nonlinear wave number depends on the scale factor. The SE< 5152> (12)
relation between the Jeans wave numierand the nonlin- o105/’

ear wave numbeky, will be discussed in Sec. IV. o . .
NL where o, means the density dispersion of model
IIl. COMPARISON BETWEEN N-BODY SIMULATION o= \/<5i2>_ (13
AND LAGRANGIAN APPROXIMATIONS o
S=1 means that the patterns of the density fields of the two
In this section, we show a comparison betwééhody models coincide with each other. In the linear regime, the
simulation and Lagrangian approximations with two statisti-density dispersion remains<1. Although we develop the
cal quantities. In our previous pa@3], we showed that the ~Structure until it becomes strongly nonlineary(poa,>1),
effect of second-order perturbation was still small just beforéVe analyze it particularly in the quasinonlinear regime

shell crossing. Therefore we consider only first-order pertur{on body=1). . o
bations. Figures 1-6 show a comparison body density fields

We analyze the ZA1], the TZA[12,13, and the pressure With those predicted by various Lagrangian approximations.

model[21-23. We establish the value of the scale factor atFirst, we notice the cases with a scale-free spectftigs.
z=0 with a=1. For the initial condition, we set the Gauss- 1—3- As in the past analyses, the TZA shows better perfor-

ian density field with the scale-free spectrum: mance than the ZA. Our analyses also show a similar ten-
dency, i.e., our analyses do not contradict past analyses.
P(k)xk"(n=-1,0,1) (11) In the pressure model, the performance strongly depends

on the polytrope exponent and the Jeans wave number. In
the standard cold dark mattéBCDM) and the low-density the case ofy=4/3, when we set the initial Jeans wave num-
flat cold dark matte(LCDM) models. The initial condition  ber to be small, even if in the linear regime, the approxima-
was produced bgosmics[24]. tion deviates from am-body simulation. Only for the case
For N-body simulation, we execute the*M code. The of K;=64 does the approximation show better performance
parameters of the simulation were as follows: number of parthan the ZA in the quasinonlinear regime. We notice that the
ticles N=64°, N=128 (Fig. 3 only; box size L  result strongly depends on the Jeans wave number in the case
=64h~! Mpc; softening lengthe=0.05h~* Mpc; coarse- of y=4/3: When we slightly change the value of the Jeans
graining length |=1,2,4h~1Mpc; Hubble parameteth wave number, the cross-correlation coefficient changes dra-

=0.71. matically. In the case oy=>5/3, although the result depends
For CDM models, we choose the cosmological paramslightly on the initial Jeans wave number, the pressure model
eters as follows: shows a better performance than the ZA in the quasinonlin-
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FIG. 1. The cross-correlation
coefficient of density fields be-
tween theN-body simulation and
Lagrangian approximations. The
primordial density fluctuation is
given by the scale-free spec-
trum P(k)<k! (N=64%1=1h"1
Mpc). (8 When we choosey
=4/3, the function deviates from
that of the ZA in the linear regime.
(b) In the case ofy=5/3, we can
obtain a better result than by using
the TZA.

ear regime. Furthermore, the pressure model also showsgwood to set up the value of so that the initial £=1000)
better performance than the TZA. However, when we condJeans wave numbét; wasNY¥4<K ;<N3 For example,
sider scale-free spectrum models, the model does not haveimthe case oN=64°, as we see in Figs. 1 and 2, it is good
typical physical scale: the model has only box size, grid sizeto choose the initial Jeans wave numberlo; < 64.

and softening length. The trend of the result was unchanged Next we consider SCDM and LCDM modéd(Bigs. 4—6.
when we changed the box size of the model and the softerin these models, the difference between the ZA and TZA
ing parameter. When we changed the number of particles, theecomes very small. Because the initial density spectrum in
result changed. From a comparison of Figs. 1 and 3, we cathe CDM models dumps power in the small scale, a cutoff in
see that the results depend on the ratio of grid size and initighe spectrum weakly affects the formation of caustics, as we
Jeans wave number. In our calculation, we found that it wasaw in the case oP(k)xk 1. From Fig. 4, we can see that
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FIG. 2. The cross-correlation
coefficient of density fields be-
tween theN-body simulation and
Lagrangian approximations N(
=64%1=1h"1Mpc, scale-free
spectrum model (a) P(k)ox<k®,
the case ofy=4/3. (b) P(k)xk°,
the case of y=5/3. (c) P(k)
k™1, In this model, the differ-
ence in the coefficient between the
ZA and the TZA becomes small.
The case ofy=4/3. (d) P(k)
k™1, the case ofy=5/3.
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FIG. 3. The cross-correlation coefficient of density fields be- -
tweenN-body simulation and Lagrangian approximations. The pri-changedFigs. 5 and &

mordial density fluctuation is given by the scale-free spectrum
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that the cross-correlation coefficient becomes almost the
same in the linear regime. In the caseyof 4/3, when we
choose a small initial Jeans wave numifer example,K
=16), although we can improve the approximation much
more in the quasinonlinear stage than at large Jeans wave
number K;=32,64), the approximation changes slightly for
the worse in the linear stage. On the other hand, when we
choosey=5/3, although the effect seems small, we can ob-
tain an improved solution both in the linear and in the quasi-
nonlinear stages.

