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Abstract 

We compared the potency of the interaction of three antipsychotic drugs, i.e., 

chlorpromazine (CPZ), haloperidol (HAL) and sulpiride (SUL), with the plasma 

membrane in the rat brain. CPZ loading (≥ 100 μM) dose-dependently increased both 

membrane permeability (assessed as [18F]2-fluoro-2-deoxy-D-glucose-6-phosphate 

release from brain slices) and membrane fluidity (assessed as the reduction in the 

plasma membrane anisotropy of 1,6-diphenyl-1,3,5-hexatriene). On the other hand, a 

higher concentration of HAL (1 mM) was required to observe these effects. However, 

SUL failed to change membrane permeability and fluidity even at a high concentration 

(1 mM). These results indicated the following ranking of the potency to interact with the 

membrane: CPZ > HAL > SUL. The difference among antipsychotic drugs in the 

potency to interact with the plasma membrane as revealed in the present study may be 

partly responsible for the difference among the drugs in the probability of inducing 

extrapyramidal side effects such as parkinsonism and tardive dyskinesia. 

 

Key words: Plasma membrane, Chlorpromazine; Haloperidol, Sulpiride, 

Extrapyramidal side effects. 
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Introduction  

Antipsychotic drugs have been widely used to treat schizophrenia as well as other 

psychiatric disorders, but the use of these drugs is limited by their tendency to produce 

extrapyramidal movement disorders such as tardive dyskinesia (TD) (Gerlach and Casey, 

1988) and parkinsonism (Marsden and Jenner, 1980). Although receptors dominate most 

research on antipsychotic drugs, such small molecular weight, lipid-soluble compounds 

would easily distribute into the plasma membrane and affect the membrane environment 

(Meltzer et al., 1996; Tharmapathy et al., 2000). However, little is known about the 

effects of these drugs on plasma membrane integrity in the central nervous system. 

While most previous studies compared the cytotoxic effect of antipsychotic drugs on 

non-neuronal cell types (Boelsterli et al., 1987; Dwyer et al., 2003), little is known 

about the difference among these drugs in the potency to induce neurotoxicity, 

especially in the potency to interact with the plasma membrane in the central nervous 

system. 

Radio-labeled 2-deoxy-D-glucose (2DG) have been used as a probe for cell 

membrane permeability alterations detected by monitoring the leakage of the 

phosphorylated 2DG from the cells (Andreoli et al., 1985; Walum and Peterson, 1982). 

Membrane fluidity is measured as the rotational mobility of a fluorescent probe 

1,6-diphenyl-1,3,5-hexatriene (DPH) which partitions into the membrane bilayer 

(Shinitzky and Barenholz, 1978). A decrease in the fluorescence polarization of DPH 

indicates an increase in the membrane fluidity (Ohyashiki et al., 1992). 

In the present study, the potency of the interaction of three antipsychotic drugs, i.e., 
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chlorpromazine (CPZ; a phenothiazine antipsychotic drug), haloperidol (HAL; a 

butyrophenone antipsychotic drug), and sulpiride (SUL; a benzamide antipsychotic 

drug), with the plasma membrane in the rat brain was examined and compared. To 

investigate the effects of these antipsychotic drugs on plasma membrane permeability, 

[18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) uptake in fresh rat brain slices was serially 

and two-dimensionally measured using a dynamic positron autoradiography technique 

(Murata et al., 1999; Omata et al., 2000). Also, to investigate the effects of these agents 

on plasma membrane fluidity, plasma membrane anisotropy in the rat brain was 

measured spectrofluorometrically using DPH as a fluorescent probe. 

 

Methods 

Dynamic positron autoradiography technique 

All animal procedures were approved by the Animal Care and Use Committee of 

University of Fukui in accordance with Guidelines for Animal Experiments, University 

of Fukui. Male Wistar rats (250–300 g) were decapitated, and their brains were removed. 

Sagittal brain slices (300 µm in thickness) were prepared with a microslicer (DTK-2000, 

Dosaka EM, Kyoto, Japan), and incubated as previously described (Murata et al., 1999; 

Omata et al., 2000). 18F was produced by 18O (p,n) 18F nuclear reactions, and [18F]FDG 

was produced by the method of Hamacher et al. (1986) using an automated [18F]FDG 

synthesis system (NKK Co. Ltd., Tokyo, Japan). The specific radioactivity of [18F]FDG 

was 1–2 Ci/mmol at the end of the synthesis, and the total concentration (labeled plus 

unlabeled) used in the experiment was 0.51–1.07 µg/ml (2.8–5.9 µM). After 1 hour of 
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pre-incubation, the slices were incubated in Krebs-Ringer solution containing [18F]FDG 

diluted to 150 kBq/ml. The slices were then incubated with various concentrations of 

antipsychotic drugs (CPZ, HAL or SUL). Drugs were dissolved in dimethyl sulfoxide 

(DMSO). The final concentration of the vehicle (DMSO) in the incubation medium was 

0.5%. DMSO at this concentration had no effect on [18F]FDG uptake. 

