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ABSTRACT 

 

Nitric oxide (NO) is a major signaling molecule in the gastrointestinal tract, and released NO 

inhibits muscular contraction. The actions of NO are mediated by stimulation of soluble guanylate 

cyclase (sGC, NO-sensitive GC) and a subsequent increase in cGMP concentration. To elucidate 

NO targets in the gastrointestinal musculature, we investigated the immunohistochemical 

localization of the β1 and α1 subunits of sGC and the distribution of neuronal NO synthase 

(nNOS)-containing nerves in the guinea pig gastrointestinal tract. Distinct immunoreactivity for 

sGCβ1 and sGCα1 was observed in the interstitial cells of Cajal (ICC), fibroblast-like cells (FLC) 

and enteric neurons in the musculature. Double immunohistochemistry using anti-c-Kit antibody 

and anti-sGCβ1 antibody revealed sGCβ1 immunoreactivity in almost all intramuscular ICC 

throughout the entire gastrointestinal tract. Immunoelectron microscopy revealed that 

sGCβ1-immunopositive cells possessed some of the criteria for intramuscular ICC: presence of 

caveolae; frequently associated with nerve bundles; and close contact with smooth muscle cells. 

sGCβ1-immunopositive ICC were closely apposed to nNOS-containing nerve fibers in the muscle 

layers. Immunohistochemical and immunoelectron microscopical observations revealed that FLC in 

the musculature also showed sGCβ1 immunoreactivity. FLC were often associated with 

nNOS-immunopositive nerve fibers. In the myenteric layer, almost all myenteric ganglia contained 

nNOS-immunopositive nerve cells and were surrounded by myenteric ICC and FLC. Myenteric 

ICC in the large intestine and FLC in the entire gastrointestinal tract showed sGCβ1 

immunoreactivity in the myenteric layer. Smooth muscle cells in the stomach and colon showed 

weak sGCβ1 immunoreactivity, and those in the muscularis mucosae and vasculature also showed 

evident immunoreactivity. These data suggest that ICC are primary targets for NO released from 

nNOS-containing enteric neurons, and that some NO signals are received by FLC and smooth 

muscle cells in the gastrointestinal tract. 

 

Key words: ICC, enteric nervous system, smooth muscle, fibroblast, nitric oxide synthase, cGMP 
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INTRODUCTION 

 

Nitric oxide (NO) is an unstable free radical and diffuses freely across biological membranes and 

reaches its targets to mediate downstream effects. The main target molecule of NO is soluble 

guanylate cyclase (sGC, NO-sensitive GC), which is composed of a cytosolic heterodimer of α (α1, 

α2) and β (β1, β2) subunits (Koesling et al., 2004; Cary et al., 2006). Upon NO binding, activated 

sGC catalyzes the formation of cyclic guanosine 3’,5’-monophospate (cGMP) from guanosine 

5’-triphosphate (GTP). cGMP is then involved in the activation of a variety of effectors, such as 

cGMP-dependent protein kinases, phosphodiesterases and cyclic nucleotide-gated ion channels 

(Hofmann et al., 2000; Pyriochou and Papapetropoulos, 2005; Mergia et al., 2006). 

NO is produced from L-arginine by one of three nitric oxide synthase (NOS) enzymes, 

namely, neuronal NOS (nNOS, NOS1), endothelial NOS (eNOS, NOS3) and inducible NOS (iNOS, 

NOS2) (Krumenacker et al., 2004). The role of NOS in the gastrointestinal (GI) tract depends 

largely on its localization. nNOS is primarily expressed in neurons, eNOS in vascular endothelium 

and iNOS in macrophages (Dijkstra et al., 2004; Toda and Herman, 2005). NO signaling is one of 

the most important pathways in the GI musculature (Van Geldre and Lefebvre, 2004; Toda and 

Herman, 2005). Previous studies have suggested that elevated levels of cGMP produced by sGC 

mediate the inhibitory actions of NO in the electrical and mechanical activities of smooth muscle, 

and promote relaxation of the GI musculature (Ward et al., 1992; Franck et al., 1997; Kim et al., 

2003; De Man et al., 2007). Although biochemical studies have detected changes in cGMP levels in 

GI muscles (Ward et al., 1992), these are complex tissues containing several cell types. To clarify 

the mechanism of NO signal transduction in the GI musculature, it is important to determine which 

cells are responsible for the increases in cGMP levels induced by NO. 

 The interstitial cells of Cajal (ICC) are GI pacemaker cells that generate and propagate 

electrical slow waves, and are intermediates in enteric motor neurotransmission in the GI 

musculature (Sanders, 1996; Rumessen and Vanderwinden, 2003; Ward et al., 2004; Iino and 

Horiguchi, 2006). ICC show a highly branched morphology and form unique networks as myenteric 

ICC at the level of the myenteric plexus (ICC-MY), as intramuscular ICC in the musculature 

(ICC-IM), and as ICC in the deep muscular plexus layer of the small intestine (ICC-DMP). ICC-SM 

are distributed along the submucosal surface of the circular muscle layer of the colon. ICC-MY and 

ICC-SM serve as electrical pacemakers, generating slow waves, whereas ICC-IM and ICC-DMP 

are mediators of enteric motor neurotransmission. ICC express many of the signal transduction 

molecules acting downstream of the binding of neurotransmitters (Vannucchi, 1999; Epperson et al., 

2000; Rumessen and Vanderwinden, 2003; Iino and Horiguchi, 2006; Chen et al., 2007), such as 

tachykinins, acetylcholine, vasoactive intestinal polypeptide, and NO. Functional and 
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morphological evidence suggests that ICC may play a role in NO-dependent signal transduction. 