When the model evolves to the strongly nonlinear regime,
the trend of the solutions change. In the linear stage, the case
of y=4/3 shows deviation from the ZA. However, in the
strongly nonlinear regime, although the Lagrangian approxi-
mation generally becomes worse, the casgo#/3 shows a
rather good resulfFigs. 4a) and 4c)]. This tendency was
unchanged even when the coarse-graining length was

In both the SCDM and LCDM models, when we choose a

P(k)xk! (N=128 =1 h~*Mpc). From comparison between Small initial Jeans wave numbét;, although the approxi-
Fig. 1 and this graph, we can see that the results depend on the rafi@ation is improved after the quasinonlinear stage, the rea-
of the grid size and initial Jeans wave number.

sonable range of Jeans wave numbers seems wide. The strict
limitation on the value ok or the initial Jeans wave number

the effect of pressure improves the approximation in the quawill be given by other physical considerations or by a high-
sinonlinear stage. Also, in both the SCDM and LCDM mod-resolutionN-body simulation.

els, the case of=4/3 shows a deviation from the ZA in the
linear regime. On the other hand, the caseyef5/3 shows
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0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 these ﬁguresy we Changed the
Scale Factor a Scale Factor a coarse-graining length to |
(@) (b) =2h"'Mpc. (@ The SCDM
model with y=4/3. (b) The
Cross-correlation (LCDM, 20 >z > 0) Cross-correlation (LCDM, 20 > z > 0) SCDM model with y= 5/3 (C)
1 1 —e-o-e . ; . . )
The LCDM model with y=4/3.
(d) The LCDM model with y
0.8 | 08| =5/3.
0.6 | 0.6
v 77}
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041 | —e—TZA 1 04 |—eTZA 1
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(©) d
gime is reached. These results support the suggestion by Sp* Og. (14)

Buchert and Dormguez[15] and by Domnguez[19]. If we

have interest in the strongly nonlinear regime, although thg-\ e if the density contrast is greatly different, as given by

Lagrangian approximation generally becomes worse, we hag 54 5. and one shows a highly nonlinear structure and
better analyze the case ¢&=4/3. In this regime, it is nec-

) oI il still b the other remains in the linear regime, the cross-correlation
essary to consider whether that approximation will still be.,qtficient betweers, and 55 becomes 1.

valid. In any case, from the cross-correlation coefficient, we 1 arefore we must check the accuracy of the approxima-
can put limitations on the polytrope exponent tion using another property. In the next subsection, we ana-

_ Unfortunately, in these results, we cannot give a stricty,q the probability distribution function of the density fluc-
limit to the proportionality coefficienk of the equation of  { 4tions.

state. When we choosg=4/3, we show that the result

strongly depends ow, and we can see a strict limitation. S ) _ _

However, when we choosg=>5/3, we can hardly judge the B. Probability distribution function of density fluctuation

best value fork. In our calculation, we found that it was Here, we compare the probability distribution function

good to set up the initialg=10"3, i.e., z=1000) Jeans (PDP of the density fluctuations. In the Eulerian linear ap-

wave numberK; as NY34<K,;<N'3. From the range of proximation, if initial data are given by a random Gaussian

K, we can obtain a reasonable value korlf we choose a distribution, the PDF of density fluctuations will retain its

large value forx, it becomes hard to form a nonlinear struc- Gaussianity during evolution. On the other hand, in the La-

ture. On the other hand, if we choose a small valuedothe  grangian approximation, a nonlinear effect appears. In fact,

structure becomes almost the same as the structure that wigsefman et al.[29] show that the PDF of the density fluctua-

obtained by the ZA. tions approaches a log-normal function rather than a Gauss-
Although the cross-correlation coefficient is one thingian function in the cases of the Lagrangian approximation

which is good for checking the accuracy of the approxima-andN-body simulation. Padmanabhan and Subrama8ah

tion, it is not enough. Now we consider two sampkesnd  also discussed the PDF of density fluctuations with the ZA