The exposed radioluminography plates (BAS-MP 2040S, Fuji Photo Film Co., 

Tokyo, Japan) were scanned using a BAS-1500 (Fuji Photo Film Co.). The pixel size 

was 100 µm. The regions of the brain slices were identified by referring to the brain 

map of the rat (Paxinos and Watson, 1998). The obtained image data were quantitatively 

analyzed as follows. The radioactivity of 18F decreases with the same time course 

(half-life = 109.7 min) in both the brain slices and the surrounding bathing medium, and 

it is not necessary to compensate for the radioactive decay when the radioactivity pixel 

value of a region of interest is divided by that of the bathing medium. Thus, the relative 

increment in the [18F]FDG uptake in the region of interest can be expressed in 

decay-corrected form by the following ratio: 

Relative Uptake Ratio = (RI − BM) ⁄ BM 

where RI is defined as the radioactivity signal [photostimulated luminescence 

(PSL)/mm2] on the radioluminography plate detected beneath the region of interest, and 

BM as the average radioactivity signal (PSL/mm2) on the radioluminography plate 

detected beneath the bathing medium solution surrounding each brain slice. 

 

[18F]FDG metabolite analysis 
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In order to estimate the [18F]FDG metabolites released from the brain slices as a 

result of the administration of antipsychotic drugs, metabolite analysis was performed 

by thin-layer chromatography (TLC) on Whatman LK6DF silica gel plates (Clifton, NJ, 

USA) with a solvent system of acetonitrile/water (95:5). The metabolites in the 

incubation medium were sampled after the administration of antipsychotic drugs and 

separated by TLC. The TLC plates were exposed to a radioluminography plate. 

 

Fluorescence anisotropy measurement 

The synaptosome fraction was prepared as previously reported (Gray and 

Whittaker, 1962). Briefly, the rat brain tissue was homogenized in 10 vol of 0.32 M 

sucrose using an Ultrasonic Disrupter (UR-20P, Tomy Seiko Co. Ltd., Tokyo, Japan). 

Each homogenate was centrifuged at 1000 g and 4°C for 10 min. The supernatant was 

removed and centrifuged at 12000 g and 4°C for 20 min. The resultant pellet was 

suspended in 20 vol of 50 mM Tris-HCl buffer, pH 7.4, and washed twice by 

centrifugation at 12000 g and 4°C for 20 min. The final pellet, resuspended in the same 

buffer, was used for the measurement of membrane anisotropy. 

Membrane anisotropy was measured by the method of Shinitzky and Inbar (1976) 

and Ohyashiki et al. (1992). Briefly, membranes were diluted in 50 mM Tris-HCl 

buffer, pH 7.4, and mixed with the fluorescent probe DPH (0.8 mg protein/ml, 3.3 µM 

DPH).  The DPH stock solution (1 mM) was prepared in tetrahydrofuran. The mixture 

was incubated at 25°C for 10 min, the reaction was stopped by the addition of a large 

volume of buffer, and the mixture was centrifuged at 15000 g and 4°C for 20 min. The 
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obtained pellet was washed twice with the buffer and resuspended in the same buffer. 

Various concentrations of antipsychotic drugs were added to DPH-labeled membrane 

solutions (0.07 mg protein/ml) and incubated at 36°C for 10 min. The final 

concentration of the vehicle (DMSO) in the reaction mixture was 0.5%. DMSO alone at 

this concentration had no effect on membrane fluidity. Fluorescence measurements 

were carried out at 36°C with a Beacon 2000 fluorescence polarization system 

(Invitrogen Corporation, San Diego, CA, USA). The excitation and emission 

wavelengths were 330 and 420 nm, respectively. The steady-state fluorescence 

polarization (P) was expressed using the formula (Shinitzky and Barenholz, 1978): 

P = (I║ − I┴) ⁄ (I║ + I┴) 

where I║ and I┴ are the emission intensities parallel and perpendicular, respectively, to 

the plane of the excitation light. “Anisotropy” is a term often used in the fluorescence 

polarization field, and is also inversely related to fluidity. The fluorescence anisotropy 

(A) was calculated from the fluorescence polarization value using the formula 

(Shinitzky and Barenholz, 1978): 

A = 2P ⁄ (3 − P) 

Protein amounts were measured with a Bio-Rad protein assay kit (Hercules, CA, USA) 

using bovine serum albumin as the standard. 

