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Density field in extended Lagrangian perturbation theory
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We analyze the performance of a perturbation theory for nonlinear cosmological dynamics, based on the
Lagrangian description of hydrodynamics. In our previous paper, we solved the hydrodynamic equations for a
self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method. Then
we obtained the first-order solutions in generic background universes and the second-order solutions for a
wider range of polytrope exponents. Using these results, we describe density fields with a scale-free spectrum,
SCDM, and LCDM models. Then we analyze the cross-correlation coefficient of the density field between
N-body simulation and Lagrangian linear perturbation theory, and the probability distribution of the density
fluctuations. From our analyses, for scale-free spectrum models, the case of the polytrope exponent 5/3 shows
better performance than the Zel’dovich approximation and the truncated Zel’dovich approximation in the
quasinonlinear regime. On the other hand, for SCDM and LCDM models, the improvement by including the
effect of the velocity dispersion was small.

DOI: 10.1103/PhysRevD.69.084020 PACS number~s!: 04.25.Nx, 95.30.Lz, 98.65.Dx
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I. INTRODUCTION

The Lagrangian approximation for structure formation
cosmological fluids provides a relatively accurate mo
even in the quasilinear regime, where the density fluctua
becomes unity. The Zel’dovich approximation~ZA! @1–4#, a
linear Lagrangian approximation for a dust fluid, describ
the evolution of density fluctuation better than the Euler
approximation@5,6#. Although the ZA gives an accurate de
scription until a quasilinear regime develops, it cannot
scribe the model after the formation of caustics. In the Z
even after the formation of caustics, the fluid elements k
moving in the direction set up by the initial condition. Th
ZA cannot describe compact and high density structures s
as pancakes, skeletons, or clumps, whileN-body simulation
shows the presence of clumps with a very wide range
mass at any given time@7#. In general, after the formation o
caustics, the hydrodynamical description becomes invali

In order to proceed with a hydrodynamical descripti
without the formation of caustics, the qualitative press
gradient@8# and thermal velocity scatter@9,10# in a collision-
less medium have been discussed. After that, the ‘‘adhe
approximation’’@11# was proposed from the consideration
nonlinear wave equations like Burgers’ equation. In the
hesion approximation, an artificial viscosity term is added
the ZA. As another modification, a Gaussian cutoff is appl
to the initial power spectrum of the density fluctuation a
then evolves with the ZA. This modified approximation
called the ‘‘truncated Zel’dovich approximation’’~TZA!
@12,13#. These modified approximations successfully av
the formation of caustics and describe the evolution for lo
times. However, the physical origin of the modification h
not been clarified.

We reconsider the basic, fundamental equation for
motion of matter. The collisionless Boltzmann equation@14#
describes the motion of matter in phase space. The b
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equations of hydrodynamics are obtained by integrating
collisionless Boltzmann equation over velocity space. In p
approximations, such as the ZA and its modified versi
velocity dispersion was ignored. Buchert and Domı´nguez
@15# argued that the effect of velocity dispersion becom
important beyond the caustics. They also argued that mo
for large-scale structure should rather be constructed fo
flow which describes the average motion of a multistre
system. Then they showed that, when the velocity dispers
is still small and can be considered isotropic, that gives
fective ‘‘pressure’’ or viscosity terms. Furthermore, they a
gued the relation between mass densityr and pressureP,
i.e., an ‘‘equation of state.’’ If the relation between the de
sity of matter and pressure seems barotropic, the equatio
state should take the formP}r5/3. Buchert et al. @16#
showed how the viscosity term is generated by the effec
pressure of a fluid under the assumption that the pecu
acceleration is parallel to the peculiar velocity; Domı´nguez
@17,18# clarified that a hydrodynamic formulation is obtaine
via a spatial coarse graining in a many-body gravitating s
tem, and the viscosity term in the adhesion approximat
can be derived by the expansion of coarse-grained equat

Domı́nguez@19# also reported on a study of the spatial
coarse-grained velocity dispersion in cosmologicalN-body
simulations. The analysis showed that the polytrope ex
nent becomesg.5/3 in a quasinonlinear regime, andg.2
in a strongly nonlinear regime. Domı´nguez and Melott@20#
discussed the polytrope exponents of velocity dispersion
N-body simulations. According to their results, the expone
depend on the model of the initial density fluctuation.

