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Study Design. An experimental study to investigate the in vitro gene expression of 

neurotrophic factors and receptors in cultured rat spinal cord cells subjected to cyclic 

mechanical stretch forces. 

Objective. We evaluated in vitro expression of neurotrophic factors and receptors in 

cultured rat spinal cord cells under cyclic tensile stress. 5

Summary of Background Data. Application of compressive mechanical stress to the 

spinal cord results in various changes making it difficult to examine the expression of 

neurotrophic factors and their receptors. There are no in vitro studies that investigated 

the biological responses of cultured spinal cord cells to tensile stress. 

Methods. Spinal cord cells were isolated for culture from 15-day Sprague-Dawley rat 10

embryos. We used the FX3000® Flexercell Strain Unit to induce mechanical stress.

We analyzed the effects of mechanical stress on cell morphology, mRNA expression 

levels of various neurotrophic factors and their immunoreactivities at 0, 2, 6, 12, 24 

and 36 hours.

Results. Tensile stress for 6 hours resulted in reduction of spinal cord cells and loss of15

neurites. Cells that survived 24 hrs-stress showed swollen irregular-shaped soma, bleb

formation, and fragmented neurites. The cell survival rate decreased while lactate 

dehydrogenase release increased significantly at 6 hours. There were significant 

increases in nerve growth factor, brain-derived neurotrophic factor, trkB, p75 

neurotrophin receptor (p75NTR), glial cell line-derived neurotrophic factor, and 20

caspase-9 mRNA expressions during the early period after application of tensile 

stress. 

* Structured Abstract (300 words)



Conclusion. Our results suggest survival of spinal cord neuronal cells under injurious 

tensile stress with increased synthesis and utilization of several neurotrophic factors 

and receptors, as well as expression of proteins related to cell apoptosis. 25
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Mini-Abstract: 

Exposure of cultured rat spinal cord cells to cyclic tensile stress resulted in increases 

in expressions of nerve growth factor, brain-derived neurotrophic factor, trkB, p75 

neurotrophin receptor (p75NTR), glial cell line-derived neurotrophic factor, and 

caspase-9 mRNAs at early time after tensile stress application. 5

* Mini Abstract (50 words)
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Introduction

The spinal cord and neurons are always subjected to mechanical stress including 

tensile stresses, and during the spine movement, such stresses may be applied to the 

spinal cord in a very complex manner in association with subsequent symptomatic 

manifestation.1,2  In addition, mechanical stress, a tensile stress, to the spinal cord may 5

ultimately cause motoneuron dysfunction and axonal degeneration.3,4 Longitudinal 

vertebral distraction and the physiological tension zone5 of the spinal cord are closely 

correlated with each other when the spine is subjected to flexural position6,7 and 

excessive kyphosis in the thoracic vertebrae.8 Tensile stress applied to the spinal cord 

is potentially critical and linked to subsequent neuronal damage, but it is extremely 10

difficult to estimate the isolated effect of tensile stress in the in vivo experimental 

setting. 

Application of mechanical force on the spinal cord results in loss of function in 

some neurons while others show increased metabolic activity to resist injury. It is 

conceivable that mechanical stress of the spinal cord induces both neuronal survival 15

and repair, or cell death. Recent studies of experimental spinal cord damage in 

animals examined the function as well as source and dynamics of induction of 

endogenous neurotrophic factors, including brain-derived neurotrophic factor (BDNF), 

neurotrophin (NT)-3, and their receptors,9-15 that are essential for neuronal survival 

and repair as well as neurite outgrowth and arborization. However, in these 20

experiments, excess mechanical stress could cause tissue or cell reactions such as

activation of glial cells or invasion of foreign cells from the periphery. It could also 

induce various pathological events and release of inflammatory mediators that could