 

Materials 

CPZ hydrochloride, HAL, (–)-SUL and DPH were purchased from Sigma 

Chemical Co. (St. Louis, MO, USA). The Bio-Rad protein assay kit was obtained from 
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Bio-Rad Laboratories Inc. (Hercules, CA, USA). All other chemicals were from Nacalai 

Tesque Inc. (Kyoto, Japan). 

 

Statistical analysis 

The presented values are shown as the means ± SD. The Mann-Whitney U-test 

was used to evaluate the significance of differences, and a p value of less than 0.05 was 

considered significant. 

 

Results 

Figure 1 shows time-resolved images of [18F]FDG uptake of two typical brain 

slices before and after the loading of 100 µM CPZ (a) and under the control condition 

(b). To depict dynamic changes of [18F]FDG uptake, the relative uptake ratio at 10-min 

intervals in the striatum before and after loading various concentrations (30, 100, 300 

μM and 1 mM) of antipsychotic drugs was plotted against time (Figure 2). The slope of 

the graph indicates the rate of [18F]FDG uptake. 

The slope of the graph for 30 μM CPZ was definitely increased during the entire 

time course. However, when slices were loaded with buffer containing ≥ 100 μM CPZ, 

the slope of the graph initially increased, then gradually decreased and finally became 

negative (this finding may reflect the outflow of [18F]FDG metabolites from brain 

slices). The time it took to reach a negative value was shortened as the drug 

concentration was increased (results for 30, 100, and 300 μM are shown in Figure 2(a)). 

Similar results were obtained in each of the regions examined (data not shown). The 
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slope of the graph for ≤ 100 μM HAL was similar to that for the control, but that for 

300 μM HAL was definitely increased during the entire time course. However, when 

slices were loaded with buffer containing 1 mM HAL, the slope of the graph initially 

increased, then gradually decreased and finally became negative (results for 100, 300 

μM and 1 mM are shown in Figure 2(b)). Similar results were obtained in each of the 

regions examined (data not shown). The slope of the graph for all the concentrations of 

SUL tested was similar to that for the control (results for 1 mM are shown in Figure 

2(c)). Similar results were obtained in each of the regions examined (data not shown). 

The TLC data suggested that the major [18F]FDG metabolite released from the slices as 

a result of the administration of ≥ 100 μM CPZ or 1 mM HAL was 

[18F]FDG-6-phosphate, not [18F]FDG (data not shown). Because [18F]FDG-6-phosphate 

cannot be transported via glucose transporters, it is likely that the efflux of 

[18F]FDG-6-phosphate was not mediated by glucose transporters, and that the increased 

plasma membrane permeability of the cells allowed intracellular [18F]FDG-6-phosphate 

to leak from the cells. 

Relatively low concentrations of CPZ (30 μM) induced no significant changes in 

anisotropy, while relatively high concentrations of CPZ (≥ 100 μM) induced a 

dose-dependent decrease in fluorescence anisotropy (i.e., an increase in membrane 

fluidity) (Figure 3(a)). Upon treatment with HAL, a significant decrease in anisotropy 

was observed only at the concentration of 1 mM (results for 300 μM and 1mM are 

shown in Figure 3(b)). However, the addition of SUL did not induce any significant 

change in anisotropy at any of the concentrations tested (results for 300 μM and 1 mM 
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are shown in Figure 3(b)). 

 

Discussion 

Our findings indicated the following ranking of the potency to induce plasma 

membrane permeabilization and fluidization: CPZ > HAL > SUL. This order of ranking 

was in good accord with the ranking of the relative cytotoxicity induced by these agents 

in various types of cells (Boelsterli et al., 1987; Dwyer et al., 2003).  

Both CPZ and HAL are amphiphilic drugs (Pappu and Hauser, 1981). Amphiphilic 

molecules are reported to penetrate into membrane, make disordered regions in lipid 

packing and enhance the permeability of membrane (Katsu et al., 1987, 1989, 1990, 

1993). Therefore, in the present study, the amphiphilic properties of the drugs may have 

enhanced permeability and fluidity of the plasma membrane of brain cells. The 

lipophilicity of the drugs is indicated as one of the non-receptor-mediated mechanisms 

(Goosey and Doggett, 1983). These raise the possibility that the differences among the 

drugs in the potency to interact with the plasma membrane revealed in our study would 

partly underlie the differences among the drugs in the potency to induce cytotoxic 

effects reported in previous studies (Boelsterli et al., 1987; Dwyer et al., 2003). 

Our data showed that glycolytic activity was enhanced by relatively low 

concentrations of CPZ (≥ 30 µM) and high concentrations of HAL (300 µM and 1 mM). 