From these points, the extension of Lagrangian pertur
tion theory to cosmological fluids with pressure has be
considered. Adler and Buchert@21# actually formulated the
Lagrangian perturbation theory for a barotropic fluid. Mor
and Tatekawa@22# and Tatekawaet al. @23# solved the La-
grangian perturbation equations for a polytropic fluid up
second order for cases where the equations are solved e
Hereafter, we call this model the ‘‘pressure model.’’
©2004 The American Physical Society20-1
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TAKAYUKI TATEKAWA PHYSICAL REVIEW D 69, 084020 ~2004!
In this paper, we analyze the density field which is d
scribed by the Lagrangian approximations; the ZA, TZA, a
first-order pressure model solutions. We calculate the cr
correlation function of the density field between the L
grangian approximation andN-body simulation. Further-
more, we analyze the probability distribution function of t
density fluctuations for confirmation. From these results,
determine the polytrope exponent in the equation of st
From our analyses of the cross-correlation coefficient
probability distribution function of the density fluctuation
we find that the value of the polytrope exponent seems to
5/3 for quasinonlinear evolution, as Buchert and Domı´nguez
argued@15#. However, for the determination of the propo
tional constant in the equation of state, we must cons
further physical processes or carry out a high-resolut
N-body simulation.

This paper is organized as follows. In Sec. II, we pres
Lagrangian perturbative solutions. In Sec. II A, we show
first-order solution of the pressure model in the Einstein–
Sitter background. For comparison, in Secs. II B and II C,
show the solution of the ZA and the procedure of the TZ

In Sec. III, we compare the density field between the L
grangian approximations andN-body simulation. In Sec
III A, we calculate the cross-correlation coefficient of th
density field. Although it seems that we can reach a con
sion in this analysis, it is insufficient. Therefore in Sec. III
we analyze the probability distribution function of the de
sity fluctuations. In Sec. IV, we discuss our results and s
conclusions.

II. LAGRANGIAN APPROXIMATIONS
IN GRAVITATIONAL INSTABILITY THEORY

A. First-order solutions of the pressure model

In this section, we present perturbative solutions in
Lagrangian description. The matter model we consider
self-gravitating fluid with mass densityr and ‘‘pressure’’P,
which is given by the presence of velocity dispersion. T
‘‘pressure’’ we adopt here is the same as was introduced
Buchert and Domı´nguez@15#, i.e., the diagonal componen
of the velocity dispersion tensor when the velocity dispers
is assumed to be isotropic in the Jeans equation@14#. In
Lagrangian hydrodynamics, the comoving coordinatesx of
the fluid elements are represented in terms of Lagrang
coordinatesq as

x5q1s~q,t !, ~1!

whereq are defined as initial values ofx, ands denotes the
Lagrangian displacement vector due to the presence of in
mogeneities. From the Jacobian of the coordinate trans
mation from x to q, J[det(]xi /]qj )5det(d i j 1]si /]qj ),
the mass density is given exactly as

r5rbJ
21. ~2!

We decomposes into the longitudinal and the transvers
modes ass5¹qS1ST with ¹q•ST50. In this paper, we show
the explicit form of the perturbative solutions only in th
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Einstein–de Sitter universe. For a generic background u
verse, we obtained the perturbation solutions in our previ
paper@23#.

The transverse modes can be solved easily. The first-o
solutions become as follows:

ST}a0,a21/2. ~3!

Because the solutions do not depend on ‘‘pressure,’’ the
lutions of this mode in the ZA become the same in form. T
transverse modes do not have a growing solution in a fi
order approximation.