For example, ICC-IM are closely associated with varicose nerve terminals of enteric motor neurons 

with nNOS immunoreactivity (Wang et al., 1999, 2000; Ward et al., 2000). Physiologically, 

muscles lacking ICC-IM have been shown to have reduced inhibitory post-junctional responses to 

nerve stimulation (Burns et al., 1996; Ward et al., 1998, 2000; Beckett et al., 2002). From these 

observations, ICC-IM are considered to be the primary targets for NO signaling. 

To elucidate NO targets in the GI musculature, we need to investigate the cellular 

localization of the NO-sensitive molecule sGC. A study of sGCβ1 subunit-deficient mice showed 

that the β1 subunit regulated expression of the α subunits, and was essential for sGC function 

(Friebe et al., 2007). This study provides information on the immunohistochemical localization of 

the abundant subunits sGCβ1 and sGCα1 in the guinea pig GI tract. Using an anti-c-Kit antibody to 

detect ICC (Burns et al., 1997; Rumessen and Vanderwinden, 2003; Iino and Horiguchi, 2006), we 

investigated the possibility that ICC are preferential targets of NO signaling in the GI musculature.
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EXPERIMENTAL PROCEDURES 

 

Adult female Hartley guinea pigs aged 4-6 weeks and weighing 200-400 g (Japan SLC, 

Japan) were used in this study. The use and treatment of animals followed the Guidelines for 

Animal Experiments, University of Fukui Faculty of Medical Sciences. All efforts were made to 

minimize the number of animals used and their suffering. All guinea pigs were anesthetized with an 

intraperitoneal injection of sodium pentobarbital (50 mg/kg) and the GI tract was dissected out. 

For immunohistochemistry, we used following antibodies: rabbit anti-soluble guanylate 

cyclase β1 (sGCβ1, G4405; Sigma, USA), rabbit anti-soluble guanylate cyclase α1 (sGCα1, 

G4280; Sigma), goat anti-c-Kit (SC-168; Santa Cruz, USA), sheep anti-neuronal nitric oxide 

synthase (nNOS, Dr PC Emson, The Babraham Institute, UK) (Herbison et al., 1996). Alexa Fluor 

488-coupled donkey anti-IgG (Molecular Probes; USA) and Alexa Fluor 555-coupled donkey 

anti-IgG (Molecular Probes) were used as secondary antibodies. Control tissues were prepared by 

either omitting primary or secondary antibodies from the incubation solutions, and no specific 

immunoreactivity was observed. 

For cryostat studies (Iino and Nojyo, 2006), GI tract was flushed with 0.01 M phosphate 

buffered saline (PBS, pH7.3) before being pinned to the Sylgard elastomer (Dow Corning Corp., 

USA) floor of a dissecting dish, stretched to 100% of their resting length, and then fixed with 

Zamboni's fixative (2% paraformaldehyde made up in a 1.5% saturated picric acid solution, 0.1 M 

phosphate buffer, pH 7.3) for 4 hours at room temperature. Following fixation, tissues were washed 

with PBS, immersed in 30% sucrose containing PBS and embedded in Tissue-Tek (Miles, USA) 

before being quickly frozen. Cryostat sections were cut at 12 μm thickness using a Leica CM3050 

cryostat and collected on poly-L-lysine-coated glass slides. Sections were preincubated with normal 

donkey serum (5% in PBS) for 1 hour before being incubated with anti-sGCβ1 (1:1000), 

anti-sGCα1 (1:1000), anti-c-Kit (1:1000) and anti-nNOS (1:4000) antibodies at room temperature 

overnight. After sections had been incubated with primary antibodies, they were washed with PBS 

for at least 1 hour, before incubation in secondary antibodies (Alexa Fluor-coupled donkey anti-IgG, 

1:500 in PBS) for 1 hour at room temperature. After washing with PBS, specimens were mounted 

with PermaFluor Aqueous Mounting Medium (Thermo Electron Corporation, USA). 

For whole-mount preparations (Iino and Nojyo, 2006), tissues were placed in and flushed 

with PBS, pinned to the Sylgard floor of a dissecting dish and stretched to 130% of their resting 

length before being fixed with Zamboni's fixative for 4 hours at room temperature. The stretched 

tissues were washed with PBS and the mucosa was removed by sharp dissection. After washing 

with PBS containing 0.3% Triton X-100 (PBST) for several days, with several changes of solution, 

musculatures were incubated in normal donkey serum (5% in PBST) for 1 hour at room temperature. 

 5



Tissues were incubated with antibodies diluted in PBST for at least 48 hours at 4 oC. The tissues 

were washed with PBS, and incubated in secondary antibodies (Alexa Fluor-coupled donkey 

anti-IgG, 1:500 in PBST) for 1 hour at room temperature. After washing with PBS, specimens on 

glass slides were mounted with PermaFluor Aqueous Mounting Medium. 

Double-labeled immunofluorescence images were examined using a Leica TCS-SP2 

confocal microscope (Leica Microsystems, Germany) with excitation wavelengths of 488 nm and 

543 nm. Images were collected and measured using Leica Confocal Software (Leica Microsystems). 

Photoshop CS2 (Adobe Systems, USA) was used to compose the final plates. 

For immunoelectron microscopy (Iino and Nojyo, 2006), the GI tracts of three guinea pigs 

were fixed with Zamboni's fixative plus 0.1% glutaraldehyde for 1 hour. The tissues were removed 

from the Sylgard dish and further immersed in Zamboni's fixative for 3 hours at room temperature. 