* Manuscript Text (must include page numbers)
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positively or negatively influence spinal cord function.16  The complexity of the in 

vivo situation may result in a limited accessibility to the tissue of interest, preventing 25

real-time and spatial measurement of biological or mechanical parameters.17 Thus, to 

gain a better understanding of the neuronal response to spinal movement and 

physiological state, in vitro models of spinal cord stress could perhaps allow a better

control of the extracellular environment, easy and perhaps repeated access to the cells, 

and help elucidate the mechanisms of response to mechanical stimuli.30

To our knowledge, there are no studies that examined the biological and 

immunohistochemical responses of spinal cord cultured cells to mechanical tensile 

stress. Flexercell Strain Unit (FX3000®, Flexercell International, Hillsborough, NC) is 

a cell-stretching apparatus that allows application of cyclic tensile force to the cultured 

cells. The system has been used to elucidate the mechanism of mechanical signal in 35

various types of cells.18-20  The present study was designed to assess the effect of 

cyclic mechanical tensile force on the expression and synthesis of neurotrophic factors 

and their receptors in cultured spinal cord cells with the use of this equipment.

■Materials and Methods40

Cell Cultures. Primary cultures were established using the method described 

previously.21,22  In brief, spinal cords of Sprague-Dawley rat embryos were dissected 

out at post-coital day 15 and stripped of the dorsal root ganglia and the meninges. 

Dissected tissues were rinsed with cold Ca+2- and Mg+2-free Hanks balanced salt 

solution (HBSS) supplemented with 4 g/L glucose, and incubated at 37°C for 20 45

minutes with 0.03% (w/v) trypsin solution in HBSS with mild shaking. They were 
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transferred into HBSS containing 0.1% (w/v) soybean trypsin inhibitor (Sigma, St. 

Louis, MO) and 0.2% (w/v) bovine serum albumin (BSA), and triturated very mildly. 

The cell suspension was filtered through nylon mesh (70 m, Cell Strainer; Becton 

Dickinson, Bedford, MA). The culture medium consisted of 75 mL Leibovitz’s L-15 50

medium supplemented with glucose (4 g/L), 1.0 mL N2 supplement, 15 mL 0.15 M 

sodium bicarbonate, 10 mL heat-inactivated horse serum, 1 mL of 100 mM L-cysteine 

and 1 mL penicillin G 104 U/mL and neutralized with CO2. After centrifugation at 400 

x g for 15 minutes at 4°C, precipitated cells were gently re-suspended in a fresh 

culture medium and plated at a density of 4.0 x 105 cells/well onto a 6-well culture 55

plate with a flexible-polystyrene bottom coated with type IV collagen (BioFlex®

Baseplate, Flexercell International). 

The experiment was carried out in the Orthopaedic Spinal Cord Laboratory of

Fukui University. The experimental protocol strictly followed the Ethics Review 

Committee Guidelines for Animal Experimentation of our University Medical Faculty. 60

Application of Tensile Stress to Cultured Spinal Cord Cells. The cell stretching 

device used in this study was Flexercell FX3000® (Flexercell International). The 

device consists of a computer-controlled vacuum unit (Figure 1A), a culture plate with 

a flexible-polystyrene well-bottom coated with type IV collagen (BioFlex® Baseplate) 65

(Figure 1B), and another culture well plate with a non-deformable culture well bottom 

constructed of the same material. The culture plates consisted of 6-well (35 mm 

diameter) flexible-bottomed culture plate with a hydrophilic surface. Application of 

vacuum provides a hemispherically downward deforming force to the flexible bottom, 
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resulting in a non-homogenous strain profile with a maximum at the periphery and a 70

geometric decline toward zero at the center of the culture well bottom. The cells were 

placed in the culture well plates at an average density of 4.0 x 105 cells/well. For these 

experiments, spinal cord cells in the culture were subjected to cycles of 1 second of a 

maximum 12% elongation (vacuum level, 10.3 kPa). The flexible-bottomed culture 

plates including the control plates were then placed on the vacuum baseplate in the 75

incubator (37ºC in 5% CO2). After three days of cell seeding, cells were subjected to 

cyclic stretch stress for 48 hours. Repeated examinations by phase microscopy (IX70, 

Olympus, Tokyo, Japan) showed that the cells remained attached to the substratum 

during elongation. The cells were observed morphologically following application of 

tensile stress and various assays, quantification of mRNA expression of neurotrophic 80

factors, and immunoreactivity were conducted at 0, 2, 6, 12, 24 and 36 hours after the 

application of tensile stress. 