For the longitudinal modes, we carry out a Fourier tran
formation with respect to the Lagrangian coordinatesq. If
we assume a polytropic equation of stateP5krg with a
constantk and a polytrope exponentg, we can write the
explicit form of the first-order perturbative solutions. In th
Einstein–de Sitter~EdS! background, the solutions are wri
ten in a relatively simple form. They are, forgÞ4/3,

Ŝ~K,a!}a21/4J65/(826g)SA2C2

C1

uKu
u423gu

a(423g)/2D ,

~4!

where Jn denotes the Bessel function of ordern, and for
g54/3

Ŝ~K,a!}a21/46A25/162C2uKu2/2C1, ~5!

where C1[4pGrb(ain)ain
3/3 and C2[kgrb(ain)

g21

3ain
3(g21) . rb and K are the background mass density a

Lagrangian wave number, respectively.ain is the scale factor
when the initial condition was given.

Here we notice the relation between the behaviors of
above solutions and the Jeans wave number, which is defi
as

KJ[S 4pGrba
2

dP/dr~rb!
D 1/2

.

The Jeans wave number, which gives a criterion for whet
a density perturbation with a wave number will grow or d
cay with oscillation, depends on time in general. If the po
tropic equation of stateP5krg is assumed,

KJ5A3C1

C2
a(3g24)/2. ~6!

Equation~6! implies that, if g,4/3, KJ will be decreased
and density perturbations with any scale will decay and d
appear in evolution, and ifg.4/3, all density perturbations
will grow to collapse. We rewrite the first-order solution E
~4! with the Jeans wave number:

Ŝ~K,a!}a21/4J65/(826g)S A6

u423gu
uKu
KJ

D . ~7!
0-2
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B. Zel’dovich approximation

The ZA was obtained as the first-order solution with
dust fluid in the Lagrangian description@1#. The solutions are
obtained from solutions of the pressure model at the limit
weak pressure. For example, in the EdS model, when
take the limitk→0 in Eqs.~4! and ~5!, the solutions con-
verge to those of the ZA:

Ŝ~K,a!}a,a23/2. ~8!

The ZA is a perturbative solution that describes the str
ture well on a quasilinear scale. However, if caustics app
the solutions no longer have physical meaning.

C. Truncated Zel’dovich approximation

During evolution, a small-scale structure contracts a
forms caustics. Therefore if we introduce some cutoff in
small scale, we will be able to avoid the formation of cau
tics @12,13#. In the TZA, to avoid caustics, we introduce
Gaussian cutoff to the initial density spectrum as follows

P~k,t in!→P~k,t in!exp~2k2/kNL!, ~9!

wherekNL is the ‘‘nonlinear wave number,’’ defined by

15a~ t !2E
k0

kNLP~k,t in!dk. ~10!

The nonlinear wave number depends on the scale factor.
relation between the Jeans wave numberKJ and the nonlin-
ear wave numberkNL will be discussed in Sec. IV.

III. COMPARISON BETWEEN N-BODY SIMULATION
AND LAGRANGIAN APPROXIMATIONS

In this section, we show a comparison betweenN-body
simulation and Lagrangian approximations with two statis
cal quantities. In our previous paper@23#, we showed that the
effect of second-order perturbation was still small just bef
shell crossing. Therefore we consider only first-order per
bations.

We analyze the ZA@1#, the TZA@12,13#, and the pressure
model @21–23#. We establish the value of the scale factor
z50 with a51. For the initial condition, we set the Gaus
ian density field with the scale-free spectrum:

P~k!}kn~n521,0,1! ~11!

the standard cold dark matter~SCDM! and the low-density
flat cold dark matter~LCDM! models!. The initial condition
was produced byCOSMICS @24#.

For N-body simulation, we execute theP3M code. The
parameters of the simulation were as follows: number of p
ticles N5643, N51283 ~Fig. 3 only!; box size L
564 h21 Mpc; softening length«50.05h21 Mpc; coarse-
graining length l 51,2,4 h21 Mpc; Hubble parameterh
50.71.

For CDM models, we choose the cosmological para
eters as follows:
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SCDM: Vm51.0, VL50.0, s850.84,

LCDM: Vm50.27, VL50.73, s850.84.