B. The density contrast of the samples is givendyand and found a non-Gaussian distribution.

dg, respectively. We assume that the following proportion- How will the PDF of the density fluctuations change if we

ality relation exists betweef, and 6y : take the effect of the velocity dispersion into consideration?
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Figures 7, 8, and 9 show the PDFs of the density fluctuaether hand, the case af=5/3 well shows the trend in the
tions. As in past work, the PDF of the density fluctuationsPDF of the density fluctuations. Although the difference of
becomes log-normal in form in thi-body simulation. In  distribution between the ZA and the pressure model is still
Figs. 7, 8, and 9, the cases ¢&=4/3 obviously show a small in the quasinonlinear regime, the effect of the pressure
different tendency: in these cases, the effect of pressure supan promote the evolution of nonlinear structure. Therefore
presses the growth of positive fluctuatidi8gs. 1b), 8(c),  the probability of low- and high-density regions increases in
8(d), 9(c), and 9d)]. When we also consider the PDF of the case ofy=5/3. Furthermore, according to Fig(cB, the
density fluctuations, we can see that it is not so good tdPDFs of density fluctuations in the casesyef 5/3 show that
choosey=4/3 to examine the growth of structure, althoughit is much better than the result in the TZA case. Of course
the cross-correlation coefficients show the trend well. On thevhen we reach a strongly nonlinear regime, it is necessary to

PDF of density fluctuation (P(k)~k, a=1.0) Difference of PDF (P(k)~k, a=1.0)
0.1 . T T . 0.03 T . . . FIG. 7. The PDF of density
n —N-body i —7a fluctuation for a scale-free spec-
— 1 002 |} :::::;—?4?3,1(]44 ] trum (P(k)xk, 1=1h"1Mpc:
it g3, K 52 ON body™1 at_ a=1.0). .(a) The
PDF of density fluctuation. In the
case ofy=4/3, the effect of pres-
sure suppresses the growth of the
fluctuation. (b) The difference in
the PDF of density fluctuation. In
\ this figure, the difference between
; \ " the case ofy=4/3 and other cases
07 o ] 2 s y 0.02 - S T 3 3 becomes clear. When we choose
5 5 K,=32 for the case ofy=4/3,
more greater difference appears.
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FIG. 8. The PDF of density
fluctuations in the SCDM model
(I=4 h~*Mpc). In the case of
v=4/3, the pressure effect sup-
presses the growth of density fluc-
tuations. Therefore the probability
of a small fluctuation (5| <1) in-
creases(a) The SCDM model at
a=0.1 (z=9, 1=4 h™! Mpc,
guasinonlinear regime In the
case ofy=4/3, the effect of pres-
sure suppresses the growth of the
fluctuation.(b) The SCDM model
at a=1.0 (z=0, =4 h™*Mpc,
strongly nonlinear regime (c)
The difference in the PDFs of
density fluctuations between the
N-body simulation and Lagrang-
ian approximations aa=0.1. (d)
Same agc), but ata=1.0.

consider whether or not that approximation is still valid. First, we compared these models using the cross-
From both the cross-correlation coefficient and PDF ofcorrelation coefficient of the density field between the

the density fluctuations, we can decide that it is reasonable tR-body simulation and Lagrangian approximations. In scale-
choosey="5/3 as the polytrope exponent of the equation offree spectrum cases, as well as in the previous analyses, the
state. However, it is hard to decide the proportionality pa-TzA shows a better performance than the ZA. In the pressure
rameterx. From the results in this paper, we cannot give amodel, the performance strongly depends on the polytrope
tight limit to «. To decide the value ot, we will analyze a exponenty and the Jeans wave number. In the caseyof
high-resolutiorN-body simulation or consider other physical =4/3, when we set that initial Jeans wave number to be

processes. For example, we will consider the effect of themga)| even in the linear regime the approximation deviates
anisotropic velocity dispersiof82] or the higher-order ve- from theN-body simulation. In the case gf=5/3, although

locity cumulant. the result slightly depends on the initial Jeans wave number,
the pressure model shows a better performance than the ZA
in the quasinonlinear regime. Furthermore, the pressure

We compared two statistical quantities between arimodel also shows better performance than the TZA. In the
N-body simulation and Lagrangian approximations. In ourSCDM and LCDM models, the case gf=4/3 shows devia-
earlier work[22,23, we solved the first-order perturbation tion from the ZA in the linear regime. On the other hand, the
equations in a homogeneous and isotropic background armhse ofy=5/3 shows that the cross-correlation coefficient
the second-order ones explicitly for the case4/3,5/3 inan  becomes almost the same in the linear regime. When the
Einstein—de Sitter universe. We showed that the differencenodel reaches a strongly nonlinear stage, although the La-
between the Lagrangian first-order and second-order amgrangian approximation generally becomes worse, the case
proximations becomes small in the caseyst4/3. There- of y=4/3 shows a rather good result. Of course, in this re-
fore, in this paper we considered only the first-order perturgime, it is necessary to consider whether that approximation
bative solution for the case=4/3,5/3. Then we carried out is still valid.

a similar calculation with the ZA and TZA to examine their ~ Second, we analyzed the PDF of the density fluctuations.
difference from the previous models. The case ofy=4/3 obviously shows a different tendency