Assessment of Cell Survival and Cell Damage. To determine possible cellular 

damage due to tensile stress, cell survival was examined by manual cell counting and 85

by measurement of lactate dehydrogenase (LDH) release at 0, 2, 6, 12, 24, 36 hours 

after the application of tensile stress. Calcein-acetoxymethyl ester (calcein AM: 3.00 

μM) was used to identify living cells (Live/Dead Assay, Molecular Probes, Eugene, 

Oregon). Calcein-AM is a membrane-permeable dye that is cleaved by intracellular 

esterase to produce an impermeant green-wavelength fluorophore in living cells.23,24
90

The culture medium was removed and the cells were then washed twice with PBS, 

and stained for 75 minutes at 32ºC. The numbers of attached living (green) cells in at 
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least 6 high-power fields (each containing at least 100 cells) were counted using 

fluoromicroscopy (IX70, Olympus) and a color image analyzer (MacSCOPE, Mitani, 

Fukui, Japan) in more than three wells for each time point. The cell survival rate (%) 95

was calculated relative to the cell number at 0-hour. Because spinal cord cells do not 

proliferate, the cell counts were almost uniform and at a density from 3.3 x 105 to 4.8 

x 105 cells/well during 3 days after dissemination on Bioflex® Baseplate in the 

absence of tensile stress. 

LDH, a stable enzyme present in the cytoplasm of all cells, is rapidly released 100

into the culture medium following damage to the plasma membrane. The culture 

medium was sampled at the aforementioned time points after mechanical stimulation

and analyzed using the CytoTox-ONETM kit (Promega, Madison, WI). This assay has 

been used to discriminate between apoptotic and necrotic cell death.25,26  Following 

incubation of the cells with the reagent, each reaction was stopped by stop solution 105

provided with the kit to prevent further generation of fluorescent product. LDH 

release was assessed using a chemiluminescence imaging analyzer (IS-8000-OH, 

Alpha Innotech, San Leandro, CA) in more than three wells for each time point. LDH 

release was almost uniform in the absence of stress during 2 days after dissemination 

on Bioflex® Baseplate. LDH release rate (%) following mechanical stress was 110

calculated per volume, and expressed relative to that at 0 hour. 

Real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR). The 

gene expressions of nerve growth factor (NGF), BDNF, NT-3, NT-4/5, trkA, trkB, 

trkC, p75 neurotrophin receptor (p75NTR), glial cell line-derived neurotrophic factor 115



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(GDNF), GDNF family receptor (GFR)-α1, caspase-3, and caspase-9 were examined 

by real-time PCR at each time point after mechanical stimulation. Briefly, the cultured 

cells on each well were disrupted in a lysis buffer containing β-mercaptoethanol and 

total RNA was purified using RNeasy® Mini Kit (Qiagen, Valencia, CA) and treated 

with DNase I (Takara Biomedicals, Kyoto, Japan). Reverse transcription was 120

performed using 1 μg of total RNA, AMV reverse transcriptase XL (Takara 

Biomedicals, Ohtsu, Japan) and random primer. Real-time PCR was performed on 

PRISM 7000 (ABI) using 1 μl of the synthesized cDNA and SYBR Green PCR 

master mix (Applied Biosystems, Foster, CA). Table 1 lists the primer sequences used 

in this study. The target genes were amplified and analyzed in triplicate using ABI 125

Prism 7000 SDS Software (Applied Biosystems). The expression levels of target 

genes were revised with that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

at each time, and the relative expression of target genes were calculated relative to that 

at 0 our. 