In the pressure model, we choose the polytrope expon
g54/3,5/3. In the case ofg54/3, we obtain the simples
perturbative solution given by Eq.~5!, which is described by
a power law of the time variable.g55/3 is obtained from
theoretical arguments by Buchert and Domı´nguez@15#. They
argued kinematic considerations using the collisionl
Boltzmann equation and derivedg55/3. The exponent is
equivalent to the adiabatic process of an ideal gas. Beca
we cannot decide on a proportionality constantk in the equa-
tion of state from past discussion, we choose several val
In this paper, instead ofk, we write an initial (a51023, i.e.,
z51000) Jeans wave number, given by Eq.~6!.

Here we show how we set up the initial condition in th
pressure model. We adjust the initial condition in the pr
sure model to be the same as that in the ZA: the ini
peculiar velocity in the pressure model is the same as tha
the ZA. The procedure for setting up the initial condition w
shown in our previous papers@22,23#.

A. Cross-correlation coefficient

First we calculate the cross-correlation coefficient of t
density fields. The cross-correlation coefficient was used
the comparison of the resulting density fields@12,13,25–28#.
The cross-correlation coefficient is defined by

S[ K d1d2

s1s2
L , ~12!

wheres i means the density dispersion of modeli,

s i[A^d i
2&. ~13!

S51 means that the patterns of the density fields of the
models coincide with each other. In the linear regime,
density dispersion remainss!1. Although we develop the
structure until it becomes strongly nonlinear (sN body.1),
we analyze it particularly in the quasinonlinear regim
(sN body.1).

Figures 1–6 show a comparison ofN-body density fields
with those predicted by various Lagrangian approximatio
First, we notice the cases with a scale-free spectrum~Figs.
1–3!. As in the past analyses, the TZA shows better perf
mance than the ZA. Our analyses also show a similar t
dency, i.e., our analyses do not contradict past analyses

In the pressure model, the performance strongly depe
on the polytrope exponentg and the Jeans wave number.
the case ofg54/3, when we set the initial Jeans wave num
ber to be small, even if in the linear regime, the approxim
tion deviates from anN-body simulation. Only for the case
of KJ564 does the approximation show better performan
than the ZA in the quasinonlinear regime. We notice that
result strongly depends on the Jeans wave number in the
of g54/3: When we slightly change the value of the Jea
wave number, the cross-correlation coefficient changes
matically. In the case ofg55/3, although the result depend
slightly on the initial Jeans wave number, the pressure mo
shows a better performance than the ZA in the quasinon
0-3
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FIG. 1. The cross-correlation
coefficient of density fields be-
tween theN-body simulation and
Lagrangian approximations. Th
primordial density fluctuation is
given by the scale-free spec
trum P(k)}k1 (N5643,l 51 h21

Mpc). ~a! When we chooseg
54/3, the function deviates from
that of the ZA in the linear regime
~b! In the case ofg55/3, we can
obtain a better result than by usin
the TZA.
s
on
v
ize
g
te
, t
c
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d

ZA
in

f in
we
t

ear regime. Furthermore, the pressure model also show
better performance than the TZA. However, when we c
sider scale-free spectrum models, the model does not ha
typical physical scale: the model has only box size, grid s
and softening length. The trend of the result was unchan
when we changed the box size of the model and the sof
ing parameter. When we changed the number of particles
result changed. From a comparison of Figs. 1 and 3, we
see that the results depend on the ratio of grid size and in
Jeans wave number. In our calculation, we found that it w
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good to set up the value ofk so that the initial (z51000)
Jeans wave numberKJ wasN1/3/4<KJ<N1/3. For example,
in the case ofN5643, as we see in Figs. 1 and 2, it is goo
to choose the initial Jeans wave number 16<KJ<64.

Next we consider SCDM and LCDM models~Figs. 4–6!.
In these models, the difference between the ZA and T
becomes very small. Because the initial density spectrum
the CDM models dumps power in the small scale, a cutof
the spectrum weakly affects the formation of caustics, as
saw in the case ofP(k)}k21. From Fig. 4, we can see tha
e
.