Tissues were then cut using a cryostat, at 12 μm, and mounted on poly-L-lysine coated slides. After 

washing with PBS, sections were incubated for 1 hour in 10% normal goat serum, and reacted with 

anti-sGCβ1 (1:1000) for 24 hours at 4oC. Sections were washed three times with PBS, and then 

reacted with biotinylated goat anti-rabbit IgG (1:200 with PBS, Vector, USA) for 2 hours. After 

washing with PBS, they were reacted with avidin-biotin-peroxidase complex (ABC kit, Vector) for 

2 hours. The sections were incubated for several minutes with a solution containing 0.03% 

diaminobenzidine, 0.005% H2O2 in 0.1 M Tris-HCl, pH 7.6. After coloration in diaminobenzidine 

solution, specimens were post-fixed in 1% OsO4 in 0.1 M phosphate buffer, pH 7.4 for 1 hour, 

block-stained with uranyl acetate, dehydrated in ethanol and embedded in epoxy resin (Epok 812, 

Oken, Japan). Ultrathin sections were examined using an H-7000 electron microscope (Hitachi, 

Japan). 

 For immunoblot analysis, the musculature of small intestines was homogenized in 20 mM 

Tris-HCl (pH 7.5), 1 mM ethylenediaminetetraacetic acid (Nakalai, Japan) and 1 mM phenyl 

methyl sulfonyl fluoride (Nakalai). The homogenates were centrifuged at 1000 x g at 4 oC for 30 

minutes, and the supernatants were collected. Proteins (30μg) separated by sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis using a 7.5% polyacrylamide gel were transferred to a 

polyvinylidene difluoride membrane (Immobilon-P, Millipore, USA). Membranes were blocked 

with 5% fat-free dry milk in PBS containing 0.05% Tween-20 and then incubated with anti-sGCβ1 

(1:5000), anti-sGCα1 (1:4000), anti-c-Kit (1:1000) or anti-nNOS (1:20000) antibody solutions. 

Immune complexes were visualized using a chemiluminescence system (ECL Plus, Amersham 

Pharmacia Biotech, UK) with HRP-conjugated anti-IgG. Immunoblots using anti-sGCβ1, 

anti-sGCα1, anti-c-Kit and anti-nNOS antibodies demonstrated the presence of specific 

immunoreactive bands at approximately 68 kDa, 77kDa, 145 kDa and 135/125 kDa, respectively 

(Fig. 1).
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RESULTS 

 

1. Distribution of sGCβ1 immunoreactivity in the guinea pig GI tract (Table 1) 

sGCβ1 immunoreactivity was mainly observed in the non-smooth muscle cells and neurons 

in the external muscle layers. Smooth muscle cells in the musculature showed no or weak 

immunoreactivity. To identify sGCβ1-immunopositive non-smooth muscle cells, we performed 

double immunohistochemistry using sGCβ1 and c-Kit antibodies, the latter of which is a marker of 

ICC in the GI tract (Burns et al., 1997; Rumessen and Vanderwinden, 2003; Iino and Horiguchi, 

2006); the results showed that many sGCβ1-immunopositive cells had c-Kit immunoreactivity. We 

also observed c-Kit-negative sGCβ1-immunopositive cells. These cells, situated in or between the 

muscle layers, resembled fibroblasts or fibroblast-like cells (FLC) (Komuro et al., 1999; Rumessen 

and Vanderwinden, 2003). There were also c-Kit negative sGCβ1-immunopositive cells around 

capillaries that resembled pericytes based on their distribution and morphology (Shepro and Morel, 

1993; Armulik et al., 2005). Smooth muscle cells in the muscularis mucosae and vasculature 

showed sGCβ1 immunoreactivity. 

 

2. Esophagus 

sGCβ1-immunopositive cells were scattered in the esophageal wall (Fig. 2). Using 

whole-mount preparations, we observed a small number of isolated c-Kit-immunopositive ICC that 

were also sGCβ1 immunopositive, with spindle-shaped cytoplasms, oriented along the striated 

muscle fibers. Most sGCβ1-immunopositive cells were c-Kit negative and were distributed along 

small vessels. 

 

3. Stomach 

In the gastric fundus (Fig. 3A), corpus (Fig. 3B) and pylorus (Fig. 3C), sGCβ1 

immunoreactivity was clearly observed in almost all ICC-IM in the circular and longitudinal muscle 

layers. On whole-mount preparations, ICC-IM immunoreactive for c-Kit and sGCβ1 showed a 

characteristic bipolar shape with long, thin processes (Fig. 3G, 3H). These cells were oriented in 

parallel to the long axis of the muscle fibers in both layers. Ultrastructural observations revealed 

that sGCβ1-immunopositive cells corresponded to ICC-IM (Fig. 6A, 6B). These cells possessed 

oval nuclei and many mitochondria. They were closely associated with nerve bundles and made 

contacts with neighboring smooth muscle cells. ICC-MY in the gastric corpus and pylorus showed 

no immunoreactivity for sGCβ1. c-Kit-negative sGCβ1-immunopositive cells were observed in the 

muscle layers and myenteric layer. These cells showed bipolar or multipolar shape and resembled 
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FLC (Fig. 3J). The inner fourth or fifth of the smooth muscle in the circular layer contained no or 

few ICC, and showed moderate sGCβ1 immunoreactivity. The enteric neurons in the myenteric 

ganglia and nerve fibers in the musculature showed sGCβ1 immunoreactivity. 