130

Immunohistochemical Analysis. Neuronal survival under cyclic tensile stress was 

determined by manual cell counting of NeuN-labeled cells using a fluorescence 

microscope. A round flexible bottom well (35 mm in diameter) was divided into six 

sectors; the cutting bottom attached cultured cells was used as a section during the 

immunocytochemical procedure. After application of tensile stress, the cultured spinal 135

cord cells were washed twice with PBS and fixed in 2% paraformaldehyde for 15 

minutes, then incubated at room temperature for 10 minutes in BlockAce (UK-B25, 

SnowBrand, Tokyo) to prevent nonspecific reactions. Cells were processed for 
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immuno-cytochemical detection of NeuN by incubation with mouse antibody to NeuN 

(1:400; Chemicon International, Temecula, CA) for 20 hours at 4ºC, followed by 140

incubation with goat anti-mouse Alexa Flour® 488/fluorescein-conjugated antibody 

(1: 400; Molecular Probes, Eugene, OR) for 1 hour at room temperature. Sections 

were counterstained with nuclear marker DAPI (Abbott Molecular, Des Plaines, IL).

The immunostained cells were visualized under a fluorescence microscope (AX80, 

Olympus) with U-MNIBA cube (BP460-490 nm excitation and BA515-550 nm 145

emission) and U-MWU cube (BP330-385 nm excitation and BA420 nm emission). 

DAPI-labeled and double-labeled cells in at least 6 high-power fields (magnification, 

x 100), each containing at least 10 cells, were counted in more than three wells for 

each time point. The ratio of DAPI-labeled cell count and NeuN-labeled cell count

was calculated automatically, which represented neuronal survival rate (%), at each 150

time using a color image analyzer (Mitani). 

For identification of immunoreactivity for neurotrophic factors and their 

receptors in neurons, following incubation with mouse NeuN antibody and goat anti-

mouse Alexa 488, the cells were incubated with rabbit antibody to NGF (1:400; Santa 

Cruz Biotechnology, Santa Cruz, CA), or with rabbit antibody to BDNF (Chemicon 155

International) or with rabbit antibody to p75NTR (1:400; Santa Cruz Biotechnology) or 

rabbit antibody to GDNF (1:400; Santa Cruz Biotechnology). Cells were subsequently 

incubated with goat anti-rabbit antibody Alexa Flour® 594/fluorescein-conjugated 

antibody (1: 400; Molecular Probes) and counted using a confocal microscope 

equipped with a 15-mWatt crypton argon laser (model TCS SP2, Leica Instruments, 160
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Nusslosh, Germany). The 488- and 543-nm lines of an argon/helium-neon laser were 

used for fluorescence excitation.

Statistical Analysis. All values are expressed as mean±SEM. Differences between 

values at particular time and those of the corresponding control were tested by one-165

way ANOVA and Tukey post hoc test. A P value less than 0.05 denoted the presence 

of a statistically significant difference. The above tests were conducted using SPSS 

software version 11.0(SPSS, Chicago, IL).

■Results170

Effects of Cyclic Tensile Stress on Cell Morphology and Cell Survival 

Under phase contrast microscopy, the control spinal cord cells (no application of 

tensile stress) had smooth oval-shaped cell soma (Figure 2A). Application of tensile 

stress for ≥6 hours decreased the number of spinal cord cells and resulted in loss of 

neurites, compared to baseline findings (Figure 2B). Application of tensile stress for 175

24 hours resulted in swelling of the remaining cells with irregularly shaped cell soma 

and appearance of several blebs within the cells, together with fragmentation of some 

neurites (Figure 2C).

The cell survival rate as assessed by manual counting of the number of living 

cell decreased in a time-dependent manner under cyclic tensile stress, from 74±22% at 180

2 hours to 53±16% at 6 hours, 48±11% at 12 hours, 40±12% at 24 hours, and 38±7% 

at 36 hours (Figure 3A). The decrease in the number of living cells became significant 

after 6 hours. On the other hand, LDH release in the culture medium was increased at 
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6 hours, reached a plateau over the subsequent 12 hours (Figure 3B). The time course 

of changes in LDH release correlated with the morphological changes seen in185

mechanically-stressed cells.

