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The backward wave with respect to the propagation component along the mag­

netic field is observed in a Maxwellian plasma, which can be explained consist­

ently by the dispersion relation of the Bernstein wave. When an electron beam 

which is more intense than the threshold value is injected into the plasma, are 

observed a strongly excited wave whose frequency spectrum is very sharp (its 

normalized frequency width between half-power points Jw/ w is about one percent). 

From the comparison with the measurement of the amplification factor, it is 

shown that this spontaneously excited wave cannot be considered to be a mani­

festation of the thermal noise amplified due to the convective instability but 

self-oscillation due to the absolute instability. Moreover, the dependencies of this 

excitation of the wave on the plasma electron temperature Te and the electron 

beam parameters (its density nb and velocity Vb) are investigated in detail, the 

results of which are consistently explained by the theoretical consideration. 

1. Introduction 

In a recent few years, the instabilities of plasma wave in non-equilibrium plasmas 
(for example, bi-Maxwellian plasma and beam-plasma system) have been investigated 

with great interest, because of not only a physical significance of its study but also 

its development into nonlinear wave phenomenon and turbulent plasma heating effect. 

The instabilities are divided into two species; one of them is the convective instability 

which is concerned with a forward wave and the other is the absolute one which is 

concerned with a backward waveY 

The former has been studied already by many authors for various plasma waves 

(ion sound wave, electron plasma wave, electron Bernstein wave and so on) both 

theoretically and experimentally. However, the latter has been fully done theoreti­

callyl) but not yet experimentally except a few instances. 2) ,3) On the other hand, 

the parametrically excited absolute instability is investigated from the viewpoint of 
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the plasma heating by using the electromagnetic field of a high power laser.4) There­

fore, a study of the latter instability will be enhanced in the near future. 

For an example, both instabilities are expected to occur in an electron beam-plasma 

system for the Bernstein wave, which appears as forward and/or backward waves 

dependently on the plasma parameters (the plasma density np, the electron tempera­

ture Te and the electron cyclotron frequency We). As described in our previous 

paperS) (refered as I hereafter), the former instability occurs as the result of the 

amplification of a forward Bernstein wave in the system, while the phenomenon is 

never observed in a region of plasma parameters where a backward Bernstein wave 

is observed by the propagation experiment of the wave. 

In this paper, we report that the self-oscillation is observed as a sharp frequency 

spectrum in the plasma parameter region described above and can be explained 

consistently as the results of the absolute instability of a backward Bernstein wave 

due to injection of an electron beam. In next section, the experimental apparatus 

and procedures are explained. In 33, the experimental results and discussions are 

described and in final section, the conclusions of the paper are noted in brief. 

2. Experimental Apparatus and Procedures 

An apparatus used here is the same as that used in our previous experiment about 

the convective instability of Bernstein wave reported in 1. Let' s describe about both 
experimental apparatus and procedures in brief, because they have been explained 

in detail in I. 

In order to study . instabilities of waves in an electron beam-plasma system, the 

characteristics of the wave in a quiet plas-

ma in thermal equilibrium must be exam­

ined and then, the behavior of them must 

be done in a beam-plasma system. There­

fore, we set up the apparatus as shown 

in Fig. 1, in which a plasma and an elec­

tron beam are generated independently, so 

that the parameters of them can be var­

ied independently. It is consisted of three 

regions, i. e., the dc discharge region, the 

plasma diffused region (or the region of 

beam-plasma system) and the beam-gene-

rated region. Ar gas is fed into the dis­

charge region and, by using the method of 

differential pumping, the three regions 

denoted above are maintained at 1-- 2 x 

10-2 torr, 3 -- 7 X 10-4 and 0.8 -- 1 x 10-4 

~1 di$tharge region ..... beam piasm& system ...... beam ge~rated reogion 

~ .... 
~ 200 
~ 

~ 

Fig. 1. The experimental apparatus and 
the distribution of a magnetic 
field intensity. 
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Fig . 2. The dispersion relation surfaces in w-k spaces and wi-k 
ones, calculated by using eq. (1). 
(a) wpZjwcz=4, (b) wpZjwcz=9 and (c) wpZjwcz=lS. Hatched 
regions show the existing of the backward Bernstein wave. 
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torr, respectively. The plasma is produced by a dc discharge and diffused through 

an orifice and a hole at the center of an anode into the plasma diffused region along 

the external magnetic field, which. is applied paralell to the axis of apparatus and 

whose intensity distribution is shown in Fig. 1. The field is uniform within 3 percent 

in tre region and its strength is 60 gauss, which is corresponding to cvc/2n=168 MHz. 