To examine the structural relationship between sGCβ1-containing cells and nitrergic nerves, 

cryostat sections and whole-mounts of the gastric musculature were double labeled using 

anti-sGCβ1 and anti-nNOS antibodies. Transverse sections through the gastric wall showed that 

most nNOS-immunopositive nerve fibers were closely associated with sGCβ1-immunopositive 

cells (Fig. 3D-F). In the whole-mount preparations, sGCβ1-immunopositive ICC-IM were clearly 

observed to be oriented parallel to the long axis of the muscle fibers, with nNOS-immunopositive 

nerve fibers in both layers (Fig. 3I). The inner smooth muscle of the circular layer, in which there 

were moderately sGCβ1-immunopositive smooth muscle cells, contained many 

nNOS-immunopositive nerve fibers. 

 

4. Small intestine 

In the small intestine, sGCβ1-immunopositive cells were observed in the muscle layers and 

myenteric layer (Fig. 4A, 4B). Using double immunohistochemistry with anti-c-Kit and anti-sGCβ1 

antibodies, ICC-DMP showed weak immunoreactivity for sGCβ1 (Fig. 4A, 4C). Using 

whole-mount preparations, the perinuclear areas of the ICC-DMP contained weak sGCβ1 

immunoreactivity, whereas the processes of the ICC-DMP showed intense immunoreactivity (Fig. 

4E). Immunoelectron microscopy confirmed these observations: the processes of ICC-DMP showed 

distinct sGCβ1 immunoreactivity (Fig. 6C), whereas the cell bodies had moderate immunoreactivity. 

These cells were characterized by having many mitochondria. They possessed caveolae in their cell 

membranes and formed gap junctions with each other or with smooth muscle cells of the outer 

circular layer. In the DMP layer, there was another type of sGCβ1-immunoreactive cells, which 

lacked c-Kit immunoreactivity (Fig. 4A, 4C). These sGCβ1-immunopositive cells had oval or round 

cell bodies with several short processes (Fig. 4E). By electron microscopy, intense 

sGCβ1-immunoreactive cells could be distinguished from ICC-DMP, being irregular in shape and 

having several thin processes extending in different directions (Fig. 6D). A well-developed rough 

endoplasmic reticulum could be seen within the cytoplasm of these cells. Caveolae were not 

observed. They were closely associated with nerve bundles and made small contacts with smooth 

muscle cells. From the shape of these cells and their ultrastructural features, we concluded that 

these non-ICC cells were FLC. In the DMP, many nNOS-immunoreactive nerve fibers were 

observed, and these were associated with sGCβ1-immunoreactive cells (Fig. 4B). Using 

whole-mount double immunohistochemistry, sGCβ1-immunoreactive cells were adjacent to 
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nNOS-immunopositive fibers (Fig. 4F). Electron microscopy clearly showed that these 

sGCβ1-immunoreactive cells were associated with nerve fibers (Fig. 6C, 6D). 

In the myenteric layer, there were two distinct types of cells: ICC-MY 

(c-Kit-immunopositive) and sGCβ1-immunoreactive (c-Kit-immunonegative) cells. Whole-mount 

observations revealed a sGCβ1-immunoreactive cell network and a c-Kit-immunoreactive ICC 

network in the myenteric layer (Fig. 4G). sGCβ1-immunoreactive cells had larger perinuclear 

regions than ICC, and several short processes with weak sGCβ1 immunoreactivity. Under an 

electron microscope, sGCβ1-immunoreactive cells showed fibroblast-like features, such as irregular 

cell shape, thin processes extending in different directions, well-developed rough endoplasmic 

reticulum and a lack of caveolae (Fig. 6E). On the other hand, ICC-MY, which were characterized 

by oval nuclei and numerous mitochondria, were sGCβ1-immunonegative (Fig. 6E). 

There were many sGCβ1-immunopositive cells in the circular and longitudinal muscle 

layers that were immunonegative for c-Kit. These cells resembled fibroblasts or FLC (Fig. 6). These 

cells were also closely associated with nNOS-immunopositive nerve fibers (Fig. 4B). 

 

5. Large intestine 

In the cecum (Fig. 5A), almost all ICC-IM and ICC-MY showed distinct sGCβ1 

immunoreactivity. ICC-IM in the circular and longitudinal muscle had typical morphology, namely 

a bipolar long slender form. In the myenteric layer, c-Kit-immunopositive multipolar cells 

(ICC-MY) showed sGCβ1 immunoreactivity. There were several c-Kit-immunonegative 

sGCβ1-immunopositive cells in the myenteric layer, as observed in other regions. The nerve fibers 

with nNOS immunoreactivity were associated with sGCβ1-immunopositive cells, both in the 

circular and longitudinal muscle layers (Fig. 5D). 

In the proximal (Fig. 5B) and distal colon (Fig. 5C), sGCβ1 immunoreactivity was 

observed in all ICC-IM and most ICC-MY. In the circular and longitudinal muscle layers, typical 

ICC-IM with long slender processes showed intense sGCβ1 immunoreactivity. ICC-IM extended 

their processes along the major axis of smooth muscle cells (Fig. 5G). In the myenteric layer, 

ICC-MY with a multipolar shape showed intense sGCβ1 immunoreactivity; c-Kit-immunonegative 

cells with weak sGCβ1 immunoreactivity were also observed (Fig. 5I). The smooth muscle cells in 

the inner third of the circular layer showed higher immunoreactivity for sGCβ1 than the outer two 

thirds of the circular muscle. This area contained fewer ICC than the outer part of the circular 

muscle. 