Effects of Cyclic Tensile Stress on Neuronal Survival

Among DAPI-labeled cells, 71% cells were positive for NeuN before the application 

of tensile stress 3 days after plating. Neuronal survival rate decreased in a time-190

dependent manner when cells were under cyclic tensile stress, from 71±10% at 0 hour 

(before application of tensile stress), to 40±15% at 2 hours of application, 22±9% at 6 

hours, 18±7% at 12 hours, 12±4% at 24 hours, and 10±3% at 36 hours, compared to 

non-stress cells at each time (Figure 4).

195

Effects of Cyclic Tensile Stress on mRNA Expression Levels

Time-dependent mRNA expression of NGF, BDNF, NT-3, NT-4/5, trkA, trkB, trkC, 

p75NTR, GDNF, GFRα-1, caspase-3, and caspase-9, was examined in neuronal-rich 

cultures subjected to mechanical stress (Figure 5). The mRNA expression levels of 

NGF, BDNF, and GDNF significantly increased at an early period of mechanical 200

stress, while NT-3 and NT-4/5 mRNA levels remained the same throughout the 

application of the cyclical force. NGF and GDNF mRNA levels started to increase 2 

hours after the application of stress, reached at peak levels at 6 or 12 hours and 

gradually declined until 36 hours. However, changes in BDNF mRNA level were

relatively small, though significant; i.e., an increase was detected first at 6 hours and 205

persisted until 24 hours after mechanical stress. The mRNA expression levels of trkB 
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and p75NTR, but not those of trkA, trkC, GFR-α1, were significantly up-regulated,

compared to the control. The p75NTR mRNA level started to rise somewhat later; 6 

hours after stress application, attained maximum level at 12 hours after stress, and 

gradually decreased until 36 hours. The mRNA expression level of caspase-9 was210

significantly increased at 2 or 6 hours and gradually declined until 24 hours; while that 

of caspase-3 increased in the early period after stimulation, but then decreased 

subsequently and no difference with the control was noted at later time intervals.

Effects of Cyclic Tensile Stress on NGF, BDNF, p75 NTR, and GDNF Expression in 215

Spinal Cord Neurons 

While NeuN-labeled cells decreased gradually in number in a time-dependent manner, 

NGF, BDNF, p75NTR, and GDNF immunoreactivities increased soon after the 

application of tensile stress on primary spinal cord cells. Immunoreactivities to NGF,

BDNF, p75NTR and GDNF were increased at 6 hours under cyclic tensile stress and 220

co-localized with the majority of the diminishing NeuN-positive cells (Figure 6). 

These results demonstrate that surviving neurons subjected to mechanical stress 

synthesized some neurotrophins and their receptors.

■Discussion 225

Several researchers have used in vitro models of mechanical trauma to the central 

nervous system, but studies on neuronal cells appeared to be limited to the usage of 

immortalized cell lines, such as NG108-15 27,28 and PC12 29,30. These studies indicated 

that mechanical stretch disrupted ionic homeostasis, 27 increased cell membrane 
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permeability,29 and disrupted membrane integrity followed by neuronal loss or release 230

of LDH. Pfister et al28 used glioma cell line and reported that stretch-injury resulted in

overexpression of Bcl-2 family (NG108-15) followed by neuronal cell death. 