The plasma is supported by the field near the axis of glass tube (95 mm in diameter 

and 700 mm in length), and its density profile in radial direction is shown in Fig. 3 

in I, that in axial direction being approximately uniform. When the discharge current 

ld is varied from 2 to 23 rnA, the plasma density np is varied from 8 x 108 to 9 X 

109 cm-3 but the electron temperature Te is constant at about 6 -10 eV in the region. 

An electron beam is produced by the Pierce gun in the beam-generated region, and 

injected into the plasma-diffused region through a hole of 15 mm in diameter. When 

the accerelation voltage Vb of the beam is changed from 50 to 500 V, the current of 

the beam Ib changes from 0.18 to 3.1 mA, under normal operation. (The perveance 

of the gun being about 5 x 10-7 A V-3 12.) The electron density of the beam nb is varied 

from 1.5x108 to 4.5x108 cm-a, but the temperature Tb of the beam is constant at 

about 0.3 eVe When nb (cxIb/ v'Vb) and Vb 

must be varied independently, the heater 

current of electron gun is controled, so 

that the perveance is adjusted at the sui­

table value. 

In order to excite and receive the wave, 

three coaxial probes are inserted in the 

plasma diffused region, one of them being 

movable radially and the others being 

mova~le axially. The signal of the waves 

excited by a probe is detected using an­

other probe and its propagation pattern is 

measured and recorded by the interfero­

meter system. The delay line is used in 

order to determine the direction of the 

wave propagation. From the recorded 

wave patterns, the wave number and 

damping rate (or growth rate) are deter- 0 --.......... -----...... i...-____ ----J 

mined. When an intense electron beam 

is injected and the wave is excited sponta­

neously, the self-correlation is measured 

by using the two probes of them. The 

excited and/or received frequency is var-

2 
Frequency 

.Fig.3. The regions in np-w space where 
the backward waves exist, with 
kl Vt jwc as a parameter. 

3 

ied from 168 MHz to 500 MHz. When the intensity of received Signal is determined, 

it is compared with and equalized to that of the impulse generator by inserting a 
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known value of attenuation in the transmission line from the plasma to the receiving 

system. 

3. Experimental Results and Discussions 

3.1 Observation of a backward wave with respect to the propagation component 

along the field and a theoretical consideration using the dispersion relation 

In our previous paperS) denoted by I, it is described that the forward and/or back­

ward waves with respect to the propagation component along the field can appear in 

a thermal equilibrium plasma and the convective instability is observed for the 

former wave when an electron beam is injected. While, for the latter wave, the 

absolute instability may be expected to occur by injection of so intense electron 

beam that the growth factor of the wave does get over the damping one. It is the 

main subject in this paper. 

In Fig. 4 (a) of the paper I, a feature of 

a backward wave propagation is shown, 

which is confined in an inner region for 

the upper hybrid layer (cop2=C0 2-COe2, where 

COp is the plasma frequency) and can pro­

pagate obliquely to the field because of 

the rather small damping along the field 

by satisfying the condition of I co - ncoe I :> 
k II Vt for all integers n, where k II and Vt 

is the wa~e. number component along the 

field and the thermal velocity of plasma 

electrons. The result is explained consis­

tently by using the dispersion relation sur­

face of the wave,. as shown in Fig. 6 (a) 

of l. 

As a diameter of plasma is much larger 

than a wave length as shown in Fig. 4 (a) 

of 1, the plasma may be considered to be 

infinete -for the wave, so that we can use 

a well-known dispersion relation, 

K(co.kll ,k-L)= 1 +k~;:2[ 1 + 

2 3 
Freque-ncy w/wc 

Fig. 4. The distribution of the sponta­
neously excited wave intensity. 
Solid curves show the equi-power 
lines and a hatched region does 
that where the backward wave 
exists. Vb;::250V and. h=3.1mA. 

00 

:E exp( """7 A)InO) 
n=-OC> 

co 

'1/2 kllVt 
z ( co-nllJe )J- 0 

v' 2kilVt - , 
... ······(1) 

where A=Ck vtl COe)2, In is the Bessel function of second kind, Z is the plasma disper­

sion function and k is the wave number component across the field. This equation 

can be calculated for various plasma parameter lIJp2/COe2, assuming that a frequency 

is complex co+ icoi and a wave number is real k. Several results of the calculations 
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are shown in Fig. 2. Hatched regions in figures show those where backward waves 

with respect to the propagation component along the field (ow/ok il • k II <0) can exist. 