FIG. 2. The cross-correlation
coefficient of density fields be-
tween theN-body simulation and
Lagrangian approximations (N
5643,l 51 h21 Mpc, scale-free
spectrum model!. ~a! P(k)}k0,
the case ofg54/3. ~b! P(k)}k0,
the case of g55/3. ~c! P(k)
}k21. In this model, the differ-
ence in the coefficient between th
ZA and the TZA becomes small
The case ofg54/3. ~d! P(k)
}k21, the case ofg55/3.
0-4
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DENSITY FIELD IN EXTENDED LAGRANGIAN . . . PHYSICAL REVIEW D69, 084020 ~2004!
the effect of pressure improves the approximation in the q
sinonlinear stage. Also, in both the SCDM and LCDM mo
els, the case ofg54/3 shows a deviation from the ZA in th
linear regime. On the other hand, the case ofg55/3 shows

FIG. 3. The cross-correlation coefficient of density fields b
tweenN-body simulation and Lagrangian approximations. The p
mordial density fluctuation is given by the scale-free spectr
P(k)}k1 (N51283,l 51 h21 Mpc). From comparison betwee
Fig. 1 and this graph, we can see that the results depend on the
of the grid size and initial Jeans wave number.
08402
a-
-

that the cross-correlation coefficient becomes almost
same in the linear regime. In the case ofg54/3, when we
choose a small initial Jeans wave number~for example,KJ

516), although we can improve the approximation mu
more in the quasinonlinear stage than at large Jeans w
number (KJ532,64), the approximation changes slightly f
the worse in the linear stage. On the other hand, when
chooseg55/3, although the effect seems small, we can o
tain an improved solution both in the linear and in the qua
nonlinear stages.

When the model evolves to the strongly nonlinear regim
the trend of the solutions change. In the linear stage, the
of g54/3 shows deviation from the ZA. However, in th
strongly nonlinear regime, although the Lagrangian appro
mation generally becomes worse, the case ofg54/3 shows a
rather good result@Figs. 4~a! and 4~c!#. This tendency was
unchanged even when the coarse-graining length
changed~Figs. 5 and 6!.

In both the SCDM and LCDM models, when we choose
small initial Jeans wave numberKJ , although the approxi-
mation is improved after the quasinonlinear stage, the r
sonable range of Jeans wave numbers seems wide. The
limitation on the value ofk or the initial Jeans wave numbe
will be given by other physical considerations or by a hig
resolutionN-body simulation.

From these results, we find that it is reasonable to cho
the polytrope exponentg55/3 until the quasinonlinear re

-
-

tio
e

-
h.
FIG. 4. The cross-correlation
coefficient of density fields be-
tween anN-body simulation and
Lagrangian approximations. Th
primordial density fluctuation is
given by the CDM spectrum (N
5643,l 51 h21 Mpc). Models in
which hardly any difference ap
pears are excluded from the grap
~a! The SCDM model with g
54/3. ~b! The SCDM model with
g55/3. ~c! The LCDM model
with g54/3. ~d! The LCDM
model withg55/3.
0-5



e

TAKAYUKI TATEKAWA PHYSICAL REVIEW D 69, 084020 ~2004!
FIG. 5. The same as Fig. 4. In
these figures, we changed th
coarse-graining length to l
52 h21 Mpc. ~a! The SCDM
model with g54/3. ~b! The
SCDM model with g55/3. ~c!
The LCDM model with g54/3.
~d! The LCDM model with g
55/3.
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gime is reached. These results support the suggestion
Buchert and Domı´nguez@15# and by Domı´nguez@19#. If we
have interest in the strongly nonlinear regime, although
Lagrangian approximation generally becomes worse, we
better analyze the case ofg54/3. In this regime, it is nec-
essary to consider whether that approximation will still
valid. In any case, from the cross-correlation coefficient,
can put limitations on the polytrope exponentg.