However, the use of neuronal cell lines as in vitro injury model is associated with one

major disadvantage. Although some are derived from neuronal cells, these cell lines 

consist of immortalized or cancerous cells with the ability to divide uncontrollably, 235

suggesting that their pattern of gene and/or protein expression may be significantly 

different from the finally differentiated, functioning neurons. Hence, although limited 

to the immature or developing spinal cord, we used primary cultured cells and the 

method requires no treatment and retains the biomechanical and molecular fidelity of

spinal cord cells in vivo.240

Previous studies showed that subjecting the cells to relatively high non-

physiological strain induced axonal injury and neuronal cell death.27-29  These data of

physiological strain on neuronal cells also varied probably due to the use of different 

equipments. However, recent studies examining the effect of in vitro mechanical 

stress on neuronal cells indicated that mild neurotrauma induces secondary 245

mechanisms that ultimately lead to differentiation of neurons in mixed cortical 

cultures,31 and that the effect of micro-texture on neurite outgrowth is more prominent 

under low than high mechanical stress.32 Based on the early studies, we selected the 

tensile stress most appropriate to our culture system in a series of preliminary 

experiments. However, our results showed morphological changes of vacuole 250

formation within the cell soma and shrinkage of neurite arborization and release of 

LDH during the time course of tensile stress application. Unexpectedly, our results 
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also indicated a decrease in neuronal survival rate from 71% at 0 hour to 12% at 36 

hours, even under lower physiological mechanical condition. In primary cultures, 

isolated neurons may be more susceptible to mechanical damage than astrocytes or 255

other cells.17  Further studies are warranted on the condition of culture cells (time, 

concentration, and others), material coating of the well bottom during stretch injury 

necessary to maintain a higher survival rate of spinal cord neurons.

Neurotrophins are required for neuronal survival and influence neurite 

elongation during development.33 The expression of NGF family (NGF, BDNF, NT-3, 260

and NT-4/5) and their receptors (trkA, trkB, and trkC) under mechanical compression

may be essential for maintaining cell survival mechanism as well as prevention of cell 

death. We have been also keen to know the capacity of mechanically injured spinal 

cord to restore its function.3,4,13,14,34-36 In the present study, NGF, BDNF, trkB mRNA 

expression levels increased significantly at an early time period following application 265

of tensile stress, but NT-3, NT-4/5, trkA, trkC mRNA levels showed no significant 

elevation throughout the experiment. Expression of NGF, BDNF, and trkB genes is

dependent on neuronal activity, and changes in intracellular Ca2+ homeostasis activate 

these signaling pathways.37,38 Disruption of intracellular Ca2+ homeostasis after 

mechanical tensile stress27 may induce overexpression of NGF, BDNF, and trkB 270

mRNAs for survival and prevention of cell death. Our results showed that NGF and 

GDNF gene expression levels were similar to those reported previously.15,39  While it 

has been shown that GDNF is a neurotrophic factor for motoneurons and central 

nervous system neurons,40,41 it is also expressed in glial cells especially in activated 

microglia/macrophages of injured neural tissue.42 Although neuronal-rich culture cells 275
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(71% of NeuN-positive cells) were used in our experiment, other cells including glial 

cells, with the exception of neurons, could affect our results because this culture has a 

heterogeneous cell population. NT-3 is also known to play a role in neurite 

elongation,13,34  thus in the present study, cultured neuronal cells required NGF and 

BDNF as well as GDNF but not NT-3 or, presumably, NT-4/5 peptides. 280

Apoptotic and necrotic cell death after mechanical injury occurs through 

several and different pathways in neuronal tissue. The p75NTR is a neurotrophin 

receptor that can bind to all neurotrophins at equal affinity in most cells but it binds

with a higher affinity to the proform NGF in neurons.43  While the function of p75NTR

remains elusive, it is known to promote cell survival either in association with tyrosine 285

kinase receptors or by itself.44  Paradoxically, its activation has also been shown to 

promote apoptotic cell death in neurons and oligodendrocytes, and p75NTR-induced 

cell death follows the intrinsic apoptotic death pathway with release of cytochrome C 

from the mitochondria and activation of caspase-9.45  Our preliminary results on

p75NTR and caspase-9 gene expression profiles are in agreement with these reports. On 290

the other hand, caspase-3 increased after stimulation but the difference from the 

control was not significant. One possible explanation for this finding is that since 

caspase-3 is activated by both the intrinsic and extrinsic pathways, it is possible that 

upregulation of the intrinsic pathway may reduce apoptosis through the extrinsic 

pathway. Further studies are warranted to examine the roles of p75NTR and caspase 295

mRNAs or proteins in the apoptotic pathways activated by tensile stress in the spinal 

cord. At this stage, however, there is virtually no information on the roles of p75NTR in 

spinal cord cells under tensile stress. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