In these regions, kil Vt/wc is much smaller than unit. Therefore, if w/wc is nearly 

equal to half integer, the condition I w - nwc 1)- k d Vt is satisfied for all integers n 

and the damping rate Wi of the wave is sufficiently small, which suggests that the 

absolute instability can occur due to the injection of an intense electron be~m. 

From many results of calculations of eq. (1) for various plasma parameters, we can 

obtain the regions in the parameter space (np-w space) where the backward wave 

can exist, as shown in Fig. 3. The absolute instability can be expected in these 

regions. 

3.2 Spontaneous excitation of the wave with the anomalously sharp frequency 

spectrum by injection of the intense electron beam 

As described in I, when a rather intense electron beam is injected, spontaneous 

excitation of Bernstein waves are observed to occur and explained as a manifestation 

of the thermal noise of plasma amplified due to the convective instability of the 

wave, from comparison of the power distribution with the distribution of amplifica­

tion factor determined from the wave propagation experiment. Injecting more intense 

electron beam, the excited power does not only increase extremely, but the excita­
tion of a wave with anomalously sharp frequency spectrum is observed, whose 

normalized frequency width Jw/w is about one percent. Its feature is shown in pa-

rameter space 'np - w space) (in Fig. 4), 

where solid curves show the equi-power 

lines and a sharp spectrum excitation 

described above is seen in the region 

denoted by 'A'. This spontaneous excitation 

does never appear in the case of more 

weak electron beam as shown in Fig. 13 

of I and does appear suddenly when 

the electron beam intensity gets over a 

certain threshold value, whose feature is 

quite different from that shown in I. The 

hatched region in Fig. 4 does show that 

where the backward waves along the 

field are observed in the experiment of 

wave propagation (as shown in Fig. 4 (a) 

of I). 

On the other hand, under the same ex­

perimental condition as the case of Fig. 4, 

20 
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0'~----------~2~--------~'~3 
Frequency W/Wc 

Fig. 5. The distribution of the amplifi­
cation factor. Solid curves show 
the equi-amplification-factor 
lines. Vb = 250V and Ib = 3 .1mA. 
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the amplification factor k II i is measured, by exciting the wave at the position near 

the beam inlet where a spontaneous excitation does not occur and recording the 

wave .. pattern propagating along the axis using. the interferometer system. The result 

of which is shown in -Fig. 5, where solid Curves show the equi-amplification-factor 

lines. Comparing the figure with Fig. 4, -the excited wave with broad frequency spec­

tru.m are explained -as a manifestation of thermal noise amplified due to the convec:. 

tive instability as described in I but the wave with sharp spectrum denoted by cA' 

can not be explained. These behaviours of the latter excitation of the wave suggest 

strongly that it is the self-oscillation due to the absolute instability of the backward 

Bernstein wave. 

3.3 Dependency of the sharp spectrum excitation on the plasma and beam parameters 

As described in 3.1 of this paper, the backward wave which enhances the absolute 

instability can only appear, when a parameter k II Vt/ We is smaller than a certain 

threshold value. On the other hand, from the observation of the self-correlation of 

the excited wave, it is known that the wave satisfies the Cherenkov excitation condi­

tion, i. e., k II Vb ~ w. Therefore, under the constant beam velocity Vb, the electron 

temperature Te must be smaller than a threshold value, while under the constant 

T e, Vb must be larger than a threshold value, fn order to excite the absolute instabil­

ity which COncerns with the backward wave. Moreover, though the backward waves 

may exist, the absolute instability can not occur, when the growth factor of them 

does not get over the damping factor, so that the beam density nb must be larger 

than the threshold value in order to excite the instability. 

20 

] 
:2 

15 
C 

~ 
u 

~10 

~ 
.!!I 
o 

5 

(a) 

Vb: 200 V 
Ib: 2.7 rnA 
p: 7.1 X 104

Torr 

Tu7.6f1N 

5 

°1~----------2~--------~ o~--------~------__ ~ 1 3 
Frequency W [we 

Fig. 6. The dependency of the appearence of a sharp frequency 
spectrum wave on the plasma electron temperature. 
(a) The wave appears for Te=7.6 eV which is smaller than 
the threshold value Teo=8.5 eV. (b) It does not appear 
for T e =11.7 eV. Vb=200 V and b=2.7 rnA. 
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From the viewpoint to verify the above consideration experimentally, the depend­

ency of appearence of the sharp spectrum excitation with the parameters T e, Vb and 

..Db is investigated in detail. At first, under the constant beam parameters Vb and nb, 

the dependency on T e is studied, the result of which is shown in Fig. 6. It is seen 

in the figure that the excitation does appear when T e is smaller than the threshold 

value Teo= 8.5 eV which is calculated frJm the dispersion relation shown in Fig. 7, 

while it does not when T e is larger than the threshold value. 