IV. DISCUSSION AND CONCLUDING REMARKS

084020-8
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FIG. 9. The PDF of density
fluctuations in the LCDM model
1 (I=4 h~*Mpc). In the case of
v=4/3, the pressure effect sup-
presses the growth of density fluc-
3 4 tuations. Therefore the probability

5 s of a small fluctuation |5 <1) in-

creases.(a) At a=0.1 (z=9, |
(a) (b) =4 h™!Mpc, quasinonlinear re-
gime). The PDFs of density fluc-
tuations seem similar to each
other. (b) At a=1.0 (z=0, |
=4 h~Mpc, strongly nonlinear
regime. (c) The difference in the
PDFs of density fluctuations be-
tween theN-body simulation and
Lagrangian approximations &
=0.1. (d) Same ad(c), but ata
=1.0.
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until the quasinonlinear regime is reached: in this case, th€l0). In the case of the scale-free spectr@tk)=AKk", the
effect of pressure suppresses the growth of structure. Whetfefinition becomes

we also consider the probability distribution of the density,

we can see that it is not so good to chogse4/3 to examine ia(t)zAk”“: 1 (15)
the growth of structure, although the cross-correlation coef- n+1 NL '

ficients perform well. On the other hand, the case5/3 . o . )

shows good tendencies in the PDFs of the density fluctug=rom this definitionky, is written as

tions. Although the difference of the PDFs of the density Ko~ g 201+n) (16)
fluctuations between the ZA and the pressure model is still NL '
small in the quasinonlinear regime, the effect of the pressurg, example, when we choose-1, ky, becomes

can promote the evolution of nonlinear structure. The differ-

ence between the models of Lagrangian approximation be- 1

comes small when we calculate the evolution until the kNL’Vg- (17)
strongly nonlinear regime is reached. From analyses of the

cross-correlation coefficient of the density field and the PDFOn the other hand, the Jeans wave nunkogin the pressure
of the density fluctuations, we can decide that it is reasonablmodel is given from Eq(6). When we choosey=2, K
to choosey=5/3 as the polytrope exponent of the equationbecomes

of state.
In this paper, we changed some values of the Jeans wave K 1 18
numberK; and undertook the analysis. Are there any rela- VP (18)

tions between the nonlinear wave numlbgi in the TZA

and K;? The correspondence is as follows. For simplifica- There are some different points to consider when we think
tion, we consider the correspondence in the case of a scalabout the time evolution, although the relation seems to be as
free spectrumP(k)«k". According to the definition of the described above. First, in the TZk,, affects only the ini-
nonlinear wave number in the TZA,, is given from Eq. tial spectrum. On the other hanid; affects the evolution of

084020-9
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fluctuations. Second, althouddy, obviously depends on the deviate from Gaussian during the evolution. Of course, the
initial spectrum, we did not clarify the dependence on thepeculiar velocity distribution in aiN-body simulation be-
initial condition of K;. We think that a consideration of the comes non-Gaussiaf81]. Does the effect of the pressure
physical process, which was not considered here, or theause the occurrence of the non-Gaussian distribution? We
analysis of theN-body simulation, is necessary for a decisionthink that the time evolution of the peculiar velocity distri-
aboutK, i.e., k. We will have to think about the correspon- bution is one of the more interesting problems.
dence between the adhesion approximation and the pressureln our model, we introduce the strong simplification that
model. Bucheret al.[16] showed how the viscosity term in the velocity dispersion is approximately isotropic, i.e., the
the adhesion approximation is generated by a pressurelikgress tensor is diagonal and has a pressurelike f&6h
force. Domnguez[17,1§ discussed spatial coarse graining However, in general, the velocity dispersion does not remain
in a gravitating system and derived an evolution equation foisotropic in the nonlinear regime. Until when is the assump-
the adhesion approximation. We showed that the density digion to ignore anisotropic velocity dispersion reasonable?
tribution of the pressure model was similar to that of theMaartenset al. [32] discussed a relativistic kinetic theory
TZA in a previous papef23]. The acute characteristic skel- generalization which also incorporates an anisotropic veloc-
eton structure which appeared in the adhesion approximatioity dispersion. Then they added these effects to the linear
could not be seen from the calculations in our previous paeevelopment of density inhomogeneity and found exact so-
per. We will consider the relation between the viscosity termlutions for their evolution. In a Newtonian description, al-
in the coarse-grained equations and the pressure term in otlrough the equations are not generally closed, we will con-
model. Then we will analyze the correspondence betweenider an anisotropic velocity dispersion and the higher-order
the viscosity term in the adhesion approximation and thevelocity cumulant and estimate their effects on the evolution
proportionality constank in the equation of state in the pres- of density inhomogeneity.
sure model.
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