Unfortunately, in these results, we cannot give a st
limit to the proportionality coefficientk of the equation of
state. When we chooseg54/3, we show that the resu
strongly depends onk, and we can see a strict limitation
However, when we chooseg55/3, we can hardly judge the
best value fork. In our calculation, we found that it wa
good to set up the initial (a51023, i.e., z51000) Jeans
wave numberKJ as N1/3/4<KJ<N1/3. From the range of
KJ , we can obtain a reasonable value fork. If we choose a
large value fork, it becomes hard to form a nonlinear stru
ture. On the other hand, if we choose a small value fork, the
structure becomes almost the same as the structure tha
obtained by the ZA.

Although the cross-correlation coefficient is one thi
which is good for checking the accuracy of the approxim
tion, it is not enough. Now we consider two samplesA and
B. The density contrast of the samples is given bydA and
dB , respectively. We assume that the following proportio
ality relation exists betweendA anddB :
08402
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dA}dB . ~14!

Even if the density contrast is greatly different, as given
dA anddB , and one shows a highly nonlinear structure a
the other remains in the linear regime, the cross-correla
coefficient betweendA anddB becomes 1.

Therefore, we must check the accuracy of the approxim
tion using another property. In the next subsection, we a
lyze the probability distribution function of the density fluc
tuations.

B. Probability distribution function of density fluctuation

Here, we compare the probability distribution functio
~PDF! of the density fluctuations. In the Eulerian linear a
proximation, if initial data are given by a random Gaussi
distribution, the PDF of density fluctuations will retain i
Gaussianity during evolution. On the other hand, in the L
grangian approximation, a nonlinear effect appears. In f
Kofmanet al. @29# show that the PDF of the density fluctua
tions approaches a log-normal function rather than a Ga
ian function in the cases of the Lagrangian approximat
andN-body simulation. Padmanabhan and Subramanian@30#
also discussed the PDF of density fluctuations with the
and found a non-Gaussian distribution.

How will the PDF of the density fluctuations change if w
take the effect of the velocity dispersion into consideratio
0-6
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FIG. 6. The same as Fig. 4. In
these figures, we changed th
coarse-graining length to l
54 h21 Mpc. ~a! The SCDM
model with g54/3. ~b! The
SCDM model with g55/3. ~c!
The LCDM model with g54/3.
~d! The LCDM model with g
55/3.
ua
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Figures 7, 8, and 9 show the PDFs of the density fluct
tions. As in past work, the PDF of the density fluctuatio
becomes log-normal in form in theN-body simulation. In
Figs. 7, 8, and 9, the cases ofg54/3 obviously show a
different tendency: in these cases, the effect of pressure
presses the growth of positive fluctuations@Figs. 7~b!, 8~c!,
8~d!, 9~c!, and 9~d!#. When we also consider the PDF o
density fluctuations, we can see that it is not so good
chooseg54/3 to examine the growth of structure, althou
the cross-correlation coefficients show the trend well. On
08402
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other hand, the case ofg55/3 well shows the trend in the
PDF of the density fluctuations. Although the difference
distribution between the ZA and the pressure model is s
small in the quasinonlinear regime, the effect of the press
can promote the evolution of nonlinear structure. Theref
the probability of low- and high-density regions increases
the case ofg55/3. Furthermore, according to Fig. 8~c!, the
PDFs of density fluctuations in the cases ofg55/3 show that
it is much better than the result in the TZA case. Of cou
when we reach a strongly nonlinear regime, it is necessar
-

e

n

e

FIG. 7. The PDF of density
fluctuation for a scale-free spec
trum (P(k)}k, l 51 h21 Mpc:
sN body.1 at a51.0.!. ~a! The
PDF of density fluctuation. In the
case ofg54/3, the effect of pres-
sure suppresses the growth of th
fluctuation. ~b! The difference in
the PDF of density fluctuation. In
this figure, the difference betwee
the case ofg54/3 and other cases
becomes clear. When we choos
KJ532 for the case ofg54/3,
more greater difference appears.
0-7
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FIG. 8. The PDF of density
fluctuations in the SCDM mode
( l 54 h21 Mpc). In the case of
g54/3, the pressure effect sup
presses the growth of density fluc
tuations. Therefore the probability
of a small fluctuation (udu,1) in-
creases.~a! The SCDM model at
a50.1 (z59, l 54 h21 Mpc,
quasinonlinear regime!. In the
case ofg54/3, the effect of pres-
sure suppresses the growth of th
fluctuation.~b! The SCDM model
at a51.0 (z50, l 54 h21 Mpc,
strongly nonlinear regime!. ~c!
The difference in the PDFs o
density fluctuations between th
N-body simulation and Lagrang
ian approximations ata50.1. ~d!
Same as~c!, but ata51.0.
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consider whether or not that approximation is still valid.
From both the cross-correlation coefficient and PDF