Next, under the constant value of T e, the dependency on Vb and nb is studied in 

detail, a few results of which are shown in Fig. 8. From comparison of Fig. 8 (a) 

with Fig. 8 (b), it is known that Vb must be larger than the threshold value, in order 

to obtain the excitation, while from comparison of Fig. 8 (a) with Fig. 8 (c), when nb 

is larger than the threshold value, the excitation is observed. The similar experi­

ments are done for various parameters nb and Vb under constant plasma parameters 

T e and np, the result of which is shown in Fig.9, where the circles show the appear­

ance of the excitatbn and the dark circles show the disappearence of it. The thresh­

old for the appearence of the excitation in parameter space (n"-v,, space) is consid­

ered in the next paragraph. 

>­u ·c 
~ 2.5 
CT 
CI.I 
~ 

LL 

1 
0.1 3 

0.05 g' 
'0. 
E 
~ 

2.0L.-_--'--'--1....o:::::t;.....L.--L. __ --J1..-__ ....L--__ ---'-_----' 0 
o 0.2 0.4 0.6 0.8 1.0 

Parallel component of wave number kllv t /W c 

Fig. 7. The dispersion relation for k..L Vt/We = 0.2 determined from 
the radial standing wavelength. Solid lines show beam dis· 
persion relations for· the various values of electron beam 
energy, when Te=6eV. Broken line shows the damping rate 
Wi/We. 
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(c) 

Vb =250 V 

nb= 3.4xl07 cm-3 

O~------------~------------~ 
1 2 

Frequency W /we 

Fig. 8. The dependency of the appear­
ance of a sharp spectrum wave 
on electron beam parameters V I> 

and h . 
(a) The wave appears for Vb= 
250 eV and h= 1.6 rnA. 
(b) lt does not appear for Vb = 
100 eV and 11>=l.1 rnA. 
Cc) It does not appear for Vb= 
250 eV and lb=O.S rnA. 

3 

3.4 The consideration for a threshold value of nil and Vb 

Let's consider the threshold value in the parameter space (Db-Vb space) for occur­

ence of' the anomalous excitation of the wave, which is considered to be the results 

of an absolute instability of the backward Bernstein wave. For the plasma density 
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of our plasma (Wp2/we2=6), the dispersion 

relation of the wave is shown in Fig. 7, 

where k Vt/wc=0.2 cm- l is determined from 

an observation of the radial standing wave­

length A /2=0.9 cm. As the wave excitation 

is the Cher enkov type one as described 

above, the absolute instability can not occur 

for·a beam energy smaller than Vbo= 120 

ey, which corresponds to the bea~ velocity 

vb=6.4x 108cm/sec and is shown by a dotted 

curve in Fig. 9. The instability is expected 

to occur for a beam energy larger than V"o 

E 
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r--r- + + t ' III 
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I 

300 
aIPam yolta~ Vb ( voll ) 

Fig. 9. The region in nb-V b space where 
the excitations are observed. 

because a line of space charge wave of the beam intersects the dispersion relation 

line of plasma in the region of backward wave. If the growth rate gets over the 

damping rate in this case, the instability must occur practically. The condition is 

described as follows,2' 

3~ 3 (_~_ r/3 
B1/3> D, ......... (2) 

where a is the ratio of the paralell group velocity component Vg Ii to the phase velo­

city component Vp;1 i. e., a = Va /vp I, B l /3 is the growth factor of the wave and D is 

the normalized damping factor i. e., D= Wi/ w. The expression of B is as follows, 
(J)b

2 k 2 R B=w2- w(ap;aW) ' ........ ·(3) 

Wb is a plasma frequency of electron beam, P= Re (k2 ep), ep is a dielectric constant 

of plasma, R is the reduction factor which is described for the cylindrical system as 

follows,ll 

........ ·(4) 

a and b are the plasma and beam radii, No is the zeroth Neumann function. 