Using immunoelectron microscopy, intense sGCβ1 immunoreactivity was detected in 

ICC-IM distributed both in the circular and longitudinal muscle layers (Fig. 6G). These cells 
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possessed oval nuclei with scant perinuclear cytoplasm in comparison with smooth muscle cells; 

they also contained many mitochondria. Around the myenteric ganglia, sGCβ1-immunopositive 

cells had long processes and many mitochondria (Fig. 6F, 6H). These characteristic features 

confirmed that the sGCβ1-immunopositive cells were colonic ICC-MY. There were weakly 

sGCβ1-immunopositive cells with fibroblast-like features as long thin processes. These cells lay 

scattered in the myenteric layer. 

Double-immunofluorescence immunohistochemistry revealed that almost all 

sGCβ1-immunopositive cells in the muscle layer of the colon were situated adjacent to 

nNOS-immunopositive nerve fibers (Fig. 5E, 5F). Nerve fibers extended along both the cell bodies 

and processes of the sGCβ1-immunopositive cells (Fig. 5H). The inner third of the circular layer, 

which contained many nNOS-immunopositive nerve fibers, consisted of moderately 

sGCβ1-immunopositive smooth muscle cells, and was free from ICC-IM. 

 

6. Distribution of sGCα1 immunoreactivity in the guinea pig GI tract 

sGCα1 immunoreactivity showed almost the same distribution as sGCβ1 immunoreactivity 

in the gastric corpus (Fig. 7A), ileum (Fig. 7B) and proximal colon (Fig. 7C). ICC-IM in the corpus 

and colon expressed distinct sGCα1 immunoreactivity. ICC-DMP in the ileum showed weak 

sGCα1 immunoreactivity. Although ICC-MY in the colon displayed sGCα1 immunoreactivity, 

those in the corpus and ileum were free from sGCα1 immunoreactivity. ICC-SM in the colon had 

no immunoreactivity. c-Kit-negative sGCα1-immunopositive cells having FLC characteristics were 

observed in the musculature. Myenteric ganglia showed diffuse immunoreactivity. 
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DISCUSSION 

 

The results of our immunohistochemical investigations assign sGCβ1 expression precisely to ICC, 

FLC and neurons in the GI musculature of the guinea pig. Because sGC requires the coexpression 

of one α and one β subunit for catalytic action (Koesling et al., 2004; Cary et al., 2006), it is 

important to detect both subunits in the same cells. We obtained almost the same distribution of 

sGCα1 immunoreactivity as sGCβ1 immunoreactivity. RT-PCR experiments showed that the 

musculature and isolated ICC-DMP of the murine small intestine expressed mRNAs for sGCα1 and 

sGCβ1 (Chen et al., 2007). Deletion of the β1 subunit gene results in a loss of not only β1 subunit 

protein, but also α1 and α2 subunits, because of the instability of α subunits when expressed 

without the dimerizing partner β1 subunit (Friebe et al., 2007). Therefore, we considerer that the 

expression analysis of the sGCβ1 subunit performed in this study indicates the functional 

distribution of sGC and that cells containing sGCβ1 are targets of NO signaling. 

This study demonstrates, for the first time, the presence of sGC in numerous ICC using 

double immunohistochemistry for sGC and the ICC marker c-Kit (Burns et al., 1997; Rumessen and 

Vanderwinden, 2003; Iino and Horiguchi, 2006). Using whole-mount preparations, the morphology 

and sGCβ1 expression of ICC can clearly be observed. Salmhofer et al. (2001) showed sGC in 

flattened cells around the myenteric ganglia and in specialized cells in the DMP in the rat small 

intestine. Using double immunohistochemistry, they also showed that half of the 

sGC-immunopositive cells in the DMP were c-Kit immunopositive. Our study, using double 

immunohistochemistry and electron microscopy, clarified that ICC-DMP in the guinea pig small 

intestine showed sGCβ1 immunoreactivity. We could also distinguish sGCβ1-immunopositive FLC 

from ICC in the DMP and myenteric layers, and confirmed the previous findings by Salmhofer et al. 

(2001). We conclude that there are two types of sGCβ1-immunopositive cells, namely ICC and 

FLC, in the GI tract. 

 NO is produced by NOS and diffuses freely across cell membranes to reach its receptor, 

sGC. Because NO has a very short half-life (Lancaster Jr, 1997), sGC-containing cells are 

necessarily situated near NO synthesizing structures. Using double immunohistochemistry, we 

clearly observed that almost all sGCβ1-immunopositive cells were found in close proximity to 

nNOS-immunopositive nerves. Under the electron microscope, many sGCβ1-immunopositive cells 

were seen to be located near the nerve fibers or cell bodies. These relationships suggest that 

sGCβ1-containing cells in the GI musculature receive NO signaling predominantly from 

nNOS-containing enteric nerves. Nitrergic nerve stimulation using electrical field stimulation 

results in inhibitory junctional potential and relaxation of smooth muscle in the GI tract, and these 
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responses are thought to be mediated through ICC-IM (Ward and Sanders, 2001; Ward et al., 2004). 

The role of ICC-IM in neurotransmission appears to be dependent upon the close anatomical 

relationship between nerve terminals and ICC (Komuro et al., 1999; Wang et al., 1999, 2000; Ward 

et al., 2000). Physiological studies in mice lacking ICC-IM have shown that ICC-IM mediate 

post-junctional responses to enteric excitatory and inhibitory neurotransmission (Burns et al., 1996; 

Ward et al., 2000; Beckett et al., 2002). Our study demonstrated that ICC-IM were innervated by 

NOS-containing nerve terminals and contained the NO-sensitive molecule sGCβ1 in their soma. 

Marked expression of sGCβ1 in ICC-IM confirms the functional implications for NO mediated 

neurotransmission in the GI musculature. 