the density fluctuations, we can decide that it is reasonab
chooseg55/3 as the polytrope exponent of the equation
state. However, it is hard to decide the proportionality p
rameterk. From the results in this paper, we cannot give
tight limit to k. To decide the value ofk, we will analyze a
high-resolutionN-body simulation or consider other physic
processes. For example, we will consider the effect of
anisotropic velocity dispersion@32# or the higher-order ve-
locity cumulant.

IV. DISCUSSION AND CONCLUDING REMARKS

We compared two statistical quantities between
N-body simulation and Lagrangian approximations. In o
earlier work @22,23#, we solved the first-order perturbatio
equations in a homogeneous and isotropic background
the second-order ones explicitly for the caseg54/3,5/3 in an
Einstein–de Sitter universe. We showed that the differe
between the Lagrangian first-order and second-order
proximations becomes small in the case ofg>4/3. There-
fore, in this paper we considered only the first-order per
bative solution for the caseg54/3,5/3. Then we carried ou
a similar calculation with the ZA and TZA to examine the
difference from the previous models.
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First, we compared these models using the cro
correlation coefficient of the density field between t
N-body simulation and Lagrangian approximations. In sca
free spectrum cases, as well as in the previous analyses
TZA shows a better performance than the ZA. In the press
model, the performance strongly depends on the polytr
exponentg and the Jeans wave number. In the case og
54/3, when we set that initial Jeans wave number to
small, even in the linear regime the approximation devia
from theN-body simulation. In the case ofg55/3, although
the result slightly depends on the initial Jeans wave num
the pressure model shows a better performance than the
in the quasinonlinear regime. Furthermore, the press
model also shows better performance than the TZA. In
SCDM and LCDM models, the case ofg54/3 shows devia-
tion from the ZA in the linear regime. On the other hand, t
case ofg55/3 shows that the cross-correlation coefficie
becomes almost the same in the linear regime. When
model reaches a strongly nonlinear stage, although the
grangian approximation generally becomes worse, the c
of g54/3 shows a rather good result. Of course, in this
gime, it is necessary to consider whether that approxima
is still valid.

Second, we analyzed the PDF of the density fluctuatio
The case ofg54/3 obviously shows a different tendenc
0-8
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FIG. 9. The PDF of density
fluctuations in the LCDM model
( l 54 h21 Mpc). In the case of
g54/3, the pressure effect sup
presses the growth of density fluc
tuations. Therefore the probability
of a small fluctuation (udu,1) in-
creases.~a! At a50.1 (z59, l
54 h21 Mpc, quasinonlinear re-
gime!. The PDFs of density fluc-
tuations seem similar to eac
other. ~b! At a51.0 (z50, l
54 h21 Mpc, strongly nonlinear
regime!. ~c! The difference in the
PDFs of density fluctuations be
tween theN-body simulation and
Lagrangian approximations ata
50.1. ~d! Same as~c!, but at a
51.0.
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until the quasinonlinear regime is reached: in this case,
effect of pressure suppresses the growth of structure. W
we also consider the probability distribution of the dens
we can see that it is not so good to chooseg54/3 to examine
the growth of structure, although the cross-correlation co
ficients perform well. On the other hand, the caseg55/3
shows good tendencies in the PDFs of the density fluc
tions. Although the difference of the PDFs of the dens
fluctuations between the ZA and the pressure model is
small in the quasinonlinear regime, the effect of the press
can promote the evolution of nonlinear structure. The diff
ence between the models of Lagrangian approximation
comes small when we calculate the evolution until t
strongly nonlinear regime is reached. From analyses of
cross-correlation coefficient of the density field and the P
of the density fluctuations, we can decide that it is reasona
to chooseg55/3 as the polytrope exponent of the equati
of state.