Considering the Cherenkov excitation condition v"" =w/k II, the condition denoted 

by an inequality (2) is rewritten as follows, 

g,,2>4 (3: 3 r ~~3 (tQ'-)r) ta-=~~8k~)2)2 (~II f' ........ ·(5) 

where g" = W,,/We, g = W/We, ..Qi = Wi/We, K ~I and K~ are paralell and perpendicular 

components of the vector K = kVt/ We and (X)r shows the real part of X. The result 

of calculation for threshold using an inequality (5) is shown by a solid curve in Fig. 

9, which explains the experimental result for rather small beam voltage (V" <180 V) 

but can not do for large beam voltage. 

For the latter case (Vb> 180 V), as K II takes a small value which is determined by 

Cherenkov excitation condition, so that the damping factor D is very small as shown 

in Fig. 7, it is considered that the threshold value 'is much smaller than the former 

case (Vb <180 V). 

In these circumstances, the other unknown mechanism which disturbs the self-osciI-
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lation due to the instability may be considered, for example, the wave energy loss 

of the sy~tem (the apparatus and plasma system). Using the well-known notion of 

Q-value, we may express the effective damping factor corresponding to this mecha­

nism Del I as follows, 

Q=~ = wE = 21I' _ ---:--__ 2"7"1I'-:----==--_=__ 
Aw AE 1 -exp(2wt,T) 1 -exp(47rDe!!) 

···· .. ···(6) 

where E is the total wave energy in the whole spec,trum, AE is the energy loss from 

the whole spectrum per unit time and T=2rr/ w. U sing the threshold value for tJ~ 

which is calculated from the bro~en line in Fig. 9, we can estimate the value of the 

effective damping factor tJi e!! correponding to the wave e~ergy loss, from the condi­

tion described by an inequality (5). As De!! (= SJ, e!!/tJ) can be determined in this 

way, Q-value is calculated by eq. (6). The results of calculations are shown in Table 

1 witli the experimentally determined Q-value from the normalized frequency width 

Am/w of the observed frequency 

spectrum. Both values, the Q-value 

calculated from the threshold value 

of tJb and that determined from 

the shape of the frequency spec­

trum, coincide within factor 3, which 

suggests that the threshold value 

in nb - Vb space for the latter case 

(Vb> 180 V) is dominated by rather 

the wave energy loss of the appa­

ratus and plasma system than the 

damping factor of the wave. 

Vb (V) 

200 

250 

300 

350 

400 

450 

Table 1. 

Calculated value 

!h I Q 

6.7XI0-B 193 

6.9 187 

7.2 182 

7.7 170 

8.0 162 

8.4 154 

Experimental value 

dw/w(%) I Q 

0.8-1.9 125-53 

0.9-2.3 111-44 

1.4-2.1 71-48 

0.9-2.0 111-50 

1.4-2.0 71-50 

1.1-2.1 91-48 

Moreover, because the analysis described above can explain consistently the experi­

mental results, the assumption that the anomalous excitation of the wave is a self­

oscillation due to the absolute instability of backward Bernstein wave, is considered 

to be correct. 

4. Conclusion 

Let's describe the results obtained experimentally and considered theoretically in 

this paper. The experiment on the propagation of the Bernstein wave shows that 

the forward wave along the field can not only propagate but also the backward 

wave can do. The existence of the latter suggests that the absolute instability can 

occur when an electron beam is injected. Practically, when the intense electron beam 

is injected, an excitation of the wave with an anomalously sharp spectrum is observed 

and it can be explained as the self-oscillation due to the occurence of the absolute 

instability of the Bernstein wave from its characteristics as follows; 

1) The excitation does occur only in the region in np - w space, where the backward 

Bernstein wave is observed in the experiment of the wave propagation. 
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2) When the electron temperature of plasma Te becomes larger than the threshold 

value, it does disappear, which is explained from the dispersion relation of the wave. 

3) For a rather low energy of electron beam (V" <180 V in our experiment), it is 

excited when Vb and nb becomes larger than the threshold value determined from the 

condition that the growth factor gets over the damping factor of the wave, which 

are estimated under the assumption of absolute instability. 

4) However, for a higher energy of electron beam (Vb> 180 V), as the damping 

factor of the wave itself is much smaller and can be neglected, the excitation is 

dominated by the condition that the growth factor gets over the effective damping 

factor Deff corresponding to the wave energy loss of the apparatus and plasma 

system. Deff is nearly equal to that obtained from the Q-value of excited frequency 

spectrum. 
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