This would arise due to the amphiphilic property of CPZ and HAL, since an increase in 

glycolytic activity as a consequence of increased ATP consumption and ATP depletion 

due to the amphiphilic action on the plasma membrane has been reported (Rissanen et 
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al., 2003). Another possible explanation for the enhancement of glycolytic activity is 

that a compensation for the inhibition of oxidative phosphorylation by CPZ and HAL at 

the mitochondrial respiratory chain level, since these drugs are known to inhibit 

mitochondrial complex I activity (Burkhardt et al., 1993).  

One of the limitations of our findings is that the concentrations of antipsychotic 

drugs used in our study were higher than the therapeutic concentrations in human 

plasma, which range from 0.2 to 2.0 µM (Curry et al., 1970; Ulrich et al., 1998). 

Besides, in vivo, greater than 90% of the drug is bound to the red blood cells and 

plasma protein and 10% is the free drug (Brinkschulte et al., 1982), which is the 

pharmacologically active portion. However, due to their large distribution volumes, 

these drugs can accumulate at 20- to 30-fold higher concentrations in brain tissue than 

in serum (Baldessarini et al., 1993; Kornhuber et al., 1999). The high lipophilicity of 

these drugs also enables them to concentrate in the membrane as high as 1000-fold 

greater than the concentration in aqueous solution (Seeman, 1977). Therefore, these 

drugs may reach neurotoxic levels in the brain. 

The membrane fluidization induced by antipsychotic drugs could result in the 

fusion between the synaptic vesicle membrane and the presynaptic membrane, which 

may enhance spontaneous secretion of dopamine and thus underlie TD (Seeman et al., 

1974). Membrane permeabilization could cause neuronal degeneration and death, which 

has been proposed as a toxic mechanism of Parkinson’s disease (Volles et al., 2001). 

These considerations lead us to speculate that membrane permeabilization and 

fluidization by antipsychotic drugs may play at least a partial role in the pathogenesis of 



T. Murata et al. 12

drug-induced extrapyramidal side effects such as parkinsonism and TD. 

At present, little has been reported about the comparative potencies of different 

antipsychotic drugs for inducing extrapyramidal adverse effects. SUL is considered to 

be a drug with a documented lower risk of these unwanted effects in human (Gerlach 

and Casey, 1984; Spila-Alegiani et al., 1995) and in an animal model (Gunne et al., 

1986). Although the mechanisms responsible for the differential incidence of 

extrapyramidal adverse effects among antipsychotic drugs are uncertain, these 

observations prompt us to speculate that SUL may have a lower probability of inducing 

extrapyramidal side effects such as parkinsonism and TD than HAL and CPZ, partly due 

to its lower potency for interacting with the plasma membrane, as revealed in our study. 

Further studies will be needed to clarify the relationship between the membrane actions 

of antipsychotic drugs and the pathogenesis of antipsychotic drug-induced 

extrapyramidal side effects. 

In conclusion, we compared for the first time the potency of the interaction of 

three antipsychotic drugs, CPZ, HAL and SUL, with the plasma membrane in the rat 

brain. CPZ permeabilized and fluidized plasma membrane at relatively low 

concentrations (≥ 100 μM). HAL required a higher concentration (1 mM) to induce 

these effects. SUL did not act on the membrane even at a high concentration (1 mM). 

These findings implied the following order of the potency to interact with the plasma 

membrane: CPZ > HAL > SUL, which may be partly responsible for the difference 

among the drugs in the probability of inducing extrapyramidal side effects such as 

parkinsonism and TD. 
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Figure legends 

Figure 1. Time-resolved pseudocolor images of [18F]FDG uptake in sagittally sectioned 

rat brain slices. Time zero is when CPZ was added to the incubation medium. Two 

typical slices before and after the loading of 100 µM CPZ (a) and under the control 

condition with its diagram (b) for three representative time periods (–10–0 min, 

200–210 min, and 550–560 min) are shown. The filled regions in the diagram represent 

the five brain regions assessed in the present study (frontal cortex, caudate putamen, 

thalamus, hippocampus, and cerebellum). For decay correction, the color-coding was 

based on the relative uptake ratio (see text for further explanation). 

 

Figure 2. Effect of treatment with various concentrations of CPZ (a), HAL (b) and SUL 

(c) on the time-course of [18F]FDG uptake in the striatum. Ordinate: relative uptake 

ratio of 18F-radioactivity (see text for further explanation). Abscissa: time in minutes. 

Time zero is defined as the time when the antipsychotic drug (CPZ, HAL or SUL) was 

introduced into the bathing medium containing brain slices. The point at which each 

drug was applied (= time zero) is indicated by the arrow. Values are the means obtained 

for six slices (SD is omitted). 

 

Figure 3. Effects of treatment with various concentrations of CPZ, (a), HAL and SUL 

(b) on the DPH fluorescence anisotropy as an index of membrane fluidity. Data 

represent the means ± SD obtained for six samples. *p < 0.05 compared with control 

values. 
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