 ICC-MY in the stomach and small intestine, and ICC-SM in the colon, are known to 

generate slow waves (Sanders, 1996; Rumessen and Vanderwinden, 2003). These cells showed no 

immunoreactivity for sGC. There are several functional reports regarding cGMP and slow waves. In 

the canine antrum (Burke et al., 1996) and ileum (Cayabyab et al., 1997), and the guinea pig antrum 

(Kim et al., 2003) and proximal colon (Watson et al., 1996), slow waves were influenced by 

NO/cGMP signaling cascades. Using isolated ICC-MY from the murine small intestine, cGMP 

produced from sGC has been shown to regulate the slow wave frequency underlying pacemaker 

function (Koh et al., 2000). In a functional immunohistochemical study, ICC-SM in the canine 

colon responded to NO stimulation with an increase in cGMP level (Shuttleworth et al., 1993). 

Although there is a discrepancy between our immunohistochemical findings and previous 

functional findings in ICC-MY and ICC-SM, there remains the possibility that sGC is present in 

ICC-MY and ICC-SM, because immunohistochemical methods have limited detection sensitivity. 

Further study, using RT-PCR, is required to clarify the existence of sGC in these ICC. On the other 

hand, ICC-MY in guinea pig colon showed distinct sGC immunoreactivity. Although there have 

been few findings concerning colonic ICC-MY and NO signaling, Keef et al. (1997) suggested that 

electrical activity from ICC-MY in the canine colon was suppressed by NO. 

 There were numerous FLC expressing various intensities of sGC immunoreactivity in the 

musculature. The ultrastructural features of these cells were a well-developed rough endoplasmic 

reticulum and a lack of basal lamina and caveolae. These characteristics suggested that the 

sGC-immunopositive cells lacking c-Kit immunoreactivity were FLC (or fibroblasts) (Komuro et al., 

1999; Horiguchi and Komuro, 2000). In the myenteric layer, sGCβ1-immunopositive FLC and 

ICC-MY were joined to each other and made their own networks independently. In the DMP layer, 

both FLC and ICC-DMP contained sGCβ1 immunoreactivity and were adjacent to nerve fibers. The 

FLC are likely to be involved in intestinal motility, because of the existence of gap junction or gap 

junction-like structures between FLC and smooth muscle cells (Horiguchi and Komuro, 2000). 

Rumessen and Vanderwinden (2003) named fibroblasts or FLC in the GI musculature non-Cajal 
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interstitial cells (NCIC). NCIC are known to associate with nerve fibers and express one of the K+ 

channels, SK3 (Vanderwinden et al., 2002; Fujita et al., 2003). Although the role of NCIC remains 

essentially unknown, these features suggest a role for NCIC in the control of excitability of the GI 

musculature (Rumessen and Vanderwinden, 2003). Further study will confirm the expression of 

sGC and SK3 in FLC or NCIC. The expression of the functional molecule sGC in FLC, and the 

relationships between FLC and nerve fibers, suggest that FLC in the musculature are regulated by 

NO/cGMP signaling and modulate smooth muscle function. 

 In contrast to the marked expression of sGCβ1 in ICC and FLC, smooth muscle cells in the 

musculature showed weak or no sGCβ1 immunoreactivity. The appropriateness of this 

immunohistochemical study was shown by the fact that smooth muscle cells in the muscularis 

mucosae and vessels had distinct immunoreactivity for sGCβ1. Smooth muscle cells in the inner 

part of musculature of the stomach and colon showed weak but distinct sGCβ1 immunoreactivity. 

The muscular areas showing sGCβ1 immunoreactivity lacked ICC-IM (Seki et al., 1998), and 

contained nNOS-immunopositive nerve fibers. We previously reported that the smooth muscle cells 

of these areas lacked the muscarinic receptor M2 subtype (Iino and Nojyo, 2006). These findings 

suggest that the smooth muscle cells of the inner parts of the musculature are functionally different 

from the smooth muscle cells in the outer part in that they are prominently innervated by inhibitory 

nitrergic nerves, and directly receive NO signals as vascular smooth muscle cells (Hofmann et al., 

2000). 

 NO signaling regulates the GI functions through sGC. sGC stimulation by NO results in 

the production of second messenger, cGMP, which mediates its effects via cGMP-dependent 

kinases, cGMP-regulated phosphodiesterases and cyclic nucleotide-gated channels (Hofmann et al., 

2000). The immunohistochemical localization of cGMP has been studied to determine potential 

physiological sites of action of NO in the GI musculature. cGMP productions in ICC and FLC of 

guinea pig intestine were reported in response to stimulation with NO donor, sodium nitroprusside 

(SNP) (Young et al., 1993). Exposure to SNP or nerve stimulation of canine colonic muscles caused 

cGMP production in ICC as well as neurons and smooth muscle cells (Shuttleworth et al., 1993). 

Functional studies showed that the electrical and mechanical effects of NO in the canine colon and 

guinea pig cecum were largely due to cGMP synthesis by sGC (Ward et al., 1992; Young et al., 

1996; Franck et al., 1997). cGMP-dependent kinase type I was detected diffusely in the GI 

musculature (Huber et al., 1998; Ny et al., 2000) and in the ICC-DMP and smooth muscle cells in 

the rat small intestine (Salmhofer et al., 2001). We need to further investigate the mechanisms 

underlying cGMP synthesis and the roles of cGMP-dependent kinases, cGMP-regulated 

phosphodiesterases and cyclic nucleotide-gated channels in the GI musculature, and have 

preliminary data regarding the predominant expression of cGMP, cGMP-dependent kinase I and 
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phosphodiesterase 5 in the guinea pig ICC (unpublished data). Our finding of an NO-receptive 

mechanism suggests that ICC preferentially use NO/cGMP signaling and regulate the GI 

musculature by a cGMP-dependent mechanism. 