In conclusion, our results suggest that spinal cord neuronal cells survive by

increasing the synthesis and utilization of several neurotrophic factors and their300

receptors under injurious tensile stress. Changes in the expression of these genes at an 

early period after mechanical stress suggest the readiness of spinal cord neurons to 

undergo apoptosis or necrosis. A close examination of the effects of mechanical stress 

on spinal cord cells in vitro may be the key to elucidating the adaptation of spinal cord 

to mechanical tensile stress.305



Key Points: 

 We investigated the in vitro effects of cyclic tensile stress on cultured spinal cord 

cells, especially the expressions of neurotrophins and their receptor genes. 

 Increased expression levels of NGF, BDNF, trkB, p75NTR, GDNF, and caspase-9 

were evident at 6 hours after application of tensile stress.5

 Cyclic tensile stress increased mRNA expression and immunoreactivities of 

several neurotrophic factors and their receptors, and induced morphologically-

confirmed necrotic cell death and increase in LDH release.

* Key Points (3-5 main points of the article)
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Table 1. Sequences of Primers used for real-time PCR.

Target 

Protein
Forward Primer Reverse Primer

PCR Product 

Size (bp)

Sequence 

Accession No.

NGF 5’-CCATGTGGTTCCTGATCCTGTTC-3’ 5’-TCCAACAACCCGAGACTGGAC-3’ 83 NM031523

BDNF 5’-TCCTGATAGTTCTGTCCATTCAGCA-3’ 5’-GCCATTCATTCAGGCTTCCA-3’ 93 NM012513

NT-3 5’-CATGTCGACGTCCCTGGAAATAG-3’ 5’-TGGACATCACCTTGTTCACCTGTAA-3’ 82 NM031073

NT-4/5 5’-GAGGTGGAGGTGCTGTTGAC-3’ 5’-TCCCACTCAGGAGCCAGAA-3’ 150 NM013184

trk A 5’-CAAGATGCTGGTGGCTGTCAA-3’ 5’-AGCAGCTCTGCCTCACGATG-3’ 81 NM021589

trk B 5’-CCTTGACCGATCTGGCTTCTGTA-3’ 5’-TAGTTGTGGTGGGCAAACTGGA-3’ 107 NM012731

trk C 5’-CATGAAGCATGGAGACCTGAACA-3’ 5’-ACCATGCCGGAGGCTATCTG-3’ 147 NM019248

p75NTR 5’-AGGGCTGGTCCATTGGTCTATTC-3’ 5’-TTAAGGGCCGTGTTGGCTTC-3’ 132 NM012610

GDNF 5’-CCGGACGGGACTCTAAGATGA-3’ 5’-GTCAGGATAATCTTCGGGCATATTG-3’ 194 NM019139

GFRα-1 5’-GGGACGCTTTGGTGTCTGAA-3’ 5’-CCAGGTACACTTGGATGTTGGATG-3’ 132 NM012959

caspase-3 5’-GCAGCAGCCTCAAATTGTTGACTA-3’ 5’-TGCTCCGGCTCAAACCATC-3’ 144 NM012922

caspase-9 5’-CTGAGCCAGATGCTGTCCCATA-3’ 5’-CCAAGGTCTCGATGTACCAGGAA-3’ 168 NM031632

GAPDH 5’-GGCACAGTCAAGGCTGAGAATG-3’ 5’-ATGGTGGTGAAGACGCCAGTA-3’ 143 NM017008

Tables
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