In this paper, we changed some values of the Jeans w
numberKJ and undertook the analysis. Are there any re
tions between the nonlinear wave numberkNL in the TZA
and KJ? The correspondence is as follows. For simplific
tion, we consider the correspondence in the case of a sc
free spectrumP(k)}kn. According to the definition of the
nonlinear wave number in the TZA,kNL is given from Eq.
08402
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~10!. In the case of the scale-free spectrumP(k)5Akn, the
definition becomes

1

n11
a~ t !2AkNL

n1151. ~15!

From this definition,kNL is written as

kNL;a22/(11n). ~16!

For example, when we choosen51, kNL becomes

kNL;
1

a
. ~17!

On the other hand, the Jeans wave numberKJ in the pressure
model is given from Eq.~6!. When we chooseg52, KJ
becomes

KJ;
1

a
. ~18!

There are some different points to consider when we th
about the time evolution, although the relation seems to b
described above. First, in the TZA,kNL affects only the ini-
tial spectrum. On the other hand,KJ affects the evolution of
0-9
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fluctuations. Second, althoughkNL obviously depends on th
initial spectrum, we did not clarify the dependence on
initial condition of KJ . We think that a consideration of th
physical process, which was not considered here, or
analysis of theN-body simulation, is necessary for a decisi
aboutKJ , i.e.,k. We will have to think about the correspon
dence between the adhesion approximation and the pres
model. Buchertet al. @16# showed how the viscosity term i
the adhesion approximation is generated by a pressure
force. Domı´nguez@17,18# discussed spatial coarse grainin
in a gravitating system and derived an evolution equation
the adhesion approximation. We showed that the density
tribution of the pressure model was similar to that of t
TZA in a previous paper@23#. The acute characteristic ske
eton structure which appeared in the adhesion approxima
could not be seen from the calculations in our previous
per. We will consider the relation between the viscosity te
in the coarse-grained equations and the pressure term in
model. Then we will analyze the correspondence betw
the viscosity term in the adhesion approximation and
proportionality constantk in the equation of state in the pre
sure model.

In this paper, we analyzed only the density distributio
How will the peculiar velocity distribution change with th
effect of ‘‘pressure’’? In the ZA, the peculiar velocity is i
proportion to the Lagrangian displacement. Then the gro
rate of perturbations is independent of scale. Therefore
though the structure reaches the nonlinear regime, if the
tial condition is given as Gaussian, the peculiar velocity d
tribution remains Gaussian all the time@29#. However, in the
pressure model, the growth rate of the perturbation depe
on the scale. Therefore the peculiar velocity distribution w
d,

s-

R

s-

R
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deviate from Gaussian during the evolution. Of course,
peculiar velocity distribution in anN-body simulation be-
comes non-Gaussian@31#. Does the effect of the pressur
cause the occurrence of the non-Gaussian distribution?
think that the time evolution of the peculiar velocity distr
bution is one of the more interesting problems.

In our model, we introduce the strong simplification th
the velocity dispersion is approximately isotropic, i.e., t
stress tensor is diagonal and has a pressurelike term@16#.
However, in general, the velocity dispersion does not rem
isotropic in the nonlinear regime. Until when is the assum
tion to ignore anisotropic velocity dispersion reasonab
Maartenset al. @32# discussed a relativistic kinetic theor
generalization which also incorporates an anisotropic ve
ity dispersion. Then they added these effects to the lin
development of density inhomogeneity and found exact
lutions for their evolution. In a Newtonian description, a
though the equations are not generally closed, we will c
sider an anisotropic velocity dispersion and the higher-or
velocity cumulant and estimate their effects on the evolut
of density inhomogeneity.
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