 In conclusion, this study presents an entirely new range of cell types expressing the 

NO-sensitive molecule sGC in the guinea pig GI musculature. Significant expression was localized 

to ICC with particularly high intensity in the FLC, neurons and vascular smooth muscle cells. Both 

ICC and FLC were closely associated with nNOS-containing nerves. Significant expression of 

NO-sensitive GC in ICC and the morphological relationship between ICC and nitrergic nerves 

suggest that ICC are primary targets for nitrergic neurotransmission in the GI musculature. The 

identification of FLC that also contain sGC immunoreactivity and associate with nitrergic nerves 

suggests a definite role for NO signaling in the musculature.
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FIGURE LEGENDS  

 

Fig. 1  Immunoblot analysis of the guinea pig gastrointestinal musculature 

Immunoblots using anti-sGCβ1 (lane 1), anti-sGCα1 (lane 2), anti-c-Kit (lane 3) and anti-nNOS 

(lane 4) antibodies demonstrate the presence of specific immunoreactive bands at approximately 68 

kDa, 77 kDa, 145 kDa and 135/125 kDa, respectively. Molecular markers (kDa) are shown on the 

left. 

 

Fig. 2  Distribution of sGCβ1 immunoreactivity in the guinea pig esophagus 

A: Cryostat section of the esophagus. In the circular (CM) and longitudinal (LM) muscle layers, 

there are many sGCβ1-immunopositive cells (green, arrowheads) and a small number of ICC (c-Kit 

immunopositive, red). ICC labeled with c-Kit antibody show sGCβ1 immunoreactivity (arrow). In 

the submucosa (SM), sGCβ1 immunopositive vasculatures (V) are observed. B: On the 

whole-mount preparation, c-Kit-immunopositive (red) ICC are observed with a bipolar spindle 

shape (arrow) and intense sGCβ1 immunoreactivity (green). c-Kit-immunonegative 

sGCβ1-immunopositive cells (arrowhead) are also observed. Bars: 50 μm 

 

Fig. 3  Distribution of sGCβ1 immunoreactivity in the guinea pig stomach 

A-C: Cryostat sections of the gastric fundus (A), corpus (B) and pylorus (C) immunostained with 

anti-sGCβ1 (green) and anti-c-Kit (red) antibodies. ICC-IM in the circular layer show intense 

sGCβ1 immunoreactivity (arrows), whereas ICC-MY in the myenteric layer have no sGCβ1 

immunoreactivity (arrowheads). Myenteric ganglia (G) show diffuse sGCβ1 immunoreactivity. 

Smooth muscle of the muscularis mucosae (MM) and vasculatures (V) show high sGCβ1 

immunoreactivity. CM and LM show circular and longitudinal muscle, respectively. The inner parts 

of the circular muscle show weak sGCβ1 immunoreactivity (asterisks). D-F: Cryostat sections of 

the gastric fundus (D), corpus (E) and pylorus (F) immunostained with anti-sGCβ1 (green) and 

anti-nNOS (red) antibodies. Most sGCβ1-immunopositive structures are adjacent to 

nNOS-immunopositive nerve fibers (arrows). Inner parts of the circular layer (asterisks) with weak 

sGCβ1 immunoreactivity contain many nNOS-immunopositive nerve fibers. GHJ: Whole-mount 

preparations of the gastric fundus (G) and corpus (H, J) immunostained with anti-sGCβ1 (green) 

and anti-c-Kit (red) antibodies. ICC-IM (G, H) show bipolar shape with long, slender processes, and 

have distinct sGCβ1 immunoreactivity. ICC-MY (J) in the myenteric layer have no sGCβ1 

immunoreactivity, whereas FLC show weak sGCβ1 immunoreactivity (arrowheads). I: 

Whole-mount preparation of the gastric fundus immunostained with anti-sGCβ1 (green) and 
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anti-nNOS (red) antibodies. ICC-IM with sGCβ1 immunoreactivity are closely apposed to 

nNOS-immunopositive nerve terminals (arrows). Bars: 50 μm 

 

Fig. 4  Distribution of sGCβ1 immunoreactivity in the guinea pig small intestine 

ACD: Cryostat sections using anti-sGCβ1 (green) and anti-c-Kit (red) antibodies. In the DMP layer 

(A, C), ICC-DMP (c-Kit immunopositive, arrows) show weak sGCβ1-immunoreactivity and 

c-Kit-immunonegative cells show intense sGCβ1 immunoreactivity (arrowheads). In the myenteric 

layer (D), there are two types of different immunoreactivity for c-Kit antibody (ICC-MY, arrows) 

and sGCβ1 antibody (arrowheads). Neurons in the myenteric ganglia (G) show distinct sGCβ1 

immunoreactivity. CM and LM show circular and longitudinal muscle, respectively. B: Cryostat 

sections using the anti-sGCβ1 (green) and anti-nNOS (red) antibodies. sGCβ1-immunopositive 

cells are associated with nNOS-immunopositive nerves (arrows). E: Whole-mount preparation of 

the DMP layer using anti-sGCβ1 (green) and anti-c-Kit (red) antibodies. c-Kit immunopositive ICC 

(arrows) are characterized by their long, slender processes. These processes show intense sGCβ1 

immunoreactivity, whereas cell bodies of ICC have weak sGCβ1 immunoreactivity. There are also 

c-Kit-immunonegative sGCβ1-immunopositive cells (asterisks). F: Whole-mount preparation of the 

DMP layer using anti-sGCβ1 (green) and anti-nNOS (red) antibodies. There are numerous 

nNOS-immunopositive nerve terminals associated with sGCβ1-immunopositive cells (asterisks). G: 

Whole-mount preparation of the myenteric layer using anti-sGCβ1 (green) and anti-c-Kit (red) 

antibodies. ICC-MY (red, arrows) are observed as cellular network. There are numerous 

sGCβ1-immunopositive cells (asterisks) that show wide cell bodies and short processes. Bars: 50 

μm (AB), 20 μm (C-G) 

 

Fig. 5  Distribution of sGCβ1 immunoreactivity in the guinea pig large intestine 

A-C: Cryostat sections of the cecum (A), proximal colon (B) and distal colon (C) immunostained 

with anti-sGCβ1 (green) and anti-c-Kit (red) antibodies. ICC-IM (arrows) both in the circular (CM) 

and longitudinal (LM) layers, and ICC-MY (arrowheads) in the myenteric layer, show intense 

sGCβ1 immunoreactivity. ICC-SM along the circular layer show no sGCβ1 immunoreactivity. 

Myenteric ganglia (G) show intense sGCβ1 immunoreactivity. The inner part of the circular muscle 

in the proximal colon shows weak sGCβ1 immunoreactivity (asterisks). D-F: Cryostat sections of 

the cecum (D), proximal colon (E) and distal colon (F) immunostained with anti-sGCβ1 (green) and 

anti-nNOS (red) antibodies. Most sGCβ1-immunopositive structures are adjacent to 

nNOS-immunopositive nerve fibers (arrows). The inner part of the circular layer (asterisks) with 
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weak sGCβ1 immunoreactivity contains nNOS-immunopositive nerve fibers. GH: Whole-mount 

preparations of the circular layer of proximal colon. ICC-IM (G) show bipolar shape with long, 

slender processes and have distinct c-Kit (red) and sGCβ1 (green) immunoreactivities. ICC-IM (H) 

are closely apposed to nNOS-immunopositive nerve terminals (red, arrows). I: ICC-MY (arrows) in 

the distal colon have distinct sGCβ1 immunoreactivity, and FLC (asterisks) show weak sGCβ1 

immunoreactivity. Bars: 50 μm (A-F, I), 20 μm (G, H) 

 

Fig. 6  Electron microscopic demonstrations of sGCβ1 immunoreactivity in the guinea pig 

gastrointestinal tract 

AB: Circular muscle layer of gastric antrum. ICC-IM (ICC) are sGCβ1 immunopositive, are closely 

associated with nerve bundles (N) and made gap junction-like contact with smooth muscle cell 

(arrow). Some nerve fibers contain distinct sGCβ1 immunoreactivity. CD: Deep muscular plexus 

layer of small intestine. ICC-DMP (ICC) and their processes (asterisks) show moderate to high 

immunoreactivity. Nerve bundles (N) are located in close vicinity to them. An arrow indicates a gap 

junction between ICC-DMP. A fibroblast-like cell (FLC) shows intense immunoreactivity in this 

region. They are also closely associated with nerve bundles (N) and formed small contacts with 

smooth muscle cells (arrowhead). E: Myenteric region of the small intestine. Immunopositive FLC 

(FLC) and immunonegative ICC-MY (ICC) are situated near the myenteric ganglion (Ggl). Cp 

indicates a capillary. F: Myenteric region of proximal colon. Immunopositive ICC-MY (ICC) and 

immunonegative FLC (FLC) lie within the connective tissue space between the myenteric ganglion 

(Ggl) and circular muscle layer. G: Circular muscle layer of distal colon. ICC-IM (ICC) show 

intense immunoreactivity and are associated with nerve bundles (N). H: Myenteric region of distal 

colon. Immunopositive ICC-MY (ICC) surround the myenteric ganglion (Ggl). Bars: 1 μm (A-E, G, 

H), 5 μm (F) 

 

Fig. 7  Distribution of sGCα1 immunoreactivity in the guinea pig gastrointestinal tract 

Cryostat sections of the gastric corpus (A), ileum (B) and proximal colon (C) immunostained with 

anti-sGCα1 (green) and anti-c-Kit (red) antibodies. ICC-IM (arrows) in the corpus and colon, 

ICC-DMP (arrows) in the ileum and ICC-MY (arrowheads) in the colon show intense sGCα1 

immunoreactivity. ICC-MY (arrowheads) in the corpus and ileum and ICC-SM in the colon show 

no sGCα1 immunoreactivity. Myenteric ganglia (G) show diffuse sGCα1 immunoreactivity. CM 

and LM show circular and longitudinal muscle, respectively. Bars: 50 μm 
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Table 1.  sGCβ1 immunoreactivity in the musculature of the guinea pig gastrointestinal tract 

++ shows intense immunoreactivity, + shows weak immunoreactivity and – shows no 

immunoreactivity. 

 
Interstitial cells of 

Cajal (ICC) 

Fibroblast-like 

cells (FLC) 

Smooth muscle 

cells in the 

external muscle 

Smooth muscle 

cells in the 

muscularis 

mucosae 

Esophagus ++ ++  – 

Stomach 
++ (IM) 

– (MY) 
++ 

– 

+ (inner part) 
++ 

Small intestine 
+ (DMP) 

– (MY) 
++ – + 

Cecum 
++ (IM) 

+ (MY) 
+ – + 

Colon 

++ (IM) 

+ (MY) 

– (SM) 

+ 
– 

+ (inner part) 
